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CHARACTERIZATION AND IDENTIFICATION OF MATRIX
FRACTION DESCRIPTIONS FOR LTI SYSTEMS∗
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Abstract. This paper shows that the matrix fraction description, given by a pair {A(z) B(z)} of
matrix polynomials of z, for a linear time-invariant system may not be unique even if A(z) is monic,
A(z) and B(z) have no common left factor, and the matrix coefficients corresponding to the highest-
order terms of A(z) and B(z) are full row rank. The orders of all possible matrix fraction descriptions
(MFDs) of a given system are completely characterized. Testing criteria for determining whether
a matrix pair is an MFD of the system are derived, which involve rank tests of certain Toeplitz
matrices derived from either the impulse response or output correlation functions of the system. A
decision procedure is devised that generates sequentially all MFDs for a given system. Identification
algorithms are introduced that estimate all MFDs of a given system from its input-output data or
output data only. The results are then extended to cover ARMAX systems.
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1. Introduction. Consider the following multi-input-multi-output (MIMO) lin-
ear time-invariant (LTI) autoregressive moving average (ARMA) system:

A(z)yk = B(z)uk, where(1.1)

A(z) = I +A1z + · · ·+Apz
p,(1.2)

B(z) = B0 +B1z + · · ·+Bqz
q(1.3)

are matrix polynomials of the backward-shift operator z : zyk = yk−1 with Ai ∈ Rn×n,
Bj ∈ Rn×m. The orders of the polynomials are denoted by (p, q). A(z) is assumed to
be asymptotically stable, namely, detA(z) �= 0 ∀|z| ≤ 1.

Typical system identification consists of several essential steps, including model
structure selection, model order determination, input design, data acquisition, param-
eter estimation, model validation, etc. [16]. This paper will use the model structure
(1.1) in which the pair {A(z) B(z)} of order (p, q) is a matrix fraction description
(MFD) of the system’s transfer matrix. This paper presents new results that com-
pletely characterize the orders of these MFDs for a given system, and algorithms for
identifying the matrix coefficients after order selection.
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Model order determination is a critical task in a modeling process, and has drawn
extensive research effort. Most well-established information criteria for order selection
are the AIC [1], the BIC [19, 20], and the ΦIC [14]. The method proposed by [15]
extends the minimum description length criterion introduced in [19]. This method
is later extended to order estimation of ARMA models under noisy outputs [2], and
subsequently to estimation of non-Gaussian processes that are corrupted by colored
additive Gaussian noises using higher order cumulants [3]. A recursive algorithm of
order selection is proposed in [11] for MIMO ARMA and ARMAX models. Parameter
estimation is a classical topic, and we refer the reader to [16] for a comprehensive
coverage of estimation algorithms, and to [9] for detailed convergence analysis of
some recursive algorithms. The strictly positive realness condition is frequently used
in convergence analysis for identification algorithms.

The main contributions of this paper are in the following aspects. First, we
establish nonuniqueness and a complete characterization of the MFDs of a given
system. While normalized coprime factorization of a scalar ARMA system is unique,
its MIMO counterpart is far more complicated and has distinct features that are
important for practical identification design.

Second, this paper presents two possible approaches in identifying the MFDs.
One is of deterministic nature by using impulse responses; and the other employs
stochastic probing signals and correlation analysis. Algorithms and their convergence
analysis lay a foundation for practical and reliable implementation of the identification
process. In addition, we have shown that the algorithms remain viable under noisy
observations. Finally, in comparison to the classical AIC and BIC, the algorithms
here do not require prior bounds on the system orders.

These findings have several important implications. For example, since the same
impulse response can have multiple MFDs, the original physical parameters may be
lost since the input-output data cannot uniquely determine the MFDs. This implies
that additional structural information should be used to pinpoint the physical-system-
based model. On the other hand, if one is allowed to choose model structures to
explain the input-output behavior, then our characterization can be used to guide
model selections. It will become clear that some MFDs will have less complexity than
others, leading to potential complexity reduction in treating such systems.

The paper is organized into the following sections. In section 2, the equivalent
conditions of the MFD with a fixed order which represents uniquely the impulse
response of the system are presented. An example illustrates that for a given impulse
response there may exist multiple MFDs with different orders. In section 3, a testing
criterion is derived to determine if a given MFD is unique. When the given MFD is not
unique, a method is devised to detect the order ranges of the other MFDs. Algorithms
for finding all additional MFDs are also presented. Section 4 provides a complete
characterization of all MFDs for the impulse response of the given system. Parallel
results are derived by the correlation method in section 5. In addition, parameter
estimation of all the MFDs, by using either the input-output data or the output
data only, is included in section 6. When the system observations are corrupted by
noise, our methods are extended to ARMAX systems in section 7. Finally, section 8
concludes the paper with some remarks on specifics of results given in the paper.

2. Preliminaries. Given a system in (1.1), stability of A(z) allows us to repre-
sent the system by the transfer matrix H(z) from {A(z) B(z)} as

H(z) � A−1(z)B(z) =
∞∑
i=0

Hiz
i,(2.1)
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where {Hi, i = 0, 1, . . .} is the impulse response with H0 = B0, ‖Hi‖ = O(λi), i > 1,
for some 0 < λ < 1. Then, the output yk in (1.1) can be expressed in a convolution
sum form

yk =

∞∑
i=0

Hiuk−i.(2.2)

Conversely, given a transfer matrix H(z) =
∑∞
i=0Hiz

i, the matrix pair {A(z) B(z)}
satisfying (2.1) is called a matrix fraction description of H(z). The system coefficients
{A1, . . . , Ap, B0, B1, . . . , Bq} are related to the impulse response {Hi, i ≥ 0} by the
equation

B0 +B1z + · · ·+Bqz
q = (I +A1z + · · ·+Apz

p)(H0 +H1z + · · ·+Hiz
i + · · · ).

(2.3)

Identifying coefficients for the same orders of z on both sides of (2.3) implies

Bi =

p∧i∑
j=0

AjHi−j , 0 ≤ i ≤ q,(2.4)

Hi = −
p∧i∑
j=1

AjHi−j , i ≥ q + 1,(2.5)

where A0 = I and a ∧ b = min(a, b). Sweeping the index i ∈ {q + 1, . . . , q + np} in
(2.5), we obtain

[A1 A2 . . . Ap]L(p, q) = −[Hq+1 Hq+2 . . . Hq+np],(2.6)

where L(p, q) is a Toeplitz matrix

(2.7) L(p, q) �

⎡⎢⎢⎢⎣
Hq Hq+1 . . . Hq+np−1

Hq−1 Hq . . . Hq+np−2

...
...

...
Hq−p+1 Hq−p+2 . . . Hq+(n−1)p

⎤⎥⎥⎥⎦ ,
and the notation Hi � 0 for i < 0 is used. Define

θTA
Δ
= [A1 A2 . . . Ap], WT Δ

= −[Hq+1 Hq+2 . . . Hq+np].

Then, it follows from (2.6) that

θA =
(
L(p, q)L(p, q)T

)−1
L(p, q)W,(2.8)

if L(p, q) is full row rank. By solving (2.8) and (2.4) under fixed (p, q), an MFD of
H(z) can be obtained.

A primary question is, is there another MFD {X(z) Y (z)} for the impulse response
H(z), which is generated from {A(z) B(z)}? In other words, is {A(z) B(z)} unique
for a given H(z)? This problem has been studied over several decades [21, 13, 5, 18],
but a complete answer remains elusive.

Starting from the matrix pair {A(z) B(z)} of orders (p, q) in (1.1) with its corre-
sponding impulse response H(z) from (2.1), denote by M(p, q) the set of all matrix
polynomial pairs {X(z) Y (z)} satisfying
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(i) X−1(z)Y (z) = H(z), where X(z) ∈ R
n×n is stable with X(0) = I and

Y (z) ∈ R
n×m;

(ii) degX(z) ≤ p and deg Y (z) ≤ q.
Obviously, {A(z) B(z)} ∈ M(p, q).

Without coprimeness constraints, M(p, q) contains infinitely many pairs. How-
ever, under coprime conditions, fixed orders, and constraint on the coefficients of the
highest orders of A(z) and B(z), the pair becomes unique. The following conditions
are equivalent in characterizing the uniqueness of {A(z) B(z)} in M(p, q).

Proposition 2.1 (see [18]). The following statements are equivalent:
H1: {A(z) B(z)} in M(p, q) is unique.
H2: A(z) and B(z) have no common left factor and the composite matrix [Ap Bq]

is of full row rank,
H3: There exist no nonzero n-vector polynomial d(z) and m-vector polynomial

c(z) with orders strictly less than p and q, respectively, such that dT (z)H(z)+
cT (z) = 0.

H4: The matrix L(p, q) is full row rank.
The main question this paper intends to answer is, if we remove the restrictions

degX(z) ≤ p and deg Y (z) ≤ q, are there other MFDs of H(z)? In other words, we
are seeking {X(z) Y (z)} �= {A(z) B(z)} with orders (s, t),

X(z) = I +X1z + · · ·+Xsz
s,

Y (z) = Y0 + Y1z + · · ·+ Ytz
t

such that
(1) X−1(z)Y (z) = H(z),
(2) and X(z) and Y (z) have no common left factor with the composite matrix

[Xs Yt] being full row rank.
The following example confirms nonuniqueness of MFDs when the order restriction is
removed.

Example 2.1. Consider {A(z) B(z)} ∈ M(3, 1):

yk +A1yk−1 +A2yk−2 +A3yk−3 = B0uk +B1uk−1,

where

A1 =

[
1.5 0
1 −1

]
, A2 =

[
1 0
1.2 0.8

]
, A3 =

[
0.2 0
0.8 −0.4

]
,

B0 =

[
2
0

]
, B1 =

[
1
1

]
;

and {X(z) Y (z)} ∈ M(4, 0):

yk +X1yk−1 +X2yk−2 +X3yk−3 +X4yk−4 = Y0uk,

where

X1 =

[
1 0.5
0.5 −0.5

]
, X2 =

[
0.75 −0.5
0.95 0.3

]
, X3 =

[
0.3 0.4
0.9 0

]
,

X4 =

[
0.3 −0.2
0.3 −0.2

]
, Y0 =

[
2
0

]
.

It is straightforward to verify that they have the same H(z) and satisfy conditions
(1) and (2).
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Let us denote by M the set of all matrix pairs {X(z) Y (z)} satisfying conditions
(1) and (2) if {A(z) B(z)} is unique in M(p, q). It is clear that {A(z) B(z)} ∈ M,
and hence M is nonempty. We call (s, t) the orders of the pair {X(z) Y (z)} if
{X(z) Y (z)} ∈ M with degX(z) = s, deg Y (z) = t. It is clear that each element
{X(z) Y (z)} ∈ M of the orders (s, t) is also unique in M(s, t) via Proposition 2.1.

Remark 2.1. Both {A(z) B(z)} and {X(z) Y (z)} belong to M in Example 2.1.
The complexity of a model is defined as the total number of parameters it contains.
For example, the complexity of a model with orders (p, q) and input-output dimen-
sions (n,m) is equal to n2p + nmq. Therefore, the complexities of {A(z), B(z)} and
{X(z), Y (z)} in Example 2.1 are 22 × 3 + 2× 1× 2 = 16 and 22 × 4 + 2× 1× 1 = 18,
respectively. As a result, {A(z), B(z)} is less complex than {X(z), Y (z)}.

3. Order characterization of MFDs. We consider the ranges of orders of all
pairs belonging to M, and the necessary and sufficient conditions for existence of
more than one pair in M. We first state the following lemma.

Lemma 3.1. Assume that {A(z) B(z)} of orders (p, q) belongs to M. Then
{X(z) Y (z)} of orders (p, q+j) for any j ≥ 1 also belongs to M if and only if X(z) ≡
A(z), Y (z) ≡ B(z), Yq+j = 0, and Ap is full rank. Similarly, when {A(z) B(z)} of
orders (p, q) belongs to M, then {X(z) Y (z)} of orders (p+ j, q) for any j ≥ 1 is also
in M if and only if X(z) ≡ A(z), Y (z) ≡ B(z), Xp+j = 0, and Bq is of rank n.

Proof. Necessity: Since both {A(z) B(z)} of orders (p, q) and {X(z) Y (z)} of
orders (p, q + j) belong to M, {A(z) B(z)} is unique in M(p, q) and {X(z) Y (z)} is
also unique in M(p, q+ j) via the definition of M. Noting M(p, q) ⊂ M(p, q+ j), we
see that both {A(z) B(z)} and {X(z) Y (z)} are inM(p, q+j). However, {X(z) Y (z)}
is unique in M(p, q + j), which means that A(z) ≡ X(z) and B(z) ≡ Y (z). Denote
the coefficient of the highest order of Y (z) by Yq+j . Thus Yq+j = 0 since B(z) is
a polynomial of order q. The statement that {X(z) Y (z)} is unique in M(p, q + j)
derives that [Xp Yq+j ] is full row rank by Proposition 2.1. As a result, Ap = Xp is
full rank.

Sufficiency: Suppose that {A(z) B(z)} ∈ M and is of orders (p, q). Then A(z)
and B(z) have no common left factor. If the coefficient Ap of the highest order of

A(z) is full rank, then {A(z) B̃(z)} of orders (p, q + j) also belongs to M for any

j ≥ 1 by Proposition 2.1 since [Ap 0] is still full row rank and A(z) and B̃(z) have no

common left factor, where B̃(z) = B(z) + 0zq+1 + · · ·+ 0zq+j.
The proof for the case Bq, the coefficient of the highest order of B(z), is of rank

n is similar.
Based on Lemma 3.1, we call {A(z) B(z)} of orders (p, q) a distinct pair in M, if

both the coefficients Ap and Bq of the highest orders of A(z) and B(z) are nonzero.
Therefore, the number of the distinct elements in M is always finite and is determined
by the system orders of any pair in M. This is illustrated by the following theorem.

Theorem 3.2. Assume {A(z) B(z)} of orders (p, q) belongs to M.
(i) There exists a pair {X(z) Y (z)} ∈ M with orders (s, t) and {X(z) Y (z)} �=

{A(z) B(z)} only in the cases s > p, t < q or s < p, t > q. The total number
of distinct pairs {X(z) Y (z)} ∈ M is no more than p+ q.

(ii) There exists a pair {X(z) Y (z)} ∈ M of orders (s, t) with s > p, t < q if and
only if there is an n× n(s− p+ 1) full-row-rank matrix

K
Δ
= [Ks−p Ks−p−1 . . . K0]

such that KB(s, t) = 0, the rows of K constitute a basis of the left kernel
space of B(s, t), i.e., any n(s− p+1)-row-vector αT satisfying αTB(s, t) = 0
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must be a linear combination of the rows of the matrix K, where

B(s, t) =

⎡⎢⎢⎢⎢⎣
Bq Bq−1 . . . Bq−(s−p) . . . Bt−(s−p)+1

0 Bq . . . Bq−(s−p)+1

. . . Bt−(s−p)+2

...
. . .

. . .
. . .

. . .
...

0 0 0 Bq . . . Bt+1

⎤⎥⎥⎥⎥⎦ ,(3.1)

and the n× n matrix polynomial

K(z) = K0 +K1z + · · ·+Ks−pzs−p(3.2)

is unimodular, that is, detK(z) equals a nonzero constant for all z on the
complex plane.

(iii) There exists a pair {X(z) Y (z)} ∈ M of orders (s, t) with s < p, t > q if and
only if there is an n× n(t− q + 1) full-row-rank matrix

K ′ Δ
= [K ′

t−q K
′
t−q−1 . . . K ′

0]

such that K ′A(s, t) = 0, the rows of K ′ compose a basis of the left kernel
space of A(s, t), i.e., any n(t− q + 1)-row-vector βT satisfying βTA(s, t) = 0
must be a linear combination of the rows of the matrix K ′, where

A(s, t) =

⎡⎢⎢⎢⎢⎣
Ap Ap−1 . . . Ap−(t−q) . . . As−(t−q)+1

0 Ap . . . Ap−(t−q)+1

. . . As−(t−q)+2

...
. . .

. . .
. . .

. . .
...

0 0 0 Ap . . . As+1

⎤⎥⎥⎥⎥⎦ ,(3.3)

and the matrix polynomial

K ′(z) = K ′
0 +K ′

1z + · · ·+K ′
t−qz

t−q(3.4)

is unimodular.
Proof. (i) By the uniqueness of {X(z) Y (z)} ∈ M(s, t), it is impossible to have

s ≥ p and t ≥ q, and by the uniqueness of {A(z) B(z)} ∈ M(p, q) it is not possible
to have s < p, t ≤ q or s ≤ p, t < q. Therefore, only the cases s > p, t < q
and s < p, t > q are possible. In the case s > p, t < q by the uniqueness of
{X(z) Y (z)} ∈ M(s, t) there is only one X(z) with order s corresponding to a Y (z)
with order t so that {X(z) Y (z)} ∈ M. Noting 0 ≤ t < q, there are at most q
different pairs of {X(z) Y (z)} ∈ M. Similarly, there are at most p− 1 different pairs
of {X(z) Y (z)} ∈ M in the case s < p, t > q. As a result, the number of the whole
distinct matrix pairs in M is no more than q + (p− 1) + 1 = p+ q.

(ii) Necessity: Assume that {X(z) Y (z)} ∈ M with orders (s, t) : s > p, t < q,
where

X(z) = I +X1z + · · ·+Xsz
s,

Y (z) = Y0 + Y1z + · · ·+ Ytz
t.

Set K(z)
Δ
= X(z)A−1(z). Then, we have

X(z) = K(z)A(z),(3.5)

Y (z) = X(z)H(z) = X(z)A−1(z)B(z) = K(z)B(z).(3.6)
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Since both A(z) and X(z) are stable, detK(z) cannot identically equal zero. Hence,
we have rankK(z) = n. Let us express K(z) in the Smith–McMillan canonical form
[12, 22]

K(z) = U(z)diag

[
q1(z)

p1(z)
,
q2(z)

p2(z)
, . . . ,

qn(z)

pn(z)

]
V (z)

= U(z)P−1(z)Q(z)V (z),(3.7)

where U(z) and V (z) are n× n unimodular matrices,

P (z) = diag [p1(z), p2(z), . . . , pn(z)] ,

Q(z) = diag [q1(z), q2(z), . . . , qn(z)]

with pi(z) and qi(z) being coprime ∀i = 1, . . . , n. Putting the expression of K(z) given
by (3.7) into (3.5) and (3.6) leads to

Q−1(z)P (z)U−1(z)X(z) = V (z)A(z), Q−1(z)P (z)U−1(z)Y (z) = V (z)B(z).(3.8)

Noting that the right-hand sides of both equalities in (3.8) are matrix polynomials, we
find that the ith rows of both P (z)U−1(z)X(z) and P (z)U−1(z)Y (z) must be divided
by qi ∀i = 1, . . . , n. Noting that qi and pi are coprime ∀i = 1, . . . , n, we find that Q(z)
must be a common left factor of U−1(z)X(z) and U−1(z)Y (z). In other words, both
Q−1(z)U−1(z)X(z) and Q−1(z)U−1(z)Y (z) are matrix polynomials. Noticing that
Q−1(z) and P (z) in (3.5) are commutative, we find that P (z) is a common left factor
of V (z)A(z) and V (z)B(z). Since A(z) and B(z) have no common left factor, there
exist matrix polynomials M(z) and N(z) such that A(z)M(z) + B(z)N(z) = I, and
hence V (z)A(z)M(z)V −1(z)+V (z)B(z)N(z)V −1(z) = I. This means that V (z)A(z)
and V (z)B(z) also have no common left factor. Consequently, P (z) is unimodular.
Then, from (3.7) it is seen that K(z) is a matrix polynomial. Let us denote it by

K(z)
Δ
= I + K1z + · · · + Krz

r. Likewise, set K(z)
Δ
= A(z)X−1(z). By carrying out

similar treatment as above,K(z) is also a matrix polynomial. Noting K(z) = K−1(z),
K(z) is unimodular.

We now show degK(z) = s−p. If the highest order r of K(z) is greater than s−p,
then by comparing the coefficients of the highest order on both sides of (3.5) we have
KrAp = 0. Noticing t < q, from (3.6), we have KrBq = 0. Since [Ap Bq] is of full row
rank, we obtain Kr = 0. Similarly, we derive that Ki = 0, s−p+1 ≤ i ≤ r−1. Thus
we obtain that degK(z) ≤ s− p. By (3.5), we have degX(z) ≤ degK(z) + degA(z),
which implies that degK(z) ≥ s− p. Therefore, we obtain degK(z) = s− p.

Denote the coefficients of K(z) by K � [Ks−p Ks−p−1 . . . I]. Noting deg Y (z) =
t < q, and comparing the coefficients of the orders t+1 ≤ i ≤ q on both sides of (3.6),
we have KB(s, t) = 0. It is clear that the n rows of K are linearly independent.
It remains to show that the n rows of K are a basis of the left kernel space of
B(s, t) for the necessary part. Let α be a nonzero n(s − p + 1)-vector satisfying
αTB(s, t) = 0. Assume the converse that αT is linearly independent of rows of K.
Form an n× n(s− p+ 1)-matrix

K̃ =
[
K̃s−p K̃s−p−1 . . . K̃0

]
,

which is obtained from K by replacing its any row with αT . Since K is of full row
rank and αT is linearly independent of rows of K, the matrix K̃ is also of full row
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rank. It is clear that K̃B(s, t) = 0, K̃ �= K, and K̃(z) �= K(z), where

K̃(z)
Δ
= K̃0 + K̃1z + · · ·+ K̃s−pzs−p.

We now show that rankK̃(z) = n. If rankK̃(z) were less than n, then there would

exist an n-vector γ �= 0 such that γT K̃(z) = 0 ∀z, and we would have γT K̃ = 0.

But, this is impossible since K̃ is of full row rank. Define K̂(z) = K(z) + εK̃(z) =

K(z)(I+ εK−1(z)K̃(z)). Since K(z) is unimodular, one can select a sufficiently small

ε > 0 such that K̂(z) is stable and K̂(0) is nonsingular. Set

Â(z)
Δ
= K̂−1(0)K̂(z)A(z), B̂(z)

Δ
= K̂−1(0)K̂(z)B(z).

From the above definition it is seen that deg Â(z) ≤ s, and by K̃B(s, t) = 0 it follows

that deg B̂(z) ≤ t. Since K̂(z) is of full rank, we have

Â−1(z)B̂(z) = (K̂−1(0)K̂(z)A(z))−1K̂−1(0)K̂(z)B(z) = A−1(z)B(z).

This means {Â(z) B̂(z)} ∈ M(s, t). Noticing K̃(z) �= K(z), by (3.5) and (3.6) we

see that {Â(z) B̂(z)} �= {X(z) Y (z)}. However, by assumption, {X(z) Y (z)} ∈ M
of order (s, t). In other words, {X(z) Y (z)} is unique in M(s, t). The contradiction
shows that there does not exist any nonzero αT linearly independent of rows of K
and satisfying αTB(s, t) = 0.

Sufficiency: Since K(z) is unimodular, detK(z) is a nonzero constant. Thus we
have detK0 = detK(z) �= 0 by setting z = 0. Define

X(z) � K−1
0 K(z)A(z), Y (z) � K−1

0 K(z)B(z).(3.9)

We now show that {X(z) Y (z)} ∈ M of orders (s, t).
It is clear that X(0) = I, degX(z) ≤ s, and deg Y (z) ≤ t since KB(s, t) = 0.

It is also clear that the matrix pair {X(z) Y (z)} has the same impulse responses as
those for {A(z) B(z)}. Since A(z) and B(z) have no common left factor, there exist
matrix polynomials M(z) and N(z) such that A(z)M(z) +B(z)N(z) = I, and hence

K−1
0 K(z)A(z)M(z)K−1(z)K0 +K−1

0 K(z)B(z)N(z)K−1(z)K0 = I.

This means that neither X(z) nor Y (z) have a common left factor. It remains to show
that the matrix [Xs Yt] is full row rank, where Xs and Yt are the matrix coefficients of
the highest order of X(z) and Y (z), respectively. Assume the converse: there exists
a nonzero column vector α ∈ R

n such that αT [Xs Yt] = 0. Let S be an orthogonal
matrix such that the first element of Sα is zero. Choose β so that the first element
of Sβ is one and zero elsewhere. Then, the matrix polynomial F (z) � I + βαT z is
unimodular since det(SF (z)ST ) = 1. Define

Ã(z) � F (z)X(z) = F (z)K−1
0 K(z)A(z), B̃(z) � F (z)Y (z) = F (z)K−1

0 K(z)B(z).

(3.10)

Noticing αTXs = 0, we see that deg Ã(z) ≤ s. Similarly, by αTYt = 0 we have

deg B̃(z) ≤ t(< q).

Thus, {Ã(z) B̃(z)} has the same impulse responses as those of {X(z) Y (z)} or

{A(z) B(z)}, and {Ã(z) B̃(z)} �= {X(z) Y (z)}. We note that deg Ã(z) > p, because
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the converse assumption deg Ã(z) ≤ p would lead to {Ã(z) B̃(z)} ∈ M(p, q). This

violates the uniqueness of {A(z) B(z)} in M(p, q). Set K̃(z) � F (z)K−1
0 K(z). We

now show deg K̃(z) = deg Ã(z) − p. Let K̃r be the corresponding coefficient of the

highest order zr in K̃(z). If r > deg Ã(z) − p, then comparing coefficients of zr in

(3.10) by noticing deg B̃(z) ≤ t < q leads to K̃r[Ap Bq] = 0. Since [Ap Bq] is full row

rank, we conclude that K̃r = 0 ∀r > deg Ã(z)−p, and hence deg K̃(z) ≤ deg Ã(z)−p.
On the other hand, from (3.10) it is seen that deg K̃(z) ≥ deg Ã(z)−p. Consequently,
deg K̃(z) = deg Ã(z)− p ≤ s− p.

Denote the matrix coefficients of K̃(z) by K̃ � [K̃s−p K̃s−p−1 . . . I]. By (3.9)
and (3.10), we see that all row vectors of the matrix

N(s, t) �
[
K−1

0 Ks−p K−1
0 Ks−p−1 . . . I

K̃s−p K̃s−p−1 . . . I

]
belong to the left kernel space of the matrix B(s, t). By the assumption of the theorem
the rows of [K−1

0 Ks−p,K−1
0 Ks−p−1, . . . , I] compose a basis of the left kernel space of

B(s, t). Then there is an n× n matrix Γ such that

Γ[K−1
0 Ks−p K−1

0 Ks−p−1 . . . I] = [K̃s−p K̃s−p−1 . . . I].

Comparing the last n × n matrix at both sides of the equality, we find Γ must be
an identity matrix. However, this is impossible as can be seen from (3.9) and (3.10),

since {Ã(z) B̃(z)} �= {X(z) Y (z)}. The contradiction shows that [Xs Yt] is full row
rank, and the proof of sufficiency is completed for the case s > p and t < q.

(iii) For the case s < p, t > q we can similarly verify that degK ′(z) = t − q,
K ′A(s, t) = 0, and any nonzero n(t − q + 1)-row-vector βT for which βTA(s, t) = 0
must be a linear combination of rows of K ′.

The sufficiency for this case can be proved similarly to that for case (ii).
Theorem 3.3. Assume that both the matrix pairs {A(z) B(z)} of orders (p, q)

and {X(z) Y (z)} of orders (s, t) belong to M, and {A(z) B(z)} �= {X(z) Y (z)}.
Then the orders (p, q) and (s, t) satisfy the following inequalities:

(n− 1)s+ t ≥ (n− 1)p+ q,(3.11)

s ≤ p+ (n− 1)q(3.12)

if s > p and t < q; and

(n− 1)t+ s ≥ (n− 1)q + p,(3.13)

t ≤ q + (n− 1)p(3.14)

if s < p and t > q.
Proof. In the case s > p and t < q, as proved in Theorem 3.2 (in the necessity

part of (ii)), K(z)
Δ
= X(z)A−1(z) is unimodular and degK(z) = s − p. Therefore,

degK−1(z) = degAdjK(z) ≤ (n − 1)(s − p). It follows from (3.6) that B(z) =
K−1(z)Y (z), and hence we have degB(z) ≤ degK−1(z) + deg Y (z). Thus we have
q ≤ (n− 1)(s− p) + t, which means (n− 1)s+ t ≥ (n− 1)p+ q.

We rewrite (3.5) and (3.6) as

A(z) = K−1(z)X(z),(3.15)

B(z) = K−1(z)Y (z).(3.16)
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Since K(z) is unimodular, we have K−1(z) = I+K ′
1z+ · · ·+K ′

rz
r. We now show

degK−1(z) = q − t. Assume the converse: r > q − t. From (3.16) it is seen that the
coefficient of zr+t is K ′

rYt = 0, where Yt is the coefficient of zt in Y (z). Similarly, the
coefficient of zr+s on the right-hand side of (3.15) is K ′

rXs = 0, because r+s ≥ s > p.
By the full row rankness of [Xs Yt] we have K ′

r = 0. Therefore, degK−1(z) ≤ q − t.
On the other hand, from (3.16) it follows that q ≤ degK−1(z)+ t. Thus, we conclude
that degK−1(z) = q − t. This implies that degK(z) ≤ (n − 1)(q − t), since K(z) is
unimodular. Noticing degK(z) = s− p, we have s ≤ p+(n− 1)(q− t) ≤ p+(n− 1)q.
For the case s < p and t > q, the assertions (3.13) and (3.14) can be proved in a
similar way.

Corollary 3.4. Assume that both the matrix pairs {A(z) B(z)} of orders (p, q)
and {X(z) Y (z)} of orders (s, t) belong to M, and {A(z) B(z)} �= {X(z) Y (z)}.

(i) If Ap is nonsingular, then the orders (s, t) of {X(z) Y (z)} must be located in
{p < s ≤ p + (n − 1)q, 0 ≤ t < q} and the total number of distinct pairs in
M is no more than q + 1.

(ii) Similarly, if Bq is of rank n, then the only possible orders (s, t) of {X(z) Y (z)}
satisfy {1 ≤ s < p, q < t ≤ q+(n−1)p} and the total number of distinct pairs
in M is no more than p.

(iii) As a consequence of (i) and (ii), if both Ap and Bq are of rank n, then
we cannot have that both the matrix pairs {A(z) B(z)} of orders (p, q) and
{X(z) Y (z)} of orders (s, t) belong to M, and {A(z) B(z)} �= {X(z) Y (z)}.
In other words, {A(z) B(z)} is the unique distinct pair in M. In particular,
{A(z) B(z)} is always unique in M if the system (1.1) is scalar.

Proof. We first show the assertion (1). If Ap is nonsingular, then A(s, t) defined
by (3.3) is full row rank. By Theorem 3.2(iii) the orders (s, t) of {X(z) Y (z)} cannot
fit the case s < p, t > q. So, by Theorem 3.2(i) we must have s > p, t < q. Then,
the total number of distinct pairs in M is no more than q + 1 via the range of the
index 0 ≤ t < q, and by (3.12) s ≤ p + (n − 1)q. The proof for (ii) and (iii) is simi-
lar.

Remark 3.1. When the number of distinct pairs in M is greater than 1, the user
has a choice to take, for example, the one with the least number of system parameters,
the one with the lowest order of the AR-part, or with the lowest order of the MA-part,
etc.

Assume that {A(z) B(z)} of orders (p, q) belongs to M and is available. The-
orems 3.2 and 3.3 together with Corollary 3.4 provide an access to find all the dis-
tinct pairs in M. By Theorem 3.2 the total number of distinct pairs in M is no
more than p + q, and Theorem 3.3 and Corollary 3.4 give the range of possible or-
ders. To be specific, either the possible orders are null or their range is located
in {p < s ≤ p + (n − 1)q, 0 ≤ t < q}, {1 ≤ s < p, q < t ≤ q + (n − 1)p}, or
{p < s ≤ p + (n − 1)q, 0 ≤ t < q and 1 ≤ s < p, q < t ≤ q + (n − 1)p} by judg-
ing if Ap and Bq are of rank n. If the range of the possible orders is located in
{p < s ≤ p + (n − 1)q, 0 ≤ t < q}, then whether a pair of orders (s, t) belongs to
M or not depends on whether the dimension of the left kernel space of the matrix
B(s, t) defined by (3.1) is n or is not. If a pair of orders (s, t) satisfies the condition,
then it belongs to M and is equal to {K−1

0 K(z)A(z),K−1
0 K(z)B(z)}, where K(z) is

calculated by (3.2) in Theorem 3.2. Clearly, the possible pairs with orders (s, t) in
the range {1 ≤ s < p, q < t ≤ q+ (n− 1)p} belonging to M can be found in a similar
way.

Example 3.1. Assume the pair {A(z) B(z)} of orders (3, 1) in Example 2.1 is
known. Then the range of possible orders (s, t) is 3 < s ≤ 3 + (2 − 1)1, 0 ≤ t < 1
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by Corollary 3.4 since A3 is of full rank. As a result, the orders of the unique pair
other than {A(z) B(z)} are s = 4, t = 0. By a straightforward calculation, the row
vectors of the matrix

[−0.5 0.5 1 0
−0.5 0.5 0 1

]
is a basis of the left kernel space of the matrix

B(4, 0) = [ 1 1 0 0
2 0 1 1 ]

T
defined by (3.1).

Define K(z)
Δ
= I + K1z, where K1 =

[−0.5 0.5
−0.5 0.5

]
. Thus, another pair in M is

equal to [K(z)A(z) K(z)B(z)], which is identical to {X(z) Y (z)} in Example 2.1.
Therefore, the setM containing {A(z) B(z)} has only two distinct pairs: {A(z) B(z)}
and {X(z) Y (z)}.

4. Determining MFD from impulse responses. In the last section we have
discussed how to derive the pairs of M if {A(z) B(z)} ∈ M is available. In this
section, we assume that {A(z) B(z)} ∈ M but not necessarily available, and then
proceed to find all pairs in M only on the basis of impulse responses {Hi, i ≥ 0} of
{A(z) B(z)}.

Theorem 4.1. Assume that {A(z) B(z)} of orders (p, q) belongs to M. Then, in
the case s ≥ p, t ≥ q, the ranks of the Toeplitz matrix defined by (2.7) are as follows:

rankL(s, t) =

⎧⎨⎩
np if s− t = p− q,
n(s− t+ q) + rankΛ(t− s− (q − p)) if s− t < p− q,
np+ rankΘ(s− t− (p− q)) if s− t > p− q,

where

Λ(t)
Δ
=

⎡⎢⎢⎢⎣
Ap Ap−1 . . . Ap−t+1

0 Ap . . . Ap−t+2

...
...

. . .
...

0 0 0 Ap

⎤⎥⎥⎥⎦(4.1)

is an nt× nt matrix with A0 = I and Ai = 0 for i < 0, and

Θ(t)
Δ
=

⎡⎢⎢⎢⎣
Bq Bq−1 . . . Bq−t+1

0 Bq . . . Bq−t+2

...
...

. . .
...

0 0 0 Bq

⎤⎥⎥⎥⎦(4.2)

is an nt×mt matrix with Bi = 0 for i < 0.
Proof. (i) We first show rankL(s, t) = np if s−t = p−q. It is clear that the matrix

L(p, q) is a part of the last np rows of L(s, t), and is full row rank by Proposition 2.1.
This means that rankL(s, t) ≥ np. On the other hand, since the row vectors of the
n(s− p)× ns matrix ⎡⎢⎢⎢⎣

I A1 . . . Ap 0 . . . 0
0 I A1 . . . Ap . . . 0
...

. . .
. . .

. . .
. . .

. . .
...

0 . . . 0 I A1 . . . Ap

⎤⎥⎥⎥⎦
all belong to the left kernel space of L(s, t) by (2.5) and they are linearly independent,
we have rankL(s, t) ≤ ns− n(s− p) = np. So, rankL(s, t) = np when s− t = p− q.

(ii) We prove that rankL(p, t) = n(p−(t−q))+rankΛ(t− q) for t ≥ q+1. For this
it suffices to show that the dimension of the left kernel space of L(p, t) is equal to that
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of the left kernel space of Λ(t− q), i.e., np− rankL(p, t) = n(t − q) − rankΛ(t− q),
because from here it follows that rankL(p, t) = np − (n(t − q) − rankΛ(t− q)) =
n(p− (t−q))+rankΛ(t− q).We show that there is a bijection between the left kernel
spaces of L(p, t) and Λ(t− q). As a consequence, these kernel spaces have the same
dimension.

We first show that there exists an injection from the left kernel space of L(p, t)
to that of Λ(t− q). Assume x = [xT1 xT2 . . . x

T
p ]
T �= 0 with xi ∈ R

n is any point of
the left kernel space of L(p, t). Define

d(z) �
p∑
i=1

xiz
i−1,(4.3)

ηT (z) � dT (z)A−1(z).(4.4)

We want to show the following:
(a) ηT (z) is a vector polynomial with deg ηT (z) ≤ t− q− 1. If this is true, let us

denote ηT (z)
Δ
= ηT0 + ηT1 z + · · ·+ ηTt−q−1z

t−q−1 and combine the coefficients

of ηT (z) into a vector η � [ηTt−q−1 η
T
t−q−2 . . . ηT0 ]

T .
Define the linear mapping f : x→ η;

(b) η belonging to the left kernel space of Λ(t− q);
(c) any x belonging to the left kernel space of L(p, t) and satisfying f(x) = 0

must be zero.
Let us prove these assertions.
(a) We prove that ηT (z) is a vector polynomial with deg ηT (z) ≤ t − q − 1. We

first show
p∑
j=1

xTj Ht−j+l = 0 ∀l ≥ 1.(4.5)

By the assumption that x = [xT1 xT2 . . . xTp ]
T �= 0 belongs to the left kernel space of

L(p, t), we have (4.5) for 1 ≤ l ≤ np. Noting

H(z) = A−1(z)B(z) =
A∗(z)B(z)

a(z)
=
B∗(z)
a(z)

,(4.6)

where a(z) � detA(z) =
∑np

i=0 aiz
i, A∗(z) is the adjoint matrix of A(z), and B∗(z) �

A∗(z)B(z) =
∑(n−1)p+q

j=0 B∗
j z
j , we have

(1 + a1z + · · ·+ anpz
np)(H0 +H1z + · · ·+Hiz

i + · · · )
= B∗

0 +B∗
1z + · · ·+B∗

(n−1)p+qz
(n−1)p+q.(4.7)

Identifying coefficients for the same degrees of z on both sides of (4.7), we obtain

Hj = −
np∑
i=1

aiHj−i ∀ j > q + (n− 1)p.(4.8)

In the case that l = np+ 1, we have
p∑
j=1

xTj Ht−j+np+1 = −
p∑
j=1

xTj

np∑
i=1

aiHt−j+np+1−i

= −
np∑
i=1

ai

p∑
j=1

xTj Ht−j+np+1−i = 0.(4.9)
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Thus (4.5) holds for l = np+1. As a result, we can show inductively that (4.5) holds.
From (4.5) it follows that

dT (z)H(z) =

p∑
i=1

⎛⎝xTi zi−1

⎛⎝ t−i∑
j=0

Hjz
j +

∞∑
j=t−i+1

Hjz
j

⎞⎠⎞⎠
=

p∑
i=1

t−i∑
j=0

xTi Hjz
i+j−1 +

∞∑
k=1

(
p∑
i=1

xTi Ht−i+k

)
zt+k−1

=

p∑
i=1

t−i∑
j=0

xTi Hjz
i+j−1 � cT (z),(4.10)

and the orders of d(z) and c(z) are strictly less than p and t, respectively. Conse-
quently, we have

dT (z)A−1(z)B(z) = cT (z).(4.11)

Since A(z) and B(z) have no common left factor and cT (z) is a vector polynomial, the
zeros of A(z) must be canceled with dT (z). Therefore, ηT (z) is a vector polynomial

denoted by ηT (z)
Δ
= ηT0 + ηT1 z + · · ·+ ηTr z

r.
By (4.4) and (4.11) we have

ηT (z)A(z) = dT (z),(4.12)

ηT (z)B(z) = cT (z).(4.13)

Comparing the coefficients of the highest order on both sides of (4.12) and (4.13),
respectively, we have ηTr Ap = 0 and ηTr Bq = 0. Since [Ap Bq] has full row rank, it
derives that ηTr = 0. Noting deg d(z) < p and deg c(z) < t, it follows that ηTi =
0 ∀t− q ≤ i ≤ r − 1 inductively, and hence we conclude that deg ηT (z) ≤ t− q − 1.

(b) We show that η belongs to the left kernel space of Λ(t− q). Since deg dT (z) <
p, from (4.12) we see the coefficients of zi in ηT (z)A(z) equal zero for i ≥ p. Conse-
quently we have⎧⎪⎪⎪⎨⎪⎪⎪⎩

ηTt−q−1Ap = 0,
ηTt−q−1Ap−1 + ηTt−q−2Ap = 0,

...
ηTt−q−1Ap−t+q+1 + ηTt−q−2Ap−t+q+2 + · · ·+ ηT0 Ap = 0,

(4.14)

which can be rewritten in the following matrix form:

ηTΛ(t− q) = 0.(4.15)

This means that ηT belongs to the left kernel space of Λ(t− q).
(c) Using η = f(x) = 0 we obtain dT (z)A−1(z) = ηT (z) = 0 by (4.4). This

implies that dT (z) = 0, and hence x = 0. Therefore, the mapping f from the left
kernel space of L(p, t) to the left kernel space of Λ(t− q) is an injection.

We show that there exists an injection from the left kernel space of Λ(t− q) to
that of L(p, t). Let ηT � [ηTt−q−1 η

T
t−q−2 . . . ηT0 ] belong to the left kernel space of
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Λ(t− q). Define the vector polynomials

ηT (z) �
t−q∑
i=1

ηTi−1z
i−1,(4.16)

dT (z) � ηT (z)A(z).(4.17)

It is clear that the row vector ηT satisfies the matrix equation (4.15), which implies

that the coefficients of zi in dT (z) are zero for i ≥ p.Write dT (z)
Δ
=
∑p

i=1 x
T
i z

i−1, and
form the vector x = [xT1 xT2 . . . xTp ]

T ∈ R
np from the coefficients of dT (z). We are

ready to show that xTL(p, t) = 0, and the linear mapping f̃ : η → x is an injection.
From (4.17) it follows that

dT (z)H(z) = dT (z)A−1(z)B(z) = ηT (z)B(z).(4.18)

The left side of (4.18) can be expressed as

dT (z)H(z) =

p∑
i=1

∞∑
j=0

xTi Hjz
i+j−1 =

∞∑
j=0

(
p∑
i=1

xTi Hj−i+1

)
zj .(4.19)

It is clear that deg dT (z)H(z) = deg ηT (z)B(z) < t, which implies the coefficients of
zi in dT (z)H(z) equal zero for i ≥ t. In other words, we have

p∑
i=1

xTi Ht−i+l = 0 ∀ l ≥ 1,(4.20)

which means that xTL(p, t) = 0, or xT belongs to the left kernel space of L(p, t).

To prove that the linear mapping f̃ is an injection, it suffices to show that η = 0 for
any η belonging to the left kernel space of Λ(t− q) and f̃(η) = 0. Since x = f̃(η) = 0,
we see that ηT (z)A(z) = dT (z) = 0. This means that ηT (z) = 0, and hence η = 0.

Thus, we have shown that the left kernel space of L(p, t) and the left kernel space
of Λ(t− q) are in one-to-one correspondence, and hence rankL(p, t) = n(p− (t−q))+
rankΛ(t− q) for t ≥ q + 1. The proof of (ii) is completed.

(iii) We show rankL(s, t) = n(s−t+q)+rankΛ(t− s− (q − p)) when s−t < p−q,
while the special case s = p has been proved in (ii). Since the matrix L(p, t−(s−p)) is
the first nmp columns of the last np rows of L(s, t), rankL(s, t) ≥ rankL(p, t−(s−p))
by (ii).

On the other hand, let the rows of the [np − rankL(p, t − (s − p))] × np matrix
G = [G1 . . . Gp] be linearly independent and compose a basis of the left kernel space
of the matrix L(p, t− (s− p)). Noticing that L(p, t− (s− p)) is the first nmp columns
of the last np rows of L(s, t), it is seen that all rows of G belong to the left kernel
space of the last np rows of the matrix L(s, t) in terms of (4.8).

Consequently, by (2.5) all rows of the [n(s−p)+(np− rankL(p, t− (s−p)))]×ns
matrix ⎡⎢⎢⎢⎢⎢⎣

I A1 . . . Ap 0 . . . 0
0 I A1 . . . Ap . . . 0
...

. . .
. . .

. . .
. . .

. . .
...

0 . . . 0 I A1 . . . Ap
0 . . . 0 0 G1 . . . Gp

⎤⎥⎥⎥⎥⎥⎦
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Table 1

The ranks of the Toeplitz matrices.

�
�
��

�
��

rank L(s,t)
t

s q q + 1 q + 2 q + 3 . . .

p np n(p− 1) + rankAp n(p− 2) + rankΛ(2) n(p − 3) + rankΛ(3) . . .

p+ 1 np+ rankBq np n(p− 1) + rankAp n(p − 2) + rankΛ(2)
. . .

p+ 2 np+ rankΘ(2) np+ rankBq np n(p − 1) + rankAp

. . .

p+ 3 np+ rankΘ(3) np+ rankΘ(2) np+ rankBq np
. . .

..

.
..
.

. . .
. . .

. . .
. . .

belong to the left kernel space of L(s, t), and they are linearly independent. Therefore,
rankL(s, t) ≤ ns− (n(s− p) + np− rankL(p, t− (s− p))

)
= rankL(p, t− (s− p)).

Thus, we have shown that rankL(s, t) = rankL(p, t − (s − p)) = n(s − t + q) +
rankΛ(t− s− (q − p)) when s− t < p− q.

(iv) The assertion of the theorem for the case s− t > p−q can be proved similarly
to the case s− t < p− q.

Remark 4.1. The results of Theorem 4.1 are summarized in Table 1 when
{A(z) B(z)} of orders (p, q) belongs to M.

Theorem 4.2. Assume that {A(z) B(z)} of orders (p, q) belongs to M. Then, a
matrix pair {X(z) Y (z)} of orders (s, t) belongs toM if and only if rankL(s+i, t+i) =
ns for i = 0, 1, (or, equivalently, the dimension of the left kernel space of L(s+ i, t+ i)
equals ni for i = 0, 1).

Proof. Necessity: Assume the matrix pair {X(z) Y (z)} of orders (s, t) belongs to
M. By Proposition 2.1, {X(z) Y (z)} is unique in M(s, t) and rankL(s, t) = ns, and
by Theorem 4.1 rankL(s+ i, t+ i) = ns ∀i > 0.

Sufficiency: By assumption {A(z) B(z)} of orders (p, q) belongs to M, it is seen
that M is nonempty, and hence we denote the impulse response of {A(z) B(z)} by
{Hi, i ≥ 0}. Without loss of generality, we may assume that p is the smallest order
of X(z) for all matrix pairs {X(z) Y (z)} belonging to M. In other words, p ≤ s for
any matrix pair {X(z) Y (z)} of orders (s, t) belonging to M. Under the assumption
rankL(s+ i, t+ i) = ns for i = 0, 1, we want to construct a matrix pair {X(z) Y (z)}
of orders (s, t) based on the impulse responses {Hi} so that {X(z) Y (z)} ∈ M. Since
rankL(s+ 1, t+ 1) = ns and L(s+ 1, t+ 1) is an n(s+ 1)×mn(s+ 1) matrix, there
exists an n× n(s+1) partitioned matrix X � [X0 X1 . . . Xs] with rank n such that
XL(s+ 1, t+ 1) = 0.

We show that X0 ∈ R
n×n is nonsingular. If X0 were singular, then there would

a nonsingular matrix S such that the last row of SX0 would be zero. Denote the last
row of the matrix SX = S[X0 X1 . . . Xs] by x = [0 x1 . . . xs]. Thus we would have
that [x1 . . . xs]L(s, t) = 0 with [x1 . . . xs] �= 0 since rank(X) = n. This contradicts the
assumption of full row rankness: rankL(s, t) = ns. Therefore, X0 is nonsingular.

Without loss of generality, we use X = [I X1 . . . Xs] to denote the matrixX−1
0 X .

From XL(s+ 1, t+ 1) = 0 it follows that

s∑
j=0

XjHt+l−j = 0 ∀ 1 ≤ l ≤ n(s+ 1).(4.21)

We show that (4.21) holds for l ≥ 1.
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Let us first show for the case l = n(s+ 1) + 1. By (3.11) and (4.8), we have

s∑
j=0

XjHt+n(s+1)+1−j = −
s∑
j=0

Xj

np∑
i=1

aiHt+n(s+1)+1−j−i

= −
np∑
i=1

ai

⎛⎝ s∑
j=0

XjHt+n(s+1)+1−j−i

⎞⎠ = 0,(4.22)

where the last equation is obtained by (4.21). Thus, inductively we are convinced
that (4.21) is true for l ≥ 1. Therefore,

rankL(s+ i, t+ i) = ns ∀ i ≥ 0.

Using the impulse responses {Hi, i ≥ 0} and {Xi, 1 ≤ i ≤ s} define the matrices
{Yi, 0 ≤ i ≤ t} as follows:

Yi =

s∑
j=0

XjHi−j ∀ 0 ≤ i ≤ t,(4.23)

where X0 = I. Then, form the matrix pair {X(z) Y (z)}, where

X(z)
Δ
= I +X1z + · · ·+Xsz

s,(4.24)

Y (z)
Δ
= Y0 + Y1z + · · ·+ Ytz

t.(4.25)

Noting that (4.23) is similar to (2.4), we find that the impulse responses {H̃i, i ≥ 0}
of {X(z) Y (z)} are equal to

H̃i = Yi −
s∑
j=1

XjH̃i−j ∀ 0 ≤ i ≤ t,(4.26)

H̃i = −
s∑
j=1

XjH̃i−j ∀ i ≥ t+ 1.(4.27)

We proceed to show that {H̃i, i ≥ 0} coincides with the impulse responses {Hi, i ≥ 0}
of {A(z) B(z)}. We first prove that H̃i = Hi for 0 ≤ i ≤ t by induction. By (4.23)

and (4.26) for i = 0, we have H̃0 = Y0 = H0. Inductively, assume that H̃i = Hi for
0 ≤ i ≤ r (< t). By (4.23) and (4.26), we have

H̃r+1 = Yr+1−
s∑
j=1

XjH̃r+1−j = Yr+1−
s∑
j=1

XjHr+1−j = Yr+1−(Yr+1−Hr+1) = Hr+1.

Therefore, H̃i = Hi for 0 ≤ i ≤ t. It remains to show H̃i = Hi for i ≥ t + 1. We
complete this by induction.

In the case that i = t+ 1, we have

H̃t+1 = −
s∑
j=1

XjH̃t+1−j = −
s∑
j=1

XjHt+1−j = Ht+1,
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Table 2

Search way.

������
t

s 0 1 2 3 4 . . .

1
1−→↑ 4 ↑ 9 ↑ 16 ↑ 25 ↑

.

..

2
2−→ 3−→↑ 8 ↑ 15 ↑ 24 ↑

...

3
5−→ 6−→ 7−→↑ 14 ↑ 23 ↑

...

4
10−−→ 11−−→ 12−−→ 13−−→↑ 22 ↑

..

.

5
17−−→ 18−−→ 19−−→ 20−−→ 21−−→↑

...

.

.. · · · · · · · · · · · · · · · · · ·

where the first equality is by (4.27), the second equality is because we have proved

that H̃i = Hi for 0 ≤ i ≤ t, while the last equality is because (4.21) is valid for all

l ≥ 1. Inductively, assume that H̃i = Hi for t+ 1 ≤ i ≤ r. We have

H̃r+1 = −
s∑
j=1

XjH̃r+1−j = −
s∑
j=1

XjHr+1−j = Hr+1,

where the first equality is by (4.27), the second equality is by the inductive assumption,
while the last equality is because (4.21) is valid for all l ≥ 1. Thus, we have shown
that the impulse responses of {X(z) Y (z)} are the same as those of {A(z) B(z)}.
Since L(s, t) is full row rank, by Proposition 2.1, {X(z) Y (z)} is unique in M(s, t),
and hence {X(z) Y (z)} ∈ M. The proof is completed.

Remark 4.2. If M is nonempty, Theorem 3.3 characterizes the possible orders
of the pairs contained in M. All the pairs in M can be obtained by the available
parameters {A1, · · · , Ap, B0, · · · , Bq} of {A(z) B(z)} by Theorem 3.2. In the proof
of Theorem 4.2 a concrete method of finding a pair in M is described. Therefore,
all the pairs in M can be found by using the impulse responses {Hi}. According
to Theorem 4.2, to determine if a pair of orders (s, t) with s ≥ 1, t ≥ 0 is con-
tained in M or not, we need only to check the rank conditions rankL(s, t) = ns and
rankL(s+ 1, t+ 1) = ns. If the conditions are satisfied, then the pair of orders (s, t)
belongs to M. Since the upper bound for orders of the pairs in M is unknown, we
may try to first find a pair with orders (s, t), by searching along the lower and right
edges of expanding squares as shown in Table 2: (1,0); (2,0), (2,1) (1,1); (3,0), (3,1),
(3,2), (2,2), (1,2); (4,0), (4,1), (4,2), (4,3), (3,3), (2,3), (1,3); and so on. The searching
process continues until the rank conditions are satisfied by a pair, which will serve as
the first pair in M. Then, the range of possible orders of other distinct pairs in M is
obtained by Theorem 3.3 and Corollary 3.4. Thus, other distinct pairs can be found
by checking the rank conditions given by Theorem 4.2 within the finite range.

In the following, pairs in M are numbered in the order of the above searching
sequence; and the number of distinct pairs in M will be denoted by na, and the ith
distinct pair in M by {X i(z), Y i(z)} of orders (pi, qi).

Example 4.1. Consider the model in Example 2.1. The ranks of the Toeplitz
matrices consisting of the impulse responses are illustrated in Table 3, and orders of
the pairs in M are circled in Table 3. The pairs of orders (3, 1 + j) for any j ≥ 1
are in M, and so are the pairs of orders (3, 1) and (4, 0). This is consistent with our
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Table 3

The ranks of the Toeplitz matrices.

�
�
��

������
rankL(s, t) t

s 0 1 2 3 4 5 6 7 · · ·

1 2 2 2 2 2 2 2 2 . . .

2 4 4 4 4 4 4 4 4
. . .

3 6 6© 6© 6© 6© 6© 6© 6© . . .

4 8© 7 6 6 6 6 6 6
. . .

5 9 8 7 6 6 6 6 6
. . .

6 10 9 8 7 6 6 6 6
. . .

7 11 10 9 8 7 6 6 6
. . .

8 12 11 10 9 8 7 6 6
. . .

...
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

analysis. By the searching process given above, the orders of the first found pair are
(3, 1), followed by (4, 0).

5. Determining MFD from correlation functions. Let us impose the fol-
lowing conditions on system (1.1):

B1: {uk} is a sequence of independent and identically distributed (i.i.d.) random
vectors with Euk = 0, E‖uk‖2+δ <∞ for some δ > 0, and Euku

T
k = I;

B2: A(z) and B(z)BT (z−1)zq have no common left factor, [Ap Bq] is full row
rank, B0 is full column rank, and detA(z) �= 0 ∀|z| ≤ 1.

Under these conditions, without loss of generality, we may assume the output {yk}
is a sequence of zero mean stationary random vectors with the correlation functions
Ri � Eyky

T
k−i. Multiplying yTk−t, t ≥ q + 1 on both sides of (1.1) from the right and

taking the expectation, we obtain

E(yk +A1yk−1+ · · ·+Apyk−p)yTk−t
= E(B0uk +B1uk−1 + · · ·+Bquk−q)yTk−t = 0 ∀ t ≥ q + 1,

which yields

p∑
i=0

AiRq−i+l = 0 ∀ l ≥ 1.(5.1)

Choosing the indices 1 ∈ {1 ≤ 1 ≤ np} in (5.1), we have the following linear algebraic
equation called the Yule–Walker equation:

[A1 A2 . . . Ap]Γ(p, q) = −[Rq+1 Rq+2 . . . Rq+np],(5.2)

where

(5.3) Γ(p, q) �

⎡⎢⎢⎢⎣
Rq Rq+1 . . . Rq+np−1

Rq−1 Rq . . . Rq+np−2

...
...

. . .
...

Rq−p+1 Rq−p+2 . . . Rq+(n−1)p

⎤⎥⎥⎥⎦ .
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Similarly to (2.8) we can rewrite (5.2) as

θA = (Γ(p, q)Γ(p, q)T )−1Γ(p, q)W(5.4)

whenever Γ(p, q) is full row rank, where

θTA
Δ
= [A1 A2 . . . Ap] and W

T Δ
= −[Rq+1 Rq+2 . . . Rq+np].

From (2.2) it follows that

Rj = Eyky
T
k−i = E

( ∞∑
i=0

Hiuk−i

)( ∞∑
l=0

Hluk−j−l

)T

=

( ∞∑
i=0

∞∑
l=0

HiEuk−iuTk−j−lH
T
l

)
=

∞∑
l=0

Hj+lH
T
l .(5.5)

Set ξk � B(z)uk. Then the spectral density of ξk is

Φξ(z) = B(z)BT (z−1),

while the spectral density of {yk} given by (1.1)–(1.3) is

Φ(z) �
∞∑

j=−∞
Rjz

j = A−1(z)B(z)BT (z−1)A−T (z−1),(5.6)

which implies

Φξ(z) = B(z)BT (z−1) = A(z)Φ(z)AT (z−1).(5.7)

Since the right-hand side of (5.7) is equal to

A(z)Φ(z)AT (z−1) =

p∑
i=0

Aiz
i

∞∑
k=−∞

Rkz
k

p∑
j=0

ATj z
−j

=

p∑
i=0

∞∑
k=−∞

p∑
j=0

AiRkA
T
j z

i+k−j(5.8)

=
∞∑

k=−∞

⎛⎝ p∑
i=0

p∑
j=0

AiRk+j−iATj

⎞⎠ zk,

we have

B(z)BT (z−1) =

q∑
k=−q

⎛⎝ p∑
i=0

p∑
j=0

AiRk+j−iATj

⎞⎠ zk.(5.9)

Therefore, to derive the coefficients of B(z) it is a matter of factorizing the right-
hand-side of (5.9). Similarly to Proposition 2.1, we have the following result.

Proposition 5.1 (see [18]). Assume that {A(z) B(z)} ∈ M(p, q) and B0 is full
column rank. Then, the following H5 and H6 are equivalent.

H5: The matrix Γ(p, q) defined by (5.3) is full row rank.
H6: The matrix polynomials A(z) and B(z)BT (z−1)zq have no common left factor

and the matrix [Ap Bq] is full row rank.
This proposition gives the necessary and sufficient condition for recovering the

parameters of the AR-part of the system (1.1) by use of the correlation functions if
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the orders (p, q) are available. The condition that B0 is of full column rank implies
that the dimension n of the output yk is greater than or equal to the dimension m
of the input uk, i.e., (m ≤ n), but this is not a restriction. Let us explain this. In
the case m > n, the spectral density B(z)BT (z−1) of ξk is nonnegative definite on
the unit circle |z| = 1. Let us denote the rank of B(z)BT (z−1) by m̃. It is clear
that m̃ ≤ n. By the innovation representation[4],[18, Lemmas 4 and 5], there exists

an n × m̃ matrix polynomial B̃(z) and the m̃ dimensional innovation process {ũk}
with Eũkũ

T
k = Im̃ such that B(z)BT (z−1) = B̃(z)B̃T (z−1) and the constant term

B̃0 of B̃(z) is of full column rank. As a result, the spectral densities of these two

systems {A(z)yk = B(z)uk} and {A(z)yk = B̃(z)ũk} are the same, and hence their
correlation functions are also identical. This means that these two systems cannot
be distinguished by the correlation functions of the output. Therefore, we can think
of these two systems as equivalent from the point of correlation functions. Denote
the highest nonzero coefficient of B̃(z) by B̃q̃ with q̃ ≤ q. Noticing m̃ ≤ n and that

the constant term B̃0 of B̃(z) is of full column rank, by referring to [18, Theorem 2′],
we see that the AR-part A(z) of {A(z)yk = B(z)uk} or {A(z)yk = B̃(z)ũk} can be

uniquely determined if [Ap B̃q̃] is of full rank and the matrix polynomials A(z) and
B(z)BT (z−1)zq have no common left factor. However, in general, one has no method
to derive the original B(z) only by using correlation functions without additional
information about B(z).

Likewise, there may also exist other matrix pairs which shares the same correlation
functions with {A(z) B(z)}. Let us by N denote the totality of the matrix pairs
{X(z) Y (z)} of orders (s, t) which satisfy the following conditions:

(1) The correlation functions of {X(z) Y (z)} and those of {A(z) B(z)} are iden-
tical;

(2) X(z) and Y (z)Y T (z−1)zt have no common left factor, [Xs Yt] is full row rank,
and Y0 is full column rank, where

X(z) = I +X1z + · · ·+Xsz
s,

Y (z) = Y0 + Y1z + · · ·+ Ytz
t.

Remark 5.1. In section 3 we have shown that if {X(z) Y (z)} of orders (s, t)
belongs toM, then there is no other pair of orders (s, t) inM other than {X(z) Y (z)}.
However, this is not the case for N . To see this, let us take the following example.
Assume A(z) is an arbitrary one-dimensional stable polynomial. Let us take B(z) =

B1(z)
Δ
= 1 + 2z and B(z) = B2(z)

Δ
= 2(1 + 0.5z). Then, it is straightforward to

verify B1(z)B1(z
−1) = B2(z)B2(z

−1). This means that the matrix pairs {A(z) B1(z)}
and {A(z) B2(z)} share the same spectral function, and hence the same correlation
functions. Therefore, if {X(z) Y (z)} of orders (s, t) belonging to N , there may exist
a distinct pair {X(z) Y1(z)} of orders (s, t) belonging to N . However, their X(z) is
unique.

Theorem 3.3 and Corollary 3.4 are concerned with M; for N , we have similar
results formulated as follows.

Theorem 5.1. Assume that both the matrix pairs {A(z) B(z)} of orders (p, q)
and {X(z) Y (z)} of orders (s, t) belong to N and X(z) �= A(z). Then the orders (p, q)
and (s, t) satisfy the following inequalities:

(n− 1)s+ t ≥ (n− 1)p+ q,(5.10)

s ≤ p+ (n− 1)q(5.11)
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if s > p and t < q;

(n− 1)t+ s ≥ (n− 1)q + p,(5.12)

t ≤ q + (n− 1)p(5.13)

if s < p and t > q. Moreover, 1 ≤ s < p and q < t ≤ q + (n − 1)p if Ap is
nonsingular, and p < s ≤ p+ (n− 1)q and 0 ≤ t < q if rankBq = n. Finally, if both
the ranks of Ap and Bq equal n, then X(z) ≡ A(z) and Y (z)Y T (z−1) are identical
for all {X(z) Y (z)} ∈ N . In particular, this is the case if n = m = 1.

The following propositions can be proved similarly to Theorems 4.1 and 4.2.
Theorem 5.2. Assume that {A(z) B(z)} of orders (p, q) belongs to N . Then, in

the case s ≥ p, t ≥ q it holds that

rankΓ(s, t) =

⎧⎨⎩
np if s− t = p− q,
n(s− t+ q) + rankΛ(t− s− (q − p)) if s− t < p− q,
np+ rankΘ(s− t− (p− q)) if s− t > p− q,

where A(t) and B(t) are given by (4.1) and (4.2), respectively.
Theorem 5.3. Assume that {A(z) B(z)} of orders (p, q) belongs to N . Then

{X(z) Y (z)} of orders (s, t) belongs to N if and only if rankΓ(s + i, t + i) = ns for
i = 0, 1.

In case N is nonempty, similarly to the previous section, all pairs in N can be
found by using the correlation function {Ri} on the basis of Theorems 5.1–5.3.

Remark 5.2. It is clear that the order estimation problem considered in this
section contains as a special case the order estimation of the multivariate ARMA
model in time series analysis, where n = m, B0 = I, and B(z) is stable.

6. Estimating MFD. In sections 4 and 5 we have seen that all MFD in M
and in N can be found by using the impulse responses {Hi} of the system and the
correlation functions of the system output, respectively. We now discuss how to
estimate MFD by using the input-output data or by the output data only.

6.1. Estimation by use of impulse responses. In order to derive all pairs
in M from the input-output data we face two problems: (1) how to estimate {Hi}
on the basis of input-output data; (2) how to estimate rankL(s, t) on the basis of
estimated Hi,k. The first problem can be solved by using the existing results [17]. We
formulate them as propositions.

Proposition 6.1. Assume the following conditions hold:
A1: {uk} is a sequence of i.i.d. zero mean random vectors with E‖uk‖2(2+δ) <∞

for some δ > 0 and Euku
T
k = I.

A2: The matrix polynomials A(z) and B(z) have no common left factor, [Ap Bq]
is full row rank, and detA(z) �= 0 ∀|z| ≤ 1.

Then,

Eyku
T
k−i =

∞∑
j=0

HjE(uk−juTk−i) = Hi.(6.1)

Motivated by (6.1), the stochastic approximation algorithm with expanding truncations
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[6] is used to recursively estimate {Hi, i ≥ 0}:

Hi,k =

[
Hi,k−1 − 1

k
(Hi,k−1 − yku

T
k−i)

]
· I[‖Hi,k−1− 1

k (Hi,k−1−ykuT
k−i

))‖≤Mδi,k

],(6.2)

δi,k =

k−1∑
j=1

I[‖Hi,j−1− 1
j (Hi,j−1−yjuT

j−i))‖>Mδi,j

],(6.3)

where {Mk} is an arbitrarily chosen sequence of positive real numbers increasingly
diverging to infinity, Hi,0 is an arbitrary initial value, and IA denotes the indicator
function of a set A.

Then by [17], the estimates for the impulse responses {Hi, i ≥ 0} have the follow-
ing convergence rate:

‖Hi,k −Hi‖ = o(k−ν) a.s. i ≥ 0 ∀ ν ∈ (0, 1/2).(6.4)

Having obtained the convergence rate (6.4), we then can apply the method pro-

posed in [10] to estimate the rankL(s, t) = rankL(s, t)LT (s, t)
Δ
= r(s, t). Let us for-

mulate the rank estimation method used in [10] as a lemma.
Lemma 6.1 (see [10]). Let P be an l×l-symmetric and nonnegative definite matrix

with rank equal to μ ≤ l and with characteristic polynomial h(z) � det(zI − P ) =
zl + h1z

l−1 + · · ·+ hl. Let hj,k be the estimates for hj ∀j = 0, 1, . . . , l (h0 � 1) with
convergence rate |hj,k − hj | = o(k−ν) for some ν > 0 ∀j = 0, 1, · · · , l. Then the
estimate μk for μ defined by

μk � max{j|Qj,k ≥ ε, j = 0, 1, . . . , l}
is strongly consistent: μk −−−−→

k→∞
μ a.s., where the decision numbers Qj,k are given as

Qj,k �
|hj,k|+ 1

log k

|hj+1,k|+ 1
log k

, k ≥ 1, j = 0, 1, . . . , l,

hl+1,k � 0 and any number greater than 1 may serve as the threshold ε.
For estimating the orders and the parameters of the pairs in M based on the

approximate impulse responses {Hi,k} given by (6.2)–(6.3) at time k, it suffices to
carry out the same process given in Remark 4.2 but with the following changes: the
rank r(s, t) of L(s, t) is replaced by its estimate rk(s, t) and the search range for
finding the first pair is restricted to 1 ≤ s ≤ log(k) + 1, 0 ≤ t ≤ log(k). For any given
orders (s, t), the matrix L(s, t)LT (s, t) serves as P in Lemma 6.1, and the coefficients
of det(zI − L(s, t)LT (s, t)) are estimated by replacing Hi in L(s, t) with Hi,k given
by (6.2)–(6.3). The obtained estimate rk(s, t) converges to r(s, t) by Lemma 6.1 and
(6.4). As a result, the pairs in M can always be found by Theorem 4.2 when k is
sufficiently large. Denote the estimates for the orders and the parameters of the ith
pair in M by (pik, q

i
k) and {X i

k(z) Y
i
k (z)}, respectively. Thus, we have (pik, q

i
k) −−−−→

k→∞
(pi, qi), and {X i

k(z) Y
i
k (z)} converges to {X i(z) Y i(z)} with the convergence rate

o(k−ν), ν ∈ (0, 1/2).

6.2. Estimation by use of correlation functions. Under the condition B1
and B2, the correlation functions Ri � Eyky

T
k−i can recursively be estimated by the

output {yk}:

Ri,k = Ri,k−1 − 1

k
(Ri,k−1 − yky

T
k−i),(6.5)
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where Ri,k denote the estimates for Ri for any i ≥ 0 at time k, and the following rate
of convergence takes place [7, 11]

‖Ri,k −Ri‖ = o(k−ν) ∀ ν ∈
(
0,min

(
1

2
,

δ

2 + δ

))
.(6.6)

The steps of estimating the pairs in N by correlation functions is the same as by
impulse responses given above. The only difference is that the estimated impulse re-
sponse (6.2)–(6.3) is replaced by the estimated correlation function (6.5). Denote the
estimates for the orders of the ith pair in N by (pik, q

i
k). The estimate X i

k(z) for X
i(z)

is given by (5.2) in which the correlation functionRi and the orders (pi, qi) are replaced
by their estimates Ri,k and (pik, q

i
k), respectively. Thus, we have (p

i
k, q

i
k) −−−−→

k→∞
(pi, qi),

and X i
k(z) converges to X

i(z) with the convergence rate o(k−ν), ν ∈ (0,min(12 ,
δ

2+δ )).
It is clear that the rate given by (6.6) plays the same role as (6.4) in the case where
estimation is based on impulse responses. The parameter estimation of B(z) is de-
scribed in the next section.

7. Extension to ARMAX systems. Consider the following multivariable AR-
MAX model:

A(z)yk = B(z)uk + C(z)wk,(7.1)

which, in comparison with (1.1), has an additional term C(z)wk with wk ∈ Rn, where

C(z) = I + C1z + · · ·+ Crz
r with Cr �= 0.(7.2)

7.1. Estimation of ARMAX by impulse responses. We now list conditions
to be used.

C1: {uk} is a sequence of i.i.d. random vectors with Euk = 0, E‖uk‖2(2+δ) < ∞
for some δ > 0, and Euku

T
k = I, and is independent of {wk}.

C2: {wk} is a sequence of i.i.d. zero mean random vectors with E‖wk‖2+δ < ∞
for some δ > 0 and Ewkw

T
k = Rw > 0, where Rw is unknown.

C3: A(z) and B(z) have no common left factor, and [Ap Bq] is full row rank.
C4: detA(z) �= 0 ∀|z| ≤ 1, and detC(z) �= 0 ∀|z| ≤ 1.
C5: An upper bound r∗ for r is available.

Set yuk
Δ
= A−1(z)B(z)uk and ywk

Δ
= A−1(z)C(z)wk. Thus, by the stability of A(z),

we have

yk = A−1(z)B(z)uk +A−1(z)C(z)wk = yuk + ywk .

Similarly to system (1.1), the triple {A(z) B(z) C(z)} in (7.1) may not be unique.
By W denote the totality of the matrix triples {X(z) Y (z) Z(z)} of orders (s, t, ς)
satisfying the following conditions:

(1) {X(z) Y (z)} shares the same impulse responses with {A(z) B(z)};
(2) X(z) and Y (z) have no common left factor, and [Xs Yt] is full row rank;
(3) Z(z) = X(z)A−1(z)C(z), where

X(z) = I +X1z + · · ·+Xsz
s,

Y (z) = Y0 + Y1z + · · ·+ Ytz
t,

Z(z) = I + Z1z + · · ·+ Zςz
ς .

It is clear that {A(z) B(z) C(z)} in (7.1) belongs to W if the conditions
C3–C4 hold.
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Remark 7.1. The different triples if they exist in W produce the identical output
{yk} under the same input {uk} and innovation process {wk}. Assume that triples
{A(z) B(z) C(z)} of orders (p, q, r) and {X(z) Y (z) Z(z)} of orders (s, t, ς) belong to
W , and {A(z) B(z) C(z)} �= {X(z) Y (z) Z(z)}. Then the orders (p, q, r) and (s, t, ς)
satisfy the following inequalities:

p < s ≤ p+ (n− 1)q, t < q, ς ≤ r + s− p < r + s(7.3)

or

s < p, q < t < q + (n− 1)p, ς ≤ r + t− q ≤ r + t.(7.4)

Assume that the number of distinct elements in W is equal to na. Then the ith
distinct element of orders (pi, qi, ri) in W is represented as

X i(z)yk = Y i(z)uk + Zi(z)wk,(7.5)

where

X i(z) = I +X i
1z + · · ·+X i

piz
pi ,(7.6)

Y i(z) = Y i0 + Y i1 z + · · ·+ Y iqiz
qi ,(7.7)

Zi(z) = I + Zi1z + · · ·+ Ziriz
ri.(7.8)

For simplicity let us call X i(z)yk, Y
i(z)uk, and Zi(z)wk the AR-part, X-part,

and MA-part, respectively. First, the AR-part and X-part are estimated by use of the
impulse responses of {A(z) B(z)} on the basis of the input-output data {uk, yk}, and
then the MA-part is estimated by the input-output data {uk, yk} and the estimated
AR-part and X-part.

7.1.1. Estimation of AR-part and X-part. Under C1–C4, we have

Eyku
T
k−i = Eyuku

T
k−i =

∞∑
j=0

HjE(uk−juTk−i) = Hi.(7.9)

Similarly to the estimation steps using impulse response in section 6, the impulse
response {Hi, i ≥ 0} of {A(z) B(z)} is still estimated by (6.2) and (6.3) based on
(7.9), and under C1–C4 the convergence rate is again given by (6.4). As a result,
the estimated orders (pik, q

i
k) converge to the true order (pi, qi). By the estimated

impulse response {Hi,k}, we derive the strongly consistent estimates X i
k(z) and Y

i
k (z)

for X i(z) and Y i(z) via (2.8) and (2.4).

7.1.2. Estimation of MA-part. Set χik � Zi(z)wk, 1 ≤ i ≤ na. Thus we have
χik = X i(z)yk − Y i(z)uk, which can be estimated as follows:

χ̂ik = X i
k(z)yk − Y ik (z)uk,(7.10)

where

X i
k(z) = I +X i

1,kz + · · ·+X i
pik,k

zp
i
k ,

Y ik (z) = Y i0,k + Y i1,kz + · · ·+ Y iqik,k
zq

i
k .



3718 B.-Q. MU, H.-F. CHEN, L. Y. WANG, AND G. YIN

Thus, the correlation functions Sij
Δ
= Eχikχ

iT
k−j , j ≥ 0 of the sequence {χik} are esti-

mated by the following algorithm:

Sij,k = Sij,k−1 −
1

k

(
Sij,k−1 − χ̂ikχ̂

iT
k−j
)
,(7.11)

where Sij,k is the estimate for Sij at time k. Further, define

Qij,k
Δ
=

‖Sij,k‖+ 1
log k

‖Sij+1,k‖+ 1
log k

, 0 ≤ j ≤ r∗ +max(pik, q
i
k).(7.12)

Choose a fixed ε > 1. The estimate for ri at time k is given by

rik
Δ
= max{j|Qij,k ≥ ε, 0 ≤ j ≤ r∗ +max(pik, q

i
k)}(7.13)

if there exists some j : 0 ≤ j ≤ r∗ +max(pik, q
i
k) such that Qij,k ≥ ε. Otherwise, set

rik
Δ
= r∗ +max(pik, q

i
k).

Assume that C1–C5 hold. Then

rik −−−−→
k→∞

ri, 1 ≤ i ≤ na.(7.14)

After the consistent order estimation of the MA-part is obtained, by the method
proposed in [8] we can obtain the strongly consistent estimate for the parameters of
the MA-part and the covariance of the innovation process.

7.2. Estimation of ARMAX by correlation functions. In this subsection,
we use the correlation function method to estimate the ARMAX system (7.1). In this
case, instead of C1–C5 we need the following set of conditions:

D1: {uk} is a sequence of i.i.d. random vectors with Euk = 0, E‖uk‖2+δ <∞ for
some δ > 0, and Euku

T
k = I, and is independent of {wk}.

D2: {wk} is a sequence of i.i.d. zero mean random vectors with E‖wk‖2+δ < ∞
for some δ > 0 and Ewkw

T
k = Rw > 0, where Rw is unknown.

D3: A(z) and B(z)BT (z−1) + C(z)RwC
T (z−1) have no common left factor, and

the matrix [Ap BvB
T
0 +CvRw] is full row rank, where v

Δ
= max(q, r), Bj

Δ
= 0

if j > q, and Cl
Δ
= 0 if l > r.

D4: detA(z) �= 0 ∀|z| ≤ 1 and detC(z) �= 0 ∀|z| ≤ 1.
By the innovation representation [4, 18], under D1–D4 the system (7.1) can be

represented as

A(z)yk = D(z)ψk, D(z) = I +D1z + · · ·+Dvz
v(7.15)

with v
Δ
= max(q, r), where we have the following:

(i) ψk is an n-dimensional random process, Eψk = 0, Eψkψ
T
j = Rψδk,j with

δk,j = 1 if k = j and δk,j = 0 if k �= j, and Rψ > 0.
(ii) D(z) is a n× n matrix polynomial with detD(z) �= 0 ∀|z| < 1.
(iii) A(z) and D(z) have no common left factor, and [Ap Dv] is full row rank.
(iv) A(z) and D(z) are uniquely defined.
As pointed out before, there may exisit other triples {X(z) Y (z) Z(z)} of orders

(s, t, ς) which can also model the sytem (7.1) other than {A(z) B(z) C(z)}, and
{X(z) Y (z) Z(z)} also has the innovation representation {X(z)yk = G(z)φk} of
orders (s, g) having the corresponding property, where G(z) = I +G1z + · · ·+Ggz

g

and g
Δ
= max(t, ς). Similarly to W , denote by V the totality of the matrix triples

{X(z) Y (z) Z(z)} satisfying the following conditions:
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(1) {A(z)yk = D(z)ψk} and {X(z)yk = G(z)φk} have the same correlation func-
tion;

(2) X(z) and G(z)RφG
T (z−1) have no common left factor, and [Xs Gg] is full

row rank, where Rφ
Δ
= Eφkφ

T
k ;

(3) Z(z) = X(z)A−1(z)C(z).
It is clear that {A(z) B(z) C(z)} in (7.1) belongs to V if the conditions D1–D4

hold.
Remark 7.2. Assume {A(z) B(z) C(z)} of orders (p, q, r) and {X(z) Y (z) Z(z)}

of orders (s, t, ς) belong to V , and {A(z) B(z) C(z)} �= {X(z) Y (z) Z(z)}. Then the
orders (p, q, r) and (s, t, ς) satisfy the following inequalities:

(n− 1)s+ g ≤ (n− 1)p+ v, p < s ≤ p+ (n− 1)v, g < v,(7.16)

or

(n− 1)g + s ≤ (n− 1)v + p, v < g ≤ v + (n− 1)p, s < p.(7.17)

Denote the number of distinct pairs in V by nb. For simplicity of notation,
the ith distinct pair of orders (pi, qi, ri) in V is still represented as (7.5)–(7.8), and

vi
Δ
= max(qi, ri). Under D1–D4, the estimate {Ri,k} for the correlation function

{Ri, i ≥ 0} of the output yk in (7.1) has the convergence rate (6.6). Similarly to
the estimation steps using the correlation function in section 6, the estimated orders
(pik, v

i
k) converge to the true orders (pi, vi). By the estimated correlation function

{Ri,k}, we derive the strongly consistent estimates X i
k(z) for X

i(z) in terms of (5.4).

Set ϕik
Δ
= X i(z)yk, 1 ≤ i ≤ nb. Then the estimate ϕ̂ik for ϕik is given as follows:

ϕ̂ik = X i
k(z)yk,(7.18)

where X i
k(z) = I +X i

1,kz + · · ·+X i
pik,k

zp
i
k . By D1, we have

Eϕiku
T
k−j = E(Y i(z)uk + Zi(z)wk)u

T
k−j = EY i(z)uku

T
k−j = Y ij , 0 ≤ j ≤ vi.(7.19)

The estimates for the parameters of the X-part can be given by the following algo-
rithm:

Y ij,k = Y ij,k−1 − 1/k
(
Y ij,k−1 − ϕ̂iku

T
k−j
)
, 0 ≤ j ≤ vik.(7.20)

Define

Qij,k
Δ
=

‖Y ij,k‖+ 1
log k

‖Y ij+1,k‖+ 1
log k

, 0 ≤ j ≤ vik.(7.21)

Choose a fixed ε > 1. Then the estimate for qi at time k is given by

qik
Δ
= max{j|Qij,k ≥ ε, 0 ≤ j ≤ vik}(7.22)

if there exists some j : 0 ≤ j ≤ vik such that Qij,k ≥ ε. Otherwise, set qik
Δ
= vik.

For the estimation of the MA-part, the consistent estimate for the order ri is
obtained by (7.10)–(7.13) in which only the upper bound r∗ + max(pik, q

i
k) on the

index j in (7.12) and (7.13) is replaced by vik, while the strongly consistent estimates
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for the parameters of the MA-part and the covariance of the innovation process can
also be produced by the method given in [8].

Remark 7.3. The set W may be different from V . The conditions on the system
structure, input signal, and innovation process for the two kinds of estimation methods
have some distinctions. The main different points are C3 and D3 on the system
structure, and there is no requirement on a prior upper bound on the order of the
MA-part for the correlation function method, while this is needed for the impulse
response method.

8. Concluding remarks. We have shown how to determine all possible MFDs
for a linear multivariable linear system. It is worth noting the following points:

1. There is no restriction on the dimensions of input and output of the system.
2. Determining MFDs of a given system includes finding both the orders and

coefficients. No upper bound for orders is required.
3. MFDs may be determined by the impulse responses of the system or by the

correlation functions of the system output.
4. MFDs can consistently be estimated by using either the input-output data

or the output data only.
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