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Abstract: In this paper, we study the asymptotic properties of the generalized cross validation
(GCV) hyperparameter estimator and establish its connection with the Stein’s unbiased risk
estimators (SURE) as well as the mean squared error (MSE). It is shown that as the number of
data goes to infinity, the GCV has the same asymptotic property as the SURE does and both
of them converge to the best hyperparameter in the MSE sense. We illustrate the efficacy of the
result by Monte Carlo simulations.

Keywords: Regularized system identification, Generalized cross-validation, Stein’s unbiased
risk estimators, Asymptotic analysis

1. INTRODUCTION

During the past few years, kernel-based regularization
methods (KRM) for linear system identification, first in-
troduced to the system identification community in Pil-
lonetto and De Nicolao (2010) and then further developed
in Pillonetto et al. (2011); Chen et al. (2012, 2014), have
attracted intense interest in the community and have
become a complement to the classical maximum like-
lihood/prediction error methods (ML/PEM) (Pillonetto
and Chiuso, 2015; Chen et al., 2012; Ljung et al., 2015).
The advantage of the KRM has been verified by a number
of experimental evidences in Chen et al. (2012); Pillonetto
et al. (2014) and also by the theoretic result given in Mu
et al. (2018) that the KRM can reach a smaller mean
squared error (MSE) than the ML/PEM if the kernel
matrix is carefully chosen. Recent works for linear system
identification by using this method include, e.g., the kernel
design (Prando et al., 2017; Zorzi and Chiuso, 2017; Chen,
2018b, 2019; Chen and Pillonetto, 2018; Chen et al., 2018),
hyperparameter estimators (Pillonetto and Chiuso, 2015;
Mu et al., 2017b, 2018; Hong et al., 2018), input design
(Fujimoto and Sugie, 2018; Mu et al., 2017a; Mu and
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Chen, 2018) and frequency domain counterpart (Lataire
and Chen, 2016).

The implementation of the KRM involves two successive
steps: kernel design and hyperparameter estimation, which
aim at finding a good kernel matrix based on the data.
The former is regarding how to embed the prior knowledge
of the underlying system to be identified into the kernel
matrix parameterized by a parameter vector, called hyper-
parameter and the latter is regarding how to estimate the
hyperparameter based on the data, or equivalently, to tune
model complexity of the estimated model in a continuous
manner such that a good balance between the adherence
to the data and model complexity is achieved.

The kernel design is to determine the underlying model
structure of the kernel matrix for the KRM, which is anal-
ogous to the model structure selection for the ML/PEM.
So far, many works have been done on this aspect and
several kernels embedding various types of prior knowledge
have been proposed, e.g., Pillonetto and De Nicolao (2010);
Pillonetto et al. (2011); Chen et al. (2012, 2014); Dinuzzo
(2015); Chen et al. (2016); Carli et al. (2017); Marconato
et al. (2016); Pillonetto et al. (2016); Zorzi and Chiuso
(2017); Chen (2018b, 2019); Chen and Pillonetto (2018).

The hyperparameter estimation plays a similar role as
the model order selection for the ML/PEM. The survey
of the KRM in Pillonetto et al. (2014) and the paper
Pillonetto and Chiuso (2015) introduced many popular
methods for hyperparameter estimation, such as the em-
pirical Bayes (EB), Cp statistics, Stein’s unbiased risk
estimator (SURE), cross-validation (CV), and etc. There
have been some results on the properties of the hyperpa-
rameter estimators reported in Aravkin et al. (2012a,b,
2014); Chen et al. (2014); Pillonetto and Chiuso (2015).
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Recent works on this aspect are Mu et al. (2017b, 2018),
where it is shown that the SURE method converges to the
best hyperparameter minimizing the MSE as the number
of data goes to infinity, while the more widely used EB
estimator converges to the hyperparameter minimizing
another different criterion.

In addition to the EB and SURE methods, the CV method
is another major tool for hyperparameter estimation. The
leave-one-out cross validation (LOOCV), also known as
predicted residual sums of squares (PRESS) (Allen, 1974),
is an important one of the CV family. The calculation of
the PRESS is time-consuming and so the generalized cross
validation (GCV) (Golub et al., 1979) can be thought of
as a simplification of the PRESS. The general asymptotic
properties of the CV method for discrete index (e.g., model
order selection) have been extensively studied: e.g., Li
(1987); Shao (1997). The application of the CV method to
the KRM where the tuning parameter (hyperparameter)
is continuous is less studied, except for some special cases,
e.g. ridge regression and smoothing splines, Li (1986).

In this paper, we explore the asymptotic properties of
the GCV for the KRM, where the ridge regression can
be treated as a special case. Regardless of the parame-
terization of the kernel matrix, we show that the GCV is
also asymptotically to minimize the MSE as the SURE
does. This means that both GCV and SURE methods are
asymptotically optimal and are asymptotically consistent
estimates of the MSE. The computational complexity of
the GCV and SURE methods is almost the same. More-
over, a merit of GCV is that it does not require to estimate
the variance of the noise in comparison with the SURE
method. This implies that the GCV may perform better
than the SURE method for short data or ill-conditioned
inputs. The simulation result given in Section 4 also indi-
cates that the PRESS may be also asymptotically optimal
for the cases considered in the simulation.

The remaining parts of the paper is organized as follows. In
Section 2, we recap the regularized least squares method
for FIR model estimation and kernel design. In Section
3, we introduce the PRESS and GCV hyperparameter
estimators and prove that the GCV is asymptotically
optimal. In Section 4, we illustrate our theoretical results
with Monte Carlo simulations. Finally, we conclude this
paper in Section 4.4.

2. KERNEL-BASED REGULARIZATION METHODS
FOR FIR MODEL ESTIMATION

2.1 Problem Statement

Consider a single-input single-output linear discrete-time
invariant, stable and causal system

y(t) = G0(q)u(t) + v(t), t = 1, . . . , N (1)

where t is the time index, q is the forward shift operator:
qu(t) = u(t + 1), y(t), u(t) are the output and input,
respectively, the noise v(t) is a zero mean white noise
with finite variance 0 < σ2 < ∞ and is independent
of the input u(t). Assume that the input u(t) is known
(deterministic) and the input-output data is collected at
time instants t = 1, · · · , N . The target is to estimate the
rational transfer function

G0(q) =

∞∑
k=1

g0kq
−k (2)

determined by the impulse response coefficients {g0k, k =
1, · · · ,∞}, as well as possible based on the the available
data {u(t− 1), y(t)}Nt=1.

The stability of G0(q) impliess that it is possible to
truncate the infinite impulse response at a sufficiently high
order, leading to the finite impulse response (FIR) model:

G(q) =
n∑

k=1

gkq
−k, θ = [g1, · · · , gn]T ∈ Rn. (3)

Accordingly, system (1) becomes a linear regression form

y(t) = φT (t)θ + v(t), t = 1, . . . , N

where φ(t) = [u(t−1), · · · , u(t−n)]T ∈ Rn, and its matrix-
vector form is

Y = Φθ + V, where (4)

Y = [y(1) y(2) · · · y(N)]T

Φ = [φ(1) φ(2) · · · φ(N)]T

V = [v(1) v(2) · · · v(N)]T .

The well-known least squares (LS) estimator

θ̂LS = argmin
θ∈Rn

‖Y − Φθ‖2 (5a)

= (ΦTΦ)−1ΦTY, (5b)

where ‖ · ‖ is the Euclidean norm, is unbiased but may
have large variance and mean square error (MSE) (e.g.,
when the input is low-pass filtered white noise). The large
variance problem can be mitigated if some bias is allowed.

2.2 Regularized Least Squares Methods

One feasible way to reduce the variance is to add a
regularization term σ2θTP−1θ in the LS criterion (5a),
leading to the regularized least squares (RLS) estimate:

θ̂R =argmin
θ∈Rn

‖Y − Φθ‖2 + σ2θTP−1θ (6a)

=PΦT (ΦPΦT + σ2IN )−1Y (6b)

where P is symmetric and positive semidefinite and is
called the kernel matrix (σ2P−1 is often called the reg-
ularization matrix), and IN is the N -dimensional identity
matrix. The mean squared error (MSE) of the RLS esti-
mate relating to the prediction performance is given by,
see e.g., Pillonetto and Chiuso (2015); Mu et al. (2018),

MSEy(P ) = E

[
N∑
t=1

(
φT (t)θ0 + v∗(t)− ŷ(t)

)2
]

(7)

= ‖ΦPΦTQ−1Φθ0 − Φθ0‖2 +Nσ2

+σ2Tr(ΦPΦTQ−2ΦPTΦT )

Q = ΦPΦT + σ2IN ,

where E(·) is the mathematical expectation, Tr(·) is the
trace of a square matrix, θ0 = [g01 , · · · , g0n]T with g0i ,
i = 1, . . . , n, defined in (2), ŷ(t) is the i-th element of
the predicted output

Ŷ = Φθ̂R = HY (8)

H
�
= ΦPΦT (ΦPΦT + σ2IN )−1 (9)

and v∗(t) is an independent copy of the noise v(t). It has
been shown in Mu et al. (2018, Prop. 2) that for a suitably
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chosen kernel matrix P , the RLS estimator (6b) has a
smaller MSE than the LS estimator (5b).

2.3 Kernel Design

Kernel design is the first step of the kernel-based regular-
ization method, which is regarding how to parameterize
the kernel to embed the prior knowledge of the system to
be identified

P (η), η ∈ Ω ⊂ Rp. (10)

Kernel design plays an analogous role in the model struc-
ture selection for the ML/PEM, and also determines the
underlying model structure for the regularized FIR model
(6b). So far, several kernels have been proposed, such
as the diagonal correlated (DC) kernel and the tuned-
correlated (TC) kernel (Chen et al., 2012), which are
defined as follows:

DC : Pkj(η) = cα(k+j)/2ρ|j−k|, (11)

η = [c, α, ρ] ∈ Ω = {c ≥ 0, 0 ≤ α ≤ 1, |ρ| ≤ 1};
TC : Pkj(η) = cαmax(k,j), (12)

η = [c, α] ∈ Ω = {c ≥ 0, 0 ≤ α ≤ 1}.
where the TC kernel (12) is a special case of the DC kernel

with ρ =
√
λ (Chen et al., 2012).

3. HYPERPARAMETER ESTIMATION

When a parameterized family of the kernel matrix P (η)
has been chosen, the next task is to estimate, or “tune”,
a good hyperparameter η based on the data. Hyperpa-
rameter estimation plays a similar role as choosing the
model order in the traditional parameter framework, which
has a great impact on the regularization performance.
Some effective tuning methods have been suggested in the
literature, see e.g., Section 14 of Pillonetto et al. (2014),
including the empirical Bayes (EB) method, the SURE
methods, and the cross-validation. The papers Mu et al.
(2017b, 2018) report the asymptotic properties of the EB
and SURE method. It is shown that the SURE method is
asymptotically optimal, while the EB is biased in general.

Lemma 1. (Mu et al., 2018, Theorem 1) Consider the
hyperparameter estimators:

SUREy : η̂Sy = argmin
η∈Ω

FSy(P (η)) (13)

MSEy : η̂MSEy = argmin
η∈Ω

MSEy(P (η)) (14)

EB : η̂EB = argmin
η∈Ω

FEB(P (η)) (15)

FSy(P )= ‖Y − Φθ̂R‖2 + 2σ2Tr
(
H
)

FEB(P ) = Y TQ−1Y + log det(Q).

where MSEy(P ) is defined in (7). The asymptotically best
hyperparameter in the MSEy sense is defined by

η∗y = argmin
η∈Ω

Wy(P (η),Σ, θ0)

Wy(P,Σ, θ0)=σ4θT0 P
−1Σ−1P−1θ0−2σ4Tr

(
Σ−1P−1

)

where the positive definite matrix Σ is the limit of ΦTΦ/N .
Suppose that P (η) is a symmetric and positive definite
parameterization. Thus we have as N −→ ∞

η̂Sy −→ η∗y, η̂MSEy −→ η∗y

almost surely, while

η̂EB −→ η∗B = argmin
η∈Ω

θT0 P (η)−1θ0 + log det(P (η))

almost surely. In general, η∗B �= η∗y.

Cross-validation (CV) is another widely used technique to
estimate the hyperparameters besides the EB and SURE
methods. The main idea of CV is to split data into
two disjoint parts called estimation data and validation
data, respectively. The hyperparameter value is estimated
from the training data and the quality of the estimate
is evaluated on the validation data. The hyperparameter
value that gives the best performance on validation data
are then selected.

The LOOCV, also known as PRESS, is a popular one of
the CV family, where the validation set has only one data
at each time. For the linear regression problem (4), the
hyperparameter η is estimated by

PRESS : η̂ = argmin
η∈Ω

N∑
t=1

(
y(t)− ŷ(t)

1− htt

)2

(16)

where ŷ(t) is the t-th element of the predicted output Ŷ
defined in (8) and htt is the (t, t)-element of H defined
in (9). In general, the computation of PRESS is time-
consuming and hence the weights htt in the PRESS are
replaced by their average for reducing the computational
complexity. This leads to the generalized cross validation
(GCV), which estimates η by

GCV : η̂GCV = argmin
η∈Ω

FGCV(P (η)) (17a)

FGCV(P ) =

N∑
t=1

(
y(t)− ŷ(t)

)2
(
1− Tr(H)/N

)2 . (17b)

In this paper, we will explore the asymptotic property of
the GCV (17).

Theorem 1. Consider the hyperparameter estimation cri-
terion GCV (17). Suppose that P is nonsingular and

ΦTΦ/N −→ Σ (18)

almost surely as N −→ ∞, where Σ is positive definite.
Then we have as N −→ ∞
N
(
FGCV(P )−(Y TY − Y TΦ(ΦTΦ)−1ΦTY )(1 + 2n/N)

)

−→ Wy(P,Σ, θ0) + 3n2σ2

almost surely. In addition, suppose P (η) is a symmetric
and positive definite parameterization. Then we have as
N −→ ∞

η̂GCV −→ η∗y
almost surely.

Remark 1. Assumption (18) is a relatively mild condition
on the regressor sequence φ(t).

Proof. We have the expansion

FGCV(P ) =
‖Y − Φθ̂R‖2(
1− Tr(H)/N

)2

=‖Y − Φθ̂R‖2
(
1 +

2Tr(H)

N
+

3(Tr(H))2

N2
+O

( 1

N3

))
.

by the Taylor formula
1

(1− x)2
= 1 + 2x+ 3x2 +O(x3)
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chosen kernel matrix P , the RLS estimator (6b) has a
smaller MSE than the LS estimator (5b).

2.3 Kernel Design

Kernel design is the first step of the kernel-based regular-
ization method, which is regarding how to parameterize
the kernel to embed the prior knowledge of the system to
be identified

P (η), η ∈ Ω ⊂ Rp. (10)

Kernel design plays an analogous role in the model struc-
ture selection for the ML/PEM, and also determines the
underlying model structure for the regularized FIR model
(6b). So far, several kernels have been proposed, such
as the diagonal correlated (DC) kernel and the tuned-
correlated (TC) kernel (Chen et al., 2012), which are
defined as follows:

DC : Pkj(η) = cα(k+j)/2ρ|j−k|, (11)

η = [c, α, ρ] ∈ Ω = {c ≥ 0, 0 ≤ α ≤ 1, |ρ| ≤ 1};
TC : Pkj(η) = cαmax(k,j), (12)

η = [c, α] ∈ Ω = {c ≥ 0, 0 ≤ α ≤ 1}.
where the TC kernel (12) is a special case of the DC kernel

with ρ =
√
λ (Chen et al., 2012).

3. HYPERPARAMETER ESTIMATION

When a parameterized family of the kernel matrix P (η)
has been chosen, the next task is to estimate, or “tune”,
a good hyperparameter η based on the data. Hyperpa-
rameter estimation plays a similar role as choosing the
model order in the traditional parameter framework, which
has a great impact on the regularization performance.
Some effective tuning methods have been suggested in the
literature, see e.g., Section 14 of Pillonetto et al. (2014),
including the empirical Bayes (EB) method, the SURE
methods, and the cross-validation. The papers Mu et al.
(2017b, 2018) report the asymptotic properties of the EB
and SURE method. It is shown that the SURE method is
asymptotically optimal, while the EB is biased in general.

Lemma 1. (Mu et al., 2018, Theorem 1) Consider the
hyperparameter estimators:

SUREy : η̂Sy = argmin
η∈Ω

FSy(P (η)) (13)

MSEy : η̂MSEy = argmin
η∈Ω

MSEy(P (η)) (14)

EB : η̂EB = argmin
η∈Ω

FEB(P (η)) (15)

FSy(P )= ‖Y − Φθ̂R‖2 + 2σ2Tr
(
H
)

FEB(P ) = Y TQ−1Y + log det(Q).

where MSEy(P ) is defined in (7). The asymptotically best
hyperparameter in the MSEy sense is defined by

η∗y = argmin
η∈Ω

Wy(P (η),Σ, θ0)

Wy(P,Σ, θ0)=σ4θT0 P
−1Σ−1P−1θ0−2σ4Tr

(
Σ−1P−1

)

where the positive definite matrix Σ is the limit of ΦTΦ/N .
Suppose that P (η) is a symmetric and positive definite
parameterization. Thus we have as N −→ ∞

η̂Sy −→ η∗y, η̂MSEy −→ η∗y

almost surely, while

η̂EB −→ η∗B = argmin
η∈Ω

θT0 P (η)−1θ0 + log det(P (η))

almost surely. In general, η∗B �= η∗y.

Cross-validation (CV) is another widely used technique to
estimate the hyperparameters besides the EB and SURE
methods. The main idea of CV is to split data into
two disjoint parts called estimation data and validation
data, respectively. The hyperparameter value is estimated
from the training data and the quality of the estimate
is evaluated on the validation data. The hyperparameter
value that gives the best performance on validation data
are then selected.

The LOOCV, also known as PRESS, is a popular one of
the CV family, where the validation set has only one data
at each time. For the linear regression problem (4), the
hyperparameter η is estimated by

PRESS : η̂ = argmin
η∈Ω

N∑
t=1

(
y(t)− ŷ(t)

1− htt

)2

(16)

where ŷ(t) is the t-th element of the predicted output Ŷ
defined in (8) and htt is the (t, t)-element of H defined
in (9). In general, the computation of PRESS is time-
consuming and hence the weights htt in the PRESS are
replaced by their average for reducing the computational
complexity. This leads to the generalized cross validation
(GCV), which estimates η by

GCV : η̂GCV = argmin
η∈Ω

FGCV(P (η)) (17a)

FGCV(P ) =

N∑
t=1

(
y(t)− ŷ(t)

)2
(
1− Tr(H)/N

)2 . (17b)

In this paper, we will explore the asymptotic property of
the GCV (17).

Theorem 1. Consider the hyperparameter estimation cri-
terion GCV (17). Suppose that P is nonsingular and

ΦTΦ/N −→ Σ (18)

almost surely as N −→ ∞, where Σ is positive definite.
Then we have as N −→ ∞
N
(
FGCV(P )−(Y TY − Y TΦ(ΦTΦ)−1ΦTY )(1 + 2n/N)

)

−→ Wy(P,Σ, θ0) + 3n2σ2

almost surely. In addition, suppose P (η) is a symmetric
and positive definite parameterization. Then we have as
N −→ ∞

η̂GCV −→ η∗y
almost surely.

Remark 1. Assumption (18) is a relatively mild condition
on the regressor sequence φ(t).

Proof. We have the expansion

FGCV(P ) =
‖Y − Φθ̂R‖2(
1− Tr(H)/N

)2

=‖Y − Φθ̂R‖2
(
1 +

2Tr(H)

N
+

3(Tr(H))2

N2
+O

( 1

N3

))
.

by the Taylor formula
1

(1− x)2
= 1 + 2x+ 3x2 +O(x3)
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around x = 0 and Tr(H)/N = O(1/N). Let us define an
estimate for the noise variance σ2:

σ̂2 �
=

1

N
‖(IN − Φ(ΦTΦ)−1ΦT )Y ‖2

=
1

N

(
Y TY − Y TΦ(ΦTΦ)−1ΦTY

)
−→ σ2

which is independent of P . Firstly, we have

N
(
‖Y − Φθ̂R‖2 + Y TΦ(ΦTΦ)−1ΦTY − Y TY

)

= σ4Y TQ−1Φ
(
N(ΦTΦ)−1

)
ΦTQ−1Y

−→ σ4θ0P
−1Σ−1P−1θ0. (19)

Further, we have

N
(
Tr(H)

‖Y − Φθ̂R‖2

N
− nσ̂2

)

= σ̂2N(Tr(H)− n) + Tr(H)σ4Y TQ−1Φ(ΦTΦ)−1ΦTQ−1Y

−→ −σ4Tr(Σ−1P−1) (20)

based on the limits

N(Tr(H)− n) −→ −σ2Tr
(
Σ−1P−1

)
, σ̂2 −→ σ2

σ4Y TQ−1Φ(ΦTΦ)−1ΦTQ−1Y −→ 0, Tr(H) −→ n.

At last, we have

N(Tr(H))2
‖Y − Φθ̂R‖2

N2

=(Tr(H))2
‖Y − Φθ̂R‖2

N
−→ n2σ2. (21)

Combining (19), (20), and (21), one yields

FGCV(P )
�
= N

(
FGCV(P )− (1 + 2n/N)σ̂2

)

−→ σ4θ0P
−1Σ−1P−1θ0− 2σ4Tr(Σ−1P−1) + 3n2σ2.

Since (1 + 2n/N)σ̂2 is independent of P , we see that

η̂GCV = argmin
η∈Ω

FGCV(P (η)).

Thus we derive

η̂GCV −→ η∗y
as N −→ ∞ by applying the convergence result for ex-
tremum estimators in Ljung (1999, Theorem 8.2).

Remark 2. Comparing Theorem 1 and Lemma 1, we see
that the GCV hyperparameter estimator (17) is also
asymptotically optimal if we are concerned with the pre-
dictive performance of the estimated model.

4. SIMULATION RESULTS

In this section, we test the hyperparameter estimators
PRESS and GCV given in (16) and (17), respectively, by
the data used in Mu et al. (2018).

4.1 Test data-bank

The true system of order 30 is randomly generated by
the method in Chen et al. (2012). Then for each test
system, we consider four different test inputs: The first
two test inputs are the bandlimited white Gaussian noise
with normalized bands [0, 0.6] and [0, 1], respectively, and
denoted by IT1 and IT2, respectively. The third and fourth
test inputs are the white Gaussian noise of unit variance
filtered by a second order rational transfer function 1/(1−
aq−1)2 with a chosen to be 0.95 and 0.05, respectively,

and denoted by IT3 and IT4, respectively. The noise-
free output is corrupted by an additive white Gaussian
noise such that the signal-to-noise ratio (SNR), i.e., the
ratio between the variance of the noise-free output and
the noise, is uniformly distributed over [1, 10], and is kept
unchanged for the four test inputs. We consider data
sets with the length N = 500 and 8000, respectively, for
showing the small sample and large sample behavior of the
hyperparameter estimators.

4.2 Simulation Setup

The measure of fit (Ljung, 2012) defined as follows :

Fit = 100×

(
1− ‖θ̂ − θ0‖

‖θ0 − θ̄0‖

)
, θ̄0 =

1

n

n∑
k=1

g0k

where n is set to 200, is used to evaluate the quality of the
RLS estimator (6b).

The TC kernel (12) is adopted and its hyperparameter
η = [c, α]T is estimated by using the estimators MSEy
(14), SUREy (13), PRESS (16), and GCV (17).

4.3 Simulation results

We tested 1000 systems for each case. The average fits are
given in Table 1. The boxplots of the 1000 fits for IT1, IT2,
IT3, and IT4 are illustrated in Figs. 1–4, respectively.

Inputs Sizes MSEy Sy PRESS GCV

IT1 N=500 78.07 53.83 56.61 55.74
N=8000 88.08 78.39 78.26 78.41

IT2 N=500 87.02 86.03 86.24 86.24
N=8000 96.67 96.60 96.60 96.60

IT3 N=500 41.61 -146.4 -85.95 -84.84
N=8000 53.63 38.86 38.79 38.89

IT4 N=500 86.69 85.66 85.96 85.95
N=8000 96.56 96.49 96.49 96.49

Table 1. Average fits for 1000 test systems and
data sets.
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Fig. 1. Boxplot of the 1000 fits for the bandlimited
white Gaussian noise input with the normalized band
[0, 0.6]: N = 500 (left) and N = 8000 (right).
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Fig. 2. Boxplot of the 1000 fits for the bandlimited white
Gaussian noise input with the normalized band [0, 1]:
data length N = 500 (left) and N = 8000 (right).

MSEy Sy PRESS GCV

F
it

-40

-20

0

20

40

60

80

100

+147 +130 +134

IT3 and N = 500

MSEy Sy PRESS GCV

F
it

-40

-20

0

20

40

60

80

100

+34 +36 +35

IT3 and N = 8000

Fig. 3. Boxplot of the 1000 fits for the input (the white
Gaussian noise of unit variance filtered by a second
order rational transfer function 1/(1 − 0.95q−1)2):
data length N = 500 (left) and N = 8000 (right).

4.4 Findings

Firstly, for all the tested cases, the fits given by PRESS
and GCV are quite close and they are a little better than
that of the SURE method, especially for the ill-conditioned
inputs IT1 and IT3. This may be because they do not
require to estimate the variance σ2.

Secondly, the estimators including PRESS, GCV, and
SURE perform indistinguishably from each other when
N = 8000. In addition, they are very close to the oracle
estimator MSEy for the well-conditioned inputs IT2 and
IT4. This indicates the convergence stated in the Theorem
1 as we move from 500 to 8000 data.

Lastly, the simulation result indicates that the PRESS may
be also asymptotically optimal in the cases considered here
even though we have not proved this in this paper.
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Fig. 4. Boxplot of the 1000 fits for the input (the white
Gaussian noise of unit variance filtered by a second
order rational transfer function 1/(1 − 0.05q−1)2):
data length N = 500 (left) and N = 8000 (right).

5. CONCLUSION

This paper investigated the asymptotic behavior of the
GCV as the number of data goes to infinity. We found that
the GCV and SURE method have the same asymptotic
properties and both of them are asymptotically optimal
in the MSE sense. This provides us a theoretical support
to adopt the GCV method to tune the hyperparameter of
the KRM .
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Fig. 2. Boxplot of the 1000 fits for the bandlimited white
Gaussian noise input with the normalized band [0, 1]:
data length N = 500 (left) and N = 8000 (right).
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Fig. 3. Boxplot of the 1000 fits for the input (the white
Gaussian noise of unit variance filtered by a second
order rational transfer function 1/(1 − 0.95q−1)2):
data length N = 500 (left) and N = 8000 (right).

4.4 Findings

Firstly, for all the tested cases, the fits given by PRESS
and GCV are quite close and they are a little better than
that of the SURE method, especially for the ill-conditioned
inputs IT1 and IT3. This may be because they do not
require to estimate the variance σ2.

Secondly, the estimators including PRESS, GCV, and
SURE perform indistinguishably from each other when
N = 8000. In addition, they are very close to the oracle
estimator MSEy for the well-conditioned inputs IT2 and
IT4. This indicates the convergence stated in the Theorem
1 as we move from 500 to 8000 data.

Lastly, the simulation result indicates that the PRESS may
be also asymptotically optimal in the cases considered here
even though we have not proved this in this paper.
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Fig. 4. Boxplot of the 1000 fits for the input (the white
Gaussian noise of unit variance filtered by a second
order rational transfer function 1/(1 − 0.05q−1)2):
data length N = 500 (left) and N = 8000 (right).

5. CONCLUSION

This paper investigated the asymptotic behavior of the
GCV as the number of data goes to infinity. We found that
the GCV and SURE method have the same asymptotic
properties and both of them are asymptotically optimal
in the MSE sense. This provides us a theoretical support
to adopt the GCV method to tune the hyperparameter of
the KRM .
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