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Introduction



Regularization methods

Regularization methods have achieved a great success in statistics,
machine learning, biometrics, etc, over the last two decades.

A general framework

θ̂
△
= arg min

θ∈M

(
Fit + Complexity penalty

)
The bias/variance tradeoff is at the heart of identification

Suppose that

θ0 − True parameter θ̂ − Estimate

Bias-variance tradeoff

E∥θ̂ − θ0∥2︸ ︷︷ ︸
MSE

= ∥Eθ̂ − θ0∥2︸ ︷︷ ︸
bias’s square
deterministic

+ E∥θ̂ − Eθ̂∥2︸ ︷︷ ︸
variance
random

As complexity of M increases, bias decreases but variance increases
To choose a proper complexity for the given data and to achieve a
”good” bias/variance tradeoff
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Regularization methods

Linear models

Y = Φθ0 + V

ℓ1-norm regularization

θ̂1
△
= arg min

θ∈M

(
∥Y− Φθ∥2 + λ∥θ∥1

)
To seek parsimonious models: regularization is a prime tool for
sparsity

ℓ2-norm regularization

θ̂2
△
= arg min

θ∈M

(
∥Y− Φθ∥2 + λ∥θ∥22

)
The bias/variance tradeoff is at the heart of identification:
regularization offers new techniques for robust smaller MSE
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The main issue

Can regularization methods bring forth some benefits for system
identification?

Yes!

4



Regularization methods for linear
system identification



Impulse response identification

Linear time-invariant (LTI) system identification is a classical and
fundamental problem.

Output error (OE) systems

y(t) =
∞∑
k=1

g0
ku(t− k) + v(t), t = 1, 2, · · ·

The Goal

To identify the impulse response sequence

θ0 = [g0
1 ,g0

2 , · · · ]T (infinite parameters)

as well as possible by a finite number of data

{u(t), y(t)}Nt=1
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Impulse response identification

The impulse response identification could be ill-conditioned in
practice since it involves to estimate an infinite number of
parameters

The identification is to make the ill-conditioned problem
well-conditioned

Two routes

• Parametric methods (Classical methods: maximum likelihood,
prediction error method, etc.)

∞∑
k=1

g0
kq−k =

b1q−1 + · · ·+ bnbq−nb

1+ f1q−1 + · · ·+ fnfq−nf

• Model class selection
• Model order selection: AIC, BIC, cross validation

Asymptotic optimality
• Nonparametric methods
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Nonparametric methods

Motivation

• Parametric methods are not as reliable as expected for short,
ill-conditioned, low signal-to-noise ratio data

A high order finite impulse response (FIR) system, (e.g. n = 100)

y(t) =
n∑

k=1

g0
ku(t− k) + v(t)

Prior

stability : g0
k ∼ O(τ k) for some 0 < τ < 1

7
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Nonparametric methods

Linear regression form

Y = Φθ0 + V, θ0 = [g0
1 ,g0

2 , . . . ,g0
n]

T

where

Φ =


u(0) u(−1) . . . u(−n+ 1)
u(1) u(0) . . . u(−n+ 2)
...

... . . . ...
u(N− 1) u(N− 2) · · · u(N− n)


Y =

[
y(1) y(2) . . . y(N)

]T
V =

[
v(1) v(2) . . . v(N)

]T

8



An example

Input-output data of a linear dynamic system:

• Data size: 250
• Input: a filtered white noise
• Noise: a white noise with the signal to noise ratio 5.45

To estimate the first 100 impulse response coefficients

Time

0 50 100 150 200 250
-0.1

-0.05

0

0.05

0.1
Input: u

Time

0 50 100 150 200 250
-0.1

-0.05

0

0.05

0.1
Output: y

9



Performance measure

Fit = 100×

(
1− ∥θ̂im − θ0∥

∥θ0 − θ̄0∥

)
, θ̄0 =

1
n

n∑
k=1

g0
k

where θ̂im is the corresponding first n = 100 impulse response of the
estimate for θ̂.

10



Estimation results

The OE-system of order 6 by CV

Fit = 36.78
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Fit = 79.63
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7

The estimate is sensitive to the choice of model order
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Estimation results

The OE-system of order 6 by CV

Fit = 36.78

Regularization methods

Fit = 83.40
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Regularization

Objective functions

ℓ(Y,Φθ)︸ ︷︷ ︸
loss term

+ R(θ)︸︷︷︸
regularization term

Loss term

• characterize the feature of the noise

Regularization term

• ill-posed problem
• encode prior knowledge

Some examples

∥Y− Φθ∥pp + λ∥θ∥qq, p ≥ 0,q ≥ 0
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Regularization

Recall that

θ̂
△
= arg min

θ∈M

(
Fit + Complexity penalty

)
Linear regression

Y = Φθ0 + V, θ0 = [g0
1 ,g0

2 , . . . ,g0
n]

T

y(t) =
n∑

k=1

g0
ku(t− k) + v(t)

Least squares (LS) estimators:

θ̂LS △
= argmin

θ
∥Y− ΦTθ∥2 = (ΦTΦ)−1ΦTY

MSE(θ̂LS) = E∥θ̂LS − θ0∥2 = σ2Tr
(
(ΦTΦ)−1)

Too many parameters? Put them on leashes!

θ̂R △
= arg min

θ∈Rn
∥Y− Φθ∥2 + σ2θTK−1θ = (ΦTΦ+ σ2K−1)−1ΦTY

where K is a positive semidefinite matrix to be tuned by the data. 14



A frequentist perspective

The estimator:

θ̂R △
= arg min

θ∈Rn
∥Y− Φθ∥2 + σ2θTK−1θ = R−1ΦTY, R = ΦTΦ+ σ2K−1

Bias
Eθ̂R − θ0 = σ2R−1K−1θ0 ̸= 0

MSE

E∥θ̂R − θ0∥2 = σ4θT0P−1R−1R−1K−1θ0︸ ︷︷ ︸
bias’s square

+σ2Tr
(
R−1ΦTΦR−1)︸ ︷︷ ︸
variance

No regularization if K−1 = 0: Bias = 0 and Variance = σ2(ΦTΦ)−1

Proposition

If σ2K−1 = βA and A is positive definite and fixed. Then we have

MSE(θ̂R) ≤ MSE(θ̂LS), when 0 < β < 2σ2/(θT0Aθ0)

The optimal kernel matrix for any data length

K = θ0θ
T
0 15



Bayesian Interpretation

Prior
θ0 ∼ N (0, K) (K : Covariance/Kernel matrix)

Posterior

θ0|Y ∼ N (θ̂R, K̂R)

θ̂R = R−1ΦTY, K̂R = σ2R−1

R = ΦTΦ+ σ2K−1

This interpretation provides a clue to select K

16



Regularization in system identification

Regularization for handling iIl-posed problems (Tikhonov & Arsenic,
1977)1

Regularization is not new in system identification

The first paper in system identification (Sjöberg et al., 1993)2

θ̂R = argmin
θ

∥Y− Φθ∥2 + γ∥θ∥2

= (ΦTΦ+ γIn)−1ΦTY

But no important progress until Pillonetto & De Nicolao (2010)3

1A. N. Tikhonov and V. Y. Arsenic. Solutions of Ill-Posed Problems, New York: John Wiley, 1977.
2J. Sjöberg, T. McKelvey, and L. Ljung. On the use of regularization in system identification.
Proceedings of the 12th IFAC World Congress: 381–386, Sydney, Australia.
3G. Pillonetto and G. De Nicolao. A new kernel-based approach for linear system identification.
Automatica, 46, 81–93, 2010.
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How to tune a ”good” kernel K by the data

The estimator:

θ̂R = (ΦTΦ+ σ2K−1)−1ΦTY

Two extrema

θ̂R =

{
0, if K = 0
θ̂LS, if K = ∞

How to tune a ”good” kernel K by the data

18



A two-step procedure

The seminal paper (Pillonetto & De Nicolao, 2010)1

• Kernel design: determine the structure of K by using the prior
knowledge

K(η), η hyperparameter

• Hyperparameter estimation: determine the hyperparameter by
the data

1G. Pillonetto and G. De Nicolao. A new kernel-based approach for linear system identification.
Automatica, 46, 81–93, 2010.

19



Kernel design

Cubic spline kernels (Wahba, 1990)1

KCS(i, j) =

 c i2
2

(
j− i

3

)
, i ≥ j

c j2
2

(
i− j

3

)
, i < j

Prior: exponential decay

g0
k ∼ O(τ k) for some 0 < τ < 1

Stable spline kernels (Pillonetto & De Nicolao, 2010)2

An exponential transform:
i −→ λi

for some 0 < λ < 1

KSS(i, j) =

 cλ2i

2

(
λj − λi

3

)
, i ≥ j

cλ2j

2

(
λi − λj

3

)
, i < j

1G. Wahba. Spline Models for Observational Data. New York: SIAM, 1990.
2G. Pillonetto and G. De Nicolao. A new kernel-based approach for linear system identification.
Automatica, 46, 81–93, 2010. 20



Heuristic methods

The optimal kernel

K = θ0θ
T
0 =


(g0

1 )
2 g0

1g0
2 · · · g0

1g0
n

g0
2g0

1 (g0
2)

2 · · · g0
2g0

n
... . . . . . . ...

g0
ng0

1 g0
ng0

2 · · · (g0
n)

2


θ0 = [g0

1 , · · · ,g0
n]

T

Prior

g0
k ∼ O(τ k) for some 0 < τ < 1

21



Heuristic methods

DI kernel

K(η) = c diag([λ, · · · , λn])

η = [c, λ] ∈ Ω = {c ≥ 0, 0 ≤ λ ≤ 1}

DC kernel

Ki,j(η) = cλ(i+j)/2ρ|i−j|

K(η) = c


λ λ

3
2 ρ · · · λ

n+1
2 ρn−1

λ
3
2 ρ λ2 · · · λ

n+2
2 ρn−2

... . . . . . . ...
λ

n+1
2 ρn−1 λ

n+2
2 ρn−2 · · · λn


with hyperparameters η = [c, λ, ρ]T ∈ Ω = {c ≥ 0, 0 ≤ λ ≤ 1, |ρ| ≤ 1}.
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Heuristic methods

TC kernel (Chen et al., 2012) 1

A special case of DC kernel with ρ =
√
λ.

Kk,j(η) = cmin(λk, λj), K(η) = c


λ λ2 · · · λn

λ2 λ2 · · · λn

... . . . . . . ...
λn λn · · · λn


with hyperparameters η = [c, λ]T ∈ Ω = {c ≥ 0, 0 ≤ λ ≤ 1}.

1T. Chen, H. Ohlsson, and L. Ljung. On the estimation of transfer functions, regularizations and
Gaussian processes–Revisited. Automatica, 48(8): 1525–1535, 2012.
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Heuristic methods

Multiple kernels (Chen et al., 2014)1

Better capture complicated dynamics of the system

K(η) =
m∑
i=1

ηiKi, η = [η1, · · · , ηm]

where Ki has different dynamic behavior, e.g. decaying rate and
magnitude.

1T. Chen, M. S. Andersen, L. Ljung, A. Chiuso, and G. Pillonetto. System identification via sparse
multiple kernel-based regularization using sequential convex optimization techniques. IEEE
Transactions on Automatic Control, 59(11): 2933–2945, 2014.
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Hyperparameter estimation

The goal

• To estimate the hyperparameters based on the data

The essence

• To tune model complexity in a continuous way

Some commonly used methods (Pillonetto et al., 2014) 1

1. Empirical Bayes (EB)
2. Stein’s unbiased risk estimator (SURE)
3. Cross validation (CV)

1G. Pillonetto, F. Dinuzzo, T. Chen, G. De Nicolao, and L. Ljung. Kernel methods in system
identification, machine learning and function estimation: A survey. Automatica, 50(3): 657–682,
2014.

25



Empirical Bayes

Gaussian prior

θ ∼ N (0, K)
Y = Φθ + V ∼ N (0,Q)
Q = ΦKΦT + σ2IN

Empirical Bayes (EB)

EB : η̂EB = argmin
η∈Ω

YTQ−1Y+ log det(Q)

26



Stein’s unbiased risk estimator (SURE)

MSE (for prediction ability):

MSE(K) = E∥Φ(θ̂R − θ0)∥2

It is intractable to tune the hyperparameter by the MSE in practice

SURE method

• To construct an unbiased estimators of the MSE

FSURE(K) = ∥Y− Φθ̂R∥2 + 2σ2Tr(R−1ΦTΦ)

R = ΦTΦ+ σ2K−1

• To estimate the hyperparameter η by

SURE : η̂SURE = argmin
η∈Ω

FSURE(K(η))

27



Cross-validation

Ideas

• divide the whole data into training data and validation data
• estimate on the training data
• evaluate on the validation data

Averaged prediction error

For each splitting way s,

• s the index set of the validation data
• sc the index set of the training data

where
|s| = k, {1, · · · ,N} = s ∪ sc

the averaged prediction error (APE) over the validation data is

APEs =
1
k
∑
t∈s

(
y(t)− ϕ(t)Tθ̂sc

)2
=

1
k∥Ys − Φsθ̂sc∥2

Advantage: does not require to estimate the noise variance σ2 28



Variants of CVs

1. Leave-k-out cross validation (LKOCV, intractable in general)

η̂LKOCV = argmin
η∈Ω

1(N
k
) ∑

s
APEs (all choices)

2. Leave-one-out cross validation (LOOCV) (k = 1)

η̂LOOCV = argmin
η∈Ω

1
N
∑
s

APEs = argmin
η∈Ω

1
N

N∑
t=1

(
y(t)− ŷ(t)
1− htt

)2

where H = Φ(ΦTΦ+ σ2K−1)−1ΦT.
3. Generalized cross validation (GCV)

η̂GCV = argmin
η∈Ω

1
N

N∑
t=1

(
y(t)− ŷ(t)

)2
(
1− Tr(H)/N

)2
29



The key issue

How to choose a proper hyperparameter estimator for a given data?
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Asymptotically theoretical properties

Suppose that
ΦTΦ/N −→ Σ > 0 as N −→ ∞.

Then the asymptotically optimal hyperparameter in the MSE sense is
(Mu et al., 2018c) 1

η∗ = argmin
η∈Ω

θT0K−1Σ−1K−1θ0 − 2Tr
(
Σ−1K−1)

depending on the true parameter, chosen kernel, and asymptotic
covariance of the input

1B. Mu, T. Chen and L. Ljung. On Asymptotic Properties of Hyperparameter Estimators for
Kernel-based Regularization Methods. Automatica, 94: 381–395, 2018.
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Asymptotically theoretical properties

Theorem

• η̂SURE → η∗

η̂EB → argmin
η∈Ω

θT0K−1θ0 + log det(K) (Mu et al., 2018c) 1

• η̂GCV → η∗ (Mu et al., 2018a) 2

η̂LOOCV → η∗ if the input is bounded
η̂LKOCV → η∗ if k/N −→ 0 and the input is bounded
(Mu et al., 2018b) 3

1B. Mu, T. Chen and L. Ljung. On Asymptotic Properties of Hyperparameter Estimators for
Kernel-based Regularization Methods. Automatica, 94: 381–395, 2018.
2B. Mu, T. Chen and L. Ljung. Asymptotic Properties of Generalized Cross Validation Estimators for
Regularized System Identification. Proceedings of the IFAC Symposium on System Identification,
203–205, 2018.
3B. Mu, T. Chen and L. Ljung. Asymptotic Properties of Hyperparameter Estimators by Using
Cross-Validations for Regularized System Identification. Proceedings of the IEEE Conference on
Decision and Control, 644–649, 2018.
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Numerical illustrations

Systems: 1000 30th order OE test systems

3 Inputs:

• IT1, white Gaussian noise
• IT2, white Gaussian noise filtered by 1/(1− 0.95q−1)2

• IT3, the impulsive input, [
√
N, 0, · · · , 0] (unbounded)

Noises: The SNR is uniformly distributed over [1, 10]

Sample sizes: N = 500, 8000

Kernel: TC kernel

Tuning methods:

• EB, LOOCV, GCV, SURE
• MSE for reference (optimal for any finite sample)
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Results

Table 1: Average fits for 1000 test systems.

Inputs Sizes EB LOOCV GCV SURE MSE
IT1 500 86.16 86.24 86.24 86.03 87.02

8000 96.44 96.60 96.60 96.60 96.67
IT2 500 39.03 -85.95 -84.84 -146.4 41.94

8000 50.86 38.79 38.89 38.86 53.63
IT3 500 69.33 89.55 89.52 89.95

8000 81.42 96.64 96.64 96.70
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Conclusion



Summary

• A brief introduction of regularization methods for impulse
response identification of linear dynamic systems is given.

• Asymptotically theoretical properties of several hyperparameter
estimation are shown.
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Thanks for your listening



Questions?
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