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ABSTRACT
System identification is a mature research area with well established paradigms, mostly based on classical
statistical methods. Recently, there has been considerable interest in so called kernel-based regularisation
methods applied to system identification problem. The recent literature on this is extensive and at times
difficult to digest. The purpose of this contribution is to provide an accessible account of themain ideas and
results of kernel-based regularisation methods for system identification. The focus is to assess the impact
of these new techniques on the field and traditional paradigms.
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1. Introduction

System identification – to estimate models of dynamical sys-
tems from observed input-output data – has been around for
more than half a century, with the term coined in Zadeh (1956).
Many articles and textbooks on the topic have been written,
e.g. Ljung (1999), Söderström and Stoica (1983) and Pintelon
and Schoukens (2001). A certain state-of-the art paradigm has
emerged, as described in Section 2.

Less than 10 years ago, an alternative approach, called kernel-
based identification, with inspiration from machine learning,
was described by Pillonetto and De Nicolao (2010). This
approach gained considerable attention and during the past
years the methods have been further developed in more than
a hundred scientific papers, many with quite technical and
sophisticated contents.

It is the purpose of the present contribution to give an acces-
sible account of the main ideas and results of this approach with
a focus on what it means for the paradigm and practical use of
System Identification.

2. The traditional system identification setup

In the state-of the art paradigm of system identification, e.g.
Ljung (1999), a parameterised model structure

M = {M(θ)|θ ∈ DM} (1)

is defined, where each modelM(θ) provides a one-step-ahead
predictor of the next output: ŷ(t|θ). Here θ is the parameter to
be estimated, which ranges over a set of valuesDM. In this con-
tribution all signals are assumed to take real values. The model
structures can be of many different kinds: for linear black box
models the state-space model structure of a given order n is a
common choice as are several kinds of polynominal models,
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ARX, ARMAX, Output Error (OE), Box–Jenkins (BJ) models
with given orders of the polynomials that define the respec-
tive structure, like See, for example, Ljung (1999), Ch 4. The
model parameters θ are estimated by Maximum Likelihood
(prediction error)methods, (ML/PEM),minimising sums of the
prediction errors like:

θ̂ = argminθ∈DM

N∑
t=1

‖y(t) − ŷ(t|θ)‖2. (2)

The structural parameters, i.e. the model orders of polynomi-
als and state are estimated by a separate procedure, like cross
validation, or some order criterion like the Akaike Information
Criterion, AIC, or the Bayesian order criterion, BIC.

This state-of the art procedure is supported by efficient soft-
ware, and has been very successful, with many important prac-
tical applications.

3. Bias and variance

The goal of system identification is to provide as accurate a
model as possible. There are two sources of errors in an esti-
mated modelM(θ̂ ):

Bias The model class M was not big enough to contain
a description of the true system. Then regardless of
the amount and quality of the data, a correct model
cannot be obtained. The distance between the true
system and the best model in the model class is a
bias error in the model estimate. It is deterministic in
nature and does not depend on disturbances in the
observed data.
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Variance The measured data is always corrupted by noise and
disturbances and they will also affect the estimates.
Even if a true model description is available in the
model set, there will be a discrepancy between that
and the estimate, caused by the disturbances. This
error is stochastic in nature and called the variance
error.

The total discrepancy between the true system and the model
estimate will contain both these error components. The result-
ingmean square error, MSE is, conceptually

MSE = BIAS2 + VARIANCE. (3)

So, in order to minimise the MSE one must take both compo-
nents into consideration. The best choice is a trade-off in model
flexibility: A large, flexible model set more easily accommodate
any system; hence BIAS decreases with increased flexibility. On
the other hand, a large model will have many parameters and
is more vulnerable to be ‘fooled’ by disturbances in data. Hence
VARIANCE will increase with increased model flexibility.

This BIAS-VARIANCE trade-off in selecting useful model
flexibility is at the heart of all estimation problems and in the
traditional system identification set-up it is performed when
selecting the model order(s), typically by choosing one or sev-
eral integers.

4. Linear regressions

A very common estimation structure is the Linear Regression,
where the entity to be explained, the system output y in the case
of system identification, is expressed as a linear combination of
measured variables ϕ, plus a noise contribution e:

y(t) = ϕT(t)θ + e(t), t = 1, . . . ,N. (4)

Forming matrices YN and �N by stacking y(t) and ϕ(t), t =
1, . . . ,N, this equation can be rewritten

YN = �Nθ + EN . (5)

Such a structure fits the common ARX-model

y(t) + a1y(t − 1) + · · · + anay(t − na)

= b1u(t − 1) + · · · + bnbu(t − nb) + e(t) (6)

by taking

θ = [a1 . . . ana b1 . . . bnb]
T

ϕ(t) = [−y(t − 1) . . . − y(t − na)

u(t − 1) . . . u(t − nb)]T. (7)

The special case of na = 0 is known as an FIR (Finite Impulse
Response) model.

Many other identification problems can be formulated as a
linear regression. In networked systems, for example, a poten-
tial node can be modelled by several incoming inputs from d

other nodes

y(t) =
d∑

i=1
Gi(q)ui(t) + e(t). (8)

If each of the incoming transfer functions is modelled as a FIR
model, it is clear how to form a linear regression (4) analogously
to (7). The structure of the network will then be determined
by finding out which Gi can be set to zero. Such an applica-
tion to sparse dynamic network identification is described in
Chiuso and Pillonetto (2012), Chen, Andersen, Ljung, Chiuso,
and Pillonetto (2014) as well as in Zorzi and Chiuso (2017)

A nonlinear regression model, y(t) = g(ϕ(t)) + e(t) can be
dealt with as a linear regression if a function expansion in
predetermined basis functions gk is used:

g(ϕ) =
d∑

k=1

αkgk(ϕ). (9)

The model will then become a linear regression in the parame-
ters α with gk(ϕ(t)) as the known regressors. See, for example,
Chiuso and Pillonetto (2012) and Pan, Yuan, Ljung, Goncalves,
and Stan (2017) for such an application.

The great advantage with a linear regression is that the
parameters can readily be estimated by the linear least squares
method:

θ̂LSN = argminθ‖YN − �Nθ‖2

= (�T
N�N)−1�T

NYN

= R−1
N FN , (10)

where RN = �T
N�N , FN = �T

NYN .

5. Regularisation

It is well known that if indeed the system is described by (4) for a
certain ‘true’ parameter θ0 andwhite Gaussian noise ewith vari-
ance σ 2, then the LS estimate (10) is the Maximum Likelihood
estimate, and it will be unbiased,

Eθ̂LSN = θ0 (11)

with variance

E(θ̂LSN − θ0)(θ̂
LS
N − θ0)

T = σ 2R−1
N . (12)

This variance is the Cramer–Rao bound, the smallest variance
that can be achieved in any unbiased estimator.

In the least squares solution (10) it may happen that the
matrix RN is ill-conditioned. For that reason, Regularisation
has been suggested, see Tikhonov and Arsenin (1977) for a gen-
eral treatment of regularisation. This is generally expressed in
optimisation form as

θ̂RN(�) = argmin‖YN − �Nθ‖2 + σ 2θT�−1θ

= [RN + σ 2�−1]−1�T
NYN . (13)

With � being a suitable positive definite matrix, this will
improve the conditioning of the matrix to be inverted. This
numerical aspect was an original reason for regularisation.
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In a Bayesian setting, where θ is seen as a random vector,
one may note that (13) actually defines the MAP: Maximum
a Posteriori estimate of θ in case there is prior information
that the prior distribution of θ is Gaussian with zero mean and
covariance matrix �.

Back to a ‘classical’ perspective, where θ0 is unknown but
fixed parameter, the statistical properties of the regularised esti-
mate θ̂RN(�) can easily be determined. It will no longer be
unbiased:

θ̂Rbias = Eθ̂RN(�) − θ0 = −(RN + σ 2�−1)−1σ 2�−1θ0 (14)

and the variance around the mean will be

σ 2(RN + σ 2�−1)−1RN(RN + σ 2�−1)−1. (15)

We realise that if RN is ill-conditioned, the Cramer–Rao bound,
the best possible variance of an unbiased estimate could be
extremely large. At the same time, even a small regularisation
term, e.g.�−1 = δI will improve the conditioning of thematrix
RN + σ 2�−1 and hence the parameter variance considerably.

The small regularisation will also introduce a small bias, but
the combined effect on the MSE, see Section 3, could be very
beneficial.

This regularisation, with a scaled identity matrix has long
been used in statistics under the name of ridge regression.

For the regularised estimate, the mean square error (MSE) of
the estimate is

E[(θ̂N − θ0)(θ̂N − θ0)
T] = (RN + �−1)−1

× (σ 2RN + �−1θ0θ
T
0 �−1)(RN + �−1)−1. (16)

A rational choice of� is one that makes this MSEmatrix small.
How shall we think of good such choices? It is useful to first
establish the following Lemma of algebraic nature

Lemma 5.1: Consider the matrix

M(Q) = (QR + I)−1(QRQ + Z)(RQ + I)−1, (17)

where I is the identity matrix with suitable dimension, Q,R and Z
are positive semidefinite matrices. Then for all Q

M(Q) ≥ M(Z), (18)

where the inequality is in matrix sense.

The proof consists of straightforward calculations, see,
e.g. Chen, Ohlsson, and Ljung (2012).

So, the question what P gives the best MSE of the regularised
estimate has a clear answer: Use

� = θ0θ
T
0 . (19)

Not surprisingly the best regularisation depends on the
unknown system.

Regularisation will thus be a crucial instrument for deal-
ing with the core problem of bias-variance trade-off. Next we
illustrate the idea on a simple model example.

6. Example: finite impulse response estimation

Consider the problem to estimate the impulse response of a
linear system as an FIR model:

y(t) =
nb∑
k=0

g(k)u(t − k) + e(t). (20)

The choice of order nb presents a trade-off between bias
(large nb is required to capture slowly decaying impulse
responses without too much error) and variance (large
nb gives many parameters to estimate which gives large
variance).

Let us illustrate it with a simulated example.We pick a simple
second-order butterworth filter as the system:

G(z) = 0.02008 + 0.04017z−1 + 0.02008z−2

1 − 1.561z−1 + 0.6414z−2 . (21)

Its impulse response is shown in Figure 1.
It has decayed to zero after less than 50 time steps. Let us

estimate it from data generated by the system. We simulate the
system with low-pass filtered white noise as input and add a
small white noise output disturbancewith variance 0.0025 to the
output. One thousand samples are collected. The data is shown
in Figure 2.

To determine a good value for nb we basically have to try
a few values and by some validation procedure evaluate which
is best. That can be done in several ways, but since we know
the true system in this case, we can determine the theoretically
best possible value, by trying out all models with nb = 1, . . . , 50
and find which one has the best fit to the true impulse response.
Such a test shows that nb = 13 gives the best error norm (mean
square error (MSE)= 0.2522). This estimated impulse response
is shown together with the true one in Figure 3.Despite the 1000
data points, with very good signal to noise ratio the estimate is
not impressive. The reason is that the low pass input has poor
excitation.

Figure 1. The true impulse response.
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Figure 2. The data used for estimation.

Figure 3. The true impulse response togetherwith the estimate for order nb= 13.

Let us therefore try to reach a good bias-variance trade-off
by ridge regression for an FIR model of order 50. That is we
use � = I (identity) in (13). The resulting estimate has an MSE
error norm of 0.1171 to the true impulse response and is shown
in Figure 4.

Clearly even this simple choice of regularisation gives amuch
better bias–variance tradeoff, than selecting FIR order.

By using the insight that the true impulse response decays to
zero and is smooth, we can tailor the choice of � to the data
using the methods to be described in Sections 8 and 9, and
obtain the estimate shown in Figure 5 with an MSE norm of
0.0461.

Figure 4. The true impulse response together with the ridge-regularised estimate
for order nb= 50.

Input design is another important isssue to improve the esti-
mation accuracy of the kernel-based regularisation methods.
A two-step procedure is proposed in Mu and Chen (2018),
where in the first step, a quadratic transformation of the
input is constructed such that the transformed input design
problems are convex and their global minima can be found
efficiently by applying well-developed convex optimisation soft-
ware package and in the second step, an expression is derived
for the optimal input based on the global minima found in
the first step by solving the inverse image of the quadratic
transformation.
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Figure 5. The true impulse response togetherwith the tuned regularised estimate
for order nb= 50.

7. The two choices

The treatment of regularisation in Section 5 is valid for any lin-
ear regression problem. In a sense, the optimal regularisation
(for smallest MSE) is known as (19), but this choice depends on
the true system and cannot be used in practice. So we have to
focus on how to choose �. It is convenient to split this choice
into two parts.

kernel The choice of the structure of �, that is a parameteri-
sation of the matrix�(η). For reasons that will be clear
in Section 8, this matrix is also called the kernel of the
estimation problem. That involves consideration of the
actual estimation problem: what is the nature of θ , what
properties can be expected.

tuning Once the kernel structure �(η) has been selected, the
problem is to estimate the hyperparameters η ∈ Dη

using the available observations. This problemas such is
a pure estimation problem of statistical nature and does
not depend on the actual system.

8. Kernel structure

In this section we assume that the linear regression actually is
to estimate the system’s impulse response as an FIR model (20).
That is, the linear regression as in (6) with na = 0.That makes
the true parameter θ0 equal to the true impulse response g0(k).

The kernels for regularisation really have their roots in (con-
tinuous) function estimation/approximation techniques, see
e.g. Wahba (1999). Using Reproducing Kernel Hilbert Space,
(RKHS) theory, ’basis functions’ defined by splines appeared as
natural and useful elements for function approximation. They
define what are called the kernels for the function estimation.
In our discrete time linear regression formulation, the kernel
functions correspond to the � matrix.

In system identification, the kernel design plays a sim-
ilar role as the model structure design for ML/PEM and
determines the underlying model structure for kernel-based
regularisation methods. In the past few years, many efforts

have been spent on this issue and many kernels have
been invented to embed various types of prior knowledge,
e.g. Pillonetto and De Nicolao (2010), Pillonetto, Chiuso,
and De Nicolao (2011), Chen et al. (2014, 2016, 2012),
Dinuzzo (2015), Carli, Chen, and Ljung (2017), Marconato,
Schoukens, and Schoukens (2016), Zorzi and Chiuso (2018),
and Pillonetto, Chen, Chiuso, De Nicolao, and Ljung (2016).
Among those kernels, the so-called stable spline (SS) kernel Pil-
lonetto and De Nicolao (2010), and diagonal correlated (DC)
kernel Pillonetto et al. (2011) are widely recognised and used in
the system identification community.

1. In Pillonetto andDeNicolao (2010) the SS kernel is derived
by applying a wrapping technique to the second-order spline
kernel that is used in continuous function estimation. More
specifically, the second-order spline kernel B(s, s′) is defined on
[0,1] × [0,1] and its variance is increasing from 0 to 1 and the
corresponding ‘stable spline’ kernel is defined as B(e−βt , e−βt′)
with t, t′ ∈ [0,∞). This leads to the SS kernel, which takes the
following form: The regularisation matrix �(η) has the k, �
element

C
(

λk+�+max(k,�) − 1
3
λ3max(k,�)

)
, (22)

where η = [C, λ] with C> 0 and 0 < λ < 1 are the hyperpa-
rameters. Similar idea has also been used to derive the first-order
stable spline kernel, Pillonetto, Chiuso, and De Nicolao (2010)
which takes the following form,

Cλmax(k,�). (23)

2. In Chen et al. (2012) the DC kernel is derived by mimick-
ing the behaviour of the optimal kernel, which is g0(t)g0(t′)
with g0(t) being the true impulse response of the system to be
identified (cf (19)). More specifically, since g0(t) decays to zero
exponentially, it is natural to let the variance of the DC kernel
decays with a factor, say λ; since the impulse response is smooth,
it is also natural to let the neighbouring impulse response coef-
ficients highly correlated, say with the correlation coefficient ρ.
This leads to the DC kernel, which takes the following form,

Cλ(k+�)/2ρ|k−�|, (24)

where η = [C, λ, ρ], with C > 0, 0 < λ <, |ρ| ≤ 1 are the
hyperparameters. An interesting special case is to take ρ = √

λ.
This is called the TC Kernel in Chen et al. (2012), the tuned
correlation kernel. Note that in this case the expressions (23)
and (24) coincide. This shows the close relationship between the
two approaches.This kernel was the one used in Figure 5.

The SS and DC/TC kernels are derived based on heuristic
ideas. In practice, we need to develop systematic ways to design
kernels to embed various types of prior knowledge. Interest-
ingly, Chen (2018), finds that the SS and DC kernels share some
common properties and has developed, based on this finding,
two systematic ways of kernel design methods: one is from a
machine learning perspective and the other one is from a system
theory perspective.

1. Machine Learning perspective: If the impulse response
is treated as a function and the prior knowledge is about its
decay and varying rate, then the amplitude modulated locally
stationary (AMLS) kernel can be designed: a rank-1 kernel and
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a stationary kernel are used to account for the decay and varying
rate of the impulse response, respectively.

2. System Theory perspective: Suppose that the system’s
impulse is associated with an LTI system and the prior knowl-
edge is that the LTI system is stable and may be overdamped,
underdamped, has multiple distinct time constants or multiple
distinct resonant frequencies, etc. Then a simulation induced
(SI) kernel can be designed by a nominal model that embeds
the given prior knowledge. Also, a multiplicative uncertainty
configuration is used to take into account both the nominal
model and its uncertainty, and the model is simulated with an
impulsive input to get the SI kernel.

9. Hyperparameter tuning

The hyperparameter estimation plays a similar role as themodel
order selection in ML/PEM and its essence is to determine a
suitable model complexity based on the data. As mentioned
in the survey of kernel regularisation methods, Pillonetto,
Dinuzzo, Chen, De Nicolao, and Ljung (2014), many meth-
ods can be used for hyperparameter estimation, such as the
cross-validation (CV), empirical Bayes (EB), Cp statistics and
Stein’s unbiased risk estimator (SURE), etc. Hyperparameter
estimation is discussed in, e.g. Chen et al. (2014), Aravkin,
Burke, Chiuso, and Pillonetto (2012a, 2012b, 2014), Pillonetto
andChiuso (2015),Mu, Chen, and Ljung (2017), andMu, Chen,
and Ljung (2018).

We now consider the problem to estimate the hyperparame-
ter η ∈ Dη in any kernel structure�(η) for any linear regression
problem (13). As pointed out in Pillonetto and Chiuso (2015)
the problem of hyperparameter estimation has certain links
with the order selection (tuning complexity) problem. What
would be the goal of the estimate? In traditional estimation one
seeks estimates, that at least when data sample record tends to
infinity converge to the ‘true’ parameters. What is the ‘true’
hyperparameter for the current problem?

If we know the true system θ0, we can for any � in (13)
evaluate the MSE

MSEN(η) = E‖θ̂RN(�(η)) − θ0‖2. (25)

Wewould like to find an η so that thisMSE isminimised asymp-
totically as N → ∞. A complication is thatMSEN(η) will tend
to zero for all η. We therefore look at the rate by which the error
tends to the Cramer-Rao limit:

W(P,�, θ0) = lim
N→∞N2(MSEN(η) − σ 2Tr(�−1))

= σ 4θT0 �−1�−2�−1θ0 − 2σ 4Tr
(
�−1�−1�−1)

(26)

� = lim
N→∞

1
N

�T
N�N . (27)

Now the ‘optimal’ hyperparameter will be

η∗(�, θ0) = argminη∈Dη
W(η,�, θ0). (28)

It depends both on the true system θ0 and the data �.
Remark: Regularisation is essentially a transient phe-

nomenon. As N → ∞ the effect disappears for any η. Still it

is meaningful to use the asymptotically defined η∗, since it is a
well defined value, and even for largeN it gives the best possible
MSE.

We would like to optimally estimate η. For the linear regres-
sion case with a Gaussian prior for θ we have

Y = �θ + E, θ ∈ N(0,�(η)). (29)

If E is Gaussian with covariance matrix σ 2I, Y will also be
Gaussian with zero mean and covariance matrix

Z(η) = ��(η)�T + σ 2I. (30)

This means that the probability distribution of Y is known up
to η which implies that parameter can be estimated by the
maximum likelihood method as

η̂EBN = argminη∈DηY
TZ(η)−1Y + log detZ(η). (31)

This estimate of the prior distribution is known as Empirical
Bayes. It is a very natural and easy-to-use estimate and is prob-
ably the most commonly used one. It normally performs very
well, but it is shown in Mu et al. (2018) that it in general does
not obey η̂EBN → η∗ as N → ∞.

To achieve this goal it is necessary to form another criterion.
In Pillonetto and Chiuso (2015) an SURE (Stein’s Unbiased Risk
Estimator) criterion aiming for minimising the MSE (25) was
studied:

FN(η) = ‖θ̂LSN − θ̂RN(�(η))‖2 + σ 2
(
2H−1 − (�T

N�N)−1
)

H = �T
N�N + σ 2�−1(η) (32)

with estimate

η̂SN = argminη∈DηFN(η). (33)

It is shown in Mu et al. (2018) that indeed

lim
N→∞ η̂SN = η∗. (34)

The estimate is tested in simulations in Mu et al. (2018) and
Pillonetto and Chiuso (2015). For well conditioned regressors
it behaves well, but if �T

N�N is ill-conditioned it suffers from
numerical implementation problems.

10. General identification problems

So far we have only dealt with linear regressions (4). They
do cover many important estimation problems, but traditional
system identification deals with many more models. Linear
black-box models,

y(t) = G(q)u(t) + H(q)e(t) (35)

form a very common class of models, where G and H can be
parameterised in several different ways, ARMAX, Ouput-Error,
Box-Jenkins or State-space models and estimated by tailored
sophisticated identification algorithms.

It is an important and well known fact, Ljung andWahlberg
(1992), that any linear system (35) can be arbitrarily well
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approximated by an ARX-model (6) with sufficiently large
orders,

y(t) = B(q)
A(q)

u(t) + 1
A(q)

e(t). (36)

This is a linear regression, (7). Thus the regularisation theory
can readily be applied to estimate (36) and hence any linear
black-box model.

The predictor can be written (cf (6))

ŷ(t) = −a1y(t − 1) − · · · − anay(t − na) (37)

+ b1u(t − 1) + · · · + bnbu(t − nb) (38)

and can be seen as two impulse responses - one from y with the
a-parameters and one from u with the b-parameters. Thus the
thinking from Section 8 to form the regularisation matrix from
impulse response properties can be applied also here.

How does it work? The survey Pillonetto et al. (2014) con-
tains extensive studies with simulated and real data comparing
regularised ARX-models with kernels like (24) (applying differ-
ent kernels to the input and output impulse responses in (7))
with the state-of-the art techniques for ARMAX and state-space
models. The result is that the regularised estimates generally
outperform the standard techniques. Theweak spot with the con-
ventional techniques is that it is difficult to find the best model
orders. Even an oracle that picks the best possible orders (know-
ing the true system) in the conventional approach will not do as
well as the regularisation. The reason clearly is that the tuning of
continuous regularisation parameters – that allows ‘non-integer
orders’ – is a more powerful tool and concept than picking
integer order by some selection rule.

11. Conclusions

It is clear that regularisation techniques are a most useful addi-
tion to the toolbox of identification methods. The ‘automatic’
tuning of continuous hyperparameters that determine the flex-
ibility of the used model structure is a powerful and versatile
tool compared to the classical rules of selecting model orders.
The paradigms in using identification techniques for black
box linear systems should definitely allow considering regu-
larisation techniques. In fact, Mathwork’s System Identification
Toolbox, Ljung, Singh, and Chen (2015) has recently included
several of the regularisation techniques described in this con-
tribution. The implementation details can be found in Chen
and Ljung (2013).
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