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Abstract: A novel, fully decentralized strategy to coordinate charge operation of electric vehicles
is proposed in this paper. Based on stochastic switching control of on-board chargers, this strategy
ensures high-efficiency charging, reduces load variations to the grid during charging periods,
achieves charge completion with high probability, and accomplishes approximate “valley-filling”.
Further improvements on the core strategy, including individualized power management, adaptive
strategies, and battery support systems, are introduced to further reduce power fluctuation variances
and to guarantee charge completion. Stochastic analysis is performed to establish the main properties
of the strategies and to quantitatively show the performance improvements. Compared with the
existing decentralized charging strategies, the strategies proposed in this paper can be implemented
without any information exchange between grid operators and electric vehicles (EVs), resulting in
a communications cost reduction. Additionally, it is shown that by using stochastic charging rules,
a grid-supporting battery system with a very small energy capacity can achieve substantial reduction
of EV load fluctuations with high confidence. An extensive set of simulations and case studies with
real-world data are used to demonstrate the benefits of the proposed strategies.

Keywords: battery storage system; decentralized charging strategy; distribution grid; electric vehicle;
load variation

1. Introduction

Electric vehicles (EVs) have emerged as one of most interesting and promising solutions to reduce
the levels of greenhouse gas emissions. With rapid development of high-capacity Li-ion batteries,
high-efficiency motor drives, and power electronics, and integrated EV control and management,
EVs have entered the large-scale commercialization stage [1]. To support large fleets of EVs,
high-capacity and high-efficiency charging infrastructures are mandatory to sustain the growing
charging demands and to improve pure electric driving mileages and operational economy of EVs [2].

Large-scale EV charging stations introduce large and intermittent load demands with new
temporal and spatial characteristics [3]. EV loads will have limited impact on main grids,
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but significantly affect the distribution grids. Studies in [4] anticipate that EV charging loads in
Beijing will rise only to 2.2% of the total power load of the city by 2020. Similarly, statistics from [5]
show that increased EV loads only account for twice the current air-conditioning loads. However,
for distribution grids, EV charging loads constitute a substantial portion of power demand, and occur
during peak load periods. Without proper management, they would overload transformers and
feeders, reducing the power quality, such as voltage fluctuations, phase imbalance, and harmonics.
In addition, EV load fluctuations can lead to higher power losses [6].

According to [7], EVs parking at home account for more than 75% of the daily parking time,
and the average parking duration at night is more than 10 h. It also states that delayed and average
charging are better than immediate charging at home, and non-home charging increases peak grid loads.
Results from [8] confirm that off-peak charging is more beneficial than peak charging. The delayed
and off-peak charging has the advantage of shifting EV loads to off-peak periods with a low electricity
price. However, without meticulous load control, the shifted EV loads would result in new load peaks.
A simulation model is proposed in [9] to analyze economic and environmental performance of EVs
operating under different conditions, including electricity generation mix, smart charging control
strategies, and real-time pricing mechanisms. Its results show that 100 kWh excess electricity can be
reduced annually per vehicle when the smart charging method is employed to replace the off-peak
charging method. However, the method is based on one-day-ahead prediction and hourly electricity
pricing mechanisms. The “valley-filling” charging studied in [10] places EV loads near the bottom of
conventional loads, achieving smoother loads to the larger grids and higher penetration of EVs.

At present, EV charging strategies can be mainly classified into two categories.

1. Centralized control: A common feature of these strategies is a centralized control system that
bi-directionally communicates with all EVs and manages charging time and power to optimize
certain objective functions, such as minimizing carbon dioxide emissions [11], minimum power
loss, minimum cost, or “valley-filling”, by using EV data (the connection time to the grid,
charge demand, rated voltage, and charger power) [12–15]. Such control strategies require
extensive real-time bi-directional communications, with increased costs on communications
equipment and resources and, consequently, they are not desirable to charging service providers.
Commonly used algorithms in centralized control, including linear programming, quadratic
programming, dynamic programming, stochastic programing, robust optimization, model
predictive control, etc., are summarized and presented in [16,17]. A new stochastic model
with several uncertainty sources is proposed in [18] to minimize the expected operational cost of
the energy aggregator based on stochastic programming, and this method needs a central control
center to communicate with the local controllers of DERs, and is required to allow the broadcast
of the electricity market prices for the next 24 h.

2. Distributed control: Typically, in these distributed methods, a central control system broadcasts
a common electricity price or a reference power signal to all EVs. Then each EV decides
individually, and locally, its charging power and time, based on its own parameters and associated
optimization criteria [10,19]. To some extent, these strategies can achieve asymptotically the
optimization targets with reduced data computations. However, the central control system
still communicates with EVs either uni-directionally or bi-directionally. A pricing mechanism
based on time and power scales is proposed in [20], where the electricity price is used as
a common reference signal with only uni-directional data transmission. The impact of EV
charging loads on Swiss distribution substations under different penetration levels and pricing
regimes was studied in [21], and states that the introduction of dynamic electricity prices can
further increase the risk of substation overloads compared to a flat electricity tariff. However,
to achieve good control performance, it must construct real-time curves of electricity pricing that
vary with load power during different time intervals, leading to increased control implementation
complexity, costs, and potentially decreased charging efficiency [10]. Katarina and Mattia [22]
propose a voltage-dependent EV reactive power control for grid support to raise the minimum
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phase-to-neutral voltage magnitudes and to improve voltage dispersion. However, it needs
local voltage measurements. Another local control technique is also proposed in [23] whereby
individual electric vehicle charging units attempt to maximize their own charging rate along
with the information about the instantaneous voltage of their own point and loading of the
service cable.

From these existing centralized control strategies or distributed control strategies, we can see that
they usually need a central unit to control EV charging or broadcast a common reference signal such
as electricity price, loading of the service cable, and network constraints, or at least it needs voltage or
other local variable measurements for local control strategies.

Departing from these existing strategies, a novel, fully decentralized strategy, termed autonomous
stochastic charging control strategy (ASCCS), is introduced in this paper to coordinate charge operation
of electric vehicles. Unlike the common continuous charging current control, this strategy introduces
stochastic switching control of on-board chargers (a device used to put energy into the rechargeable
battery storage system in the electrical vehicle) to ensure high-efficiency charging. While typical
load control strategies focus on individual targets, such as valley-filling, this strategy is an integrated
approach to reduce load variations to the grid during charging periods, achieving charge completion
with high probability, and accomplishing approximate “valley-filling”. In addition, the proposed
charging strategy can also keep the charging load balanced in three phases if the chargers are initially
equally distributed among the three phases.

The main original contributions of this paper include: (a) by stochastic switching control, on-board
chargers always work in high-efficiency operational regions; (b) it is fully decentralized without
communication among the central control system and EVs; and (c) further improvements on the
core strategy, including individualized power management, adaptive strategies, and battery support
systems, are introduced to reduce power variances and to guarantee charge completion. These desirable
properties are established by rigorous analysis and verified by simulations and case studies.

The rest of the paper is arranged as follows: In Section 2, charging station models are described,
and charging efficiency is analyzed under different charging power levels. The core control strategy
(ASCCS) is detailed in Section 3, where the main control objectives are rigorously elucidated, including
EV load power fluctuations and degree of charging completion. Improvements on ASCCS for reducing
power variations and improving charge completion are discussed in Section 4. An innovative method
of using battery storage systems to reduce power variations is depicted in Section 5. Simulation results
for valley-filling control problems are discussed in Section 6, followed by conclusions in Section 7.

A summary of the notation used throughout the paper is provided in Table 1.

Table 1. List of key symbols.

Symbol Explanation

M Number of EVs
Ci Average daily charging demand of the ith EV
pmax Maximum output power of on-board charger
pc EV charging power
T EV charging time period
tstart EV charging start time
tend EV charging end time
λi(k) The charging power for the ith vehicle in the kth time block
∆T Length of one time block
N Number of time blocks
ρi(N) The total charging energy of ith EV in the entire time period
fi(k) The ith EV charging probability constant in the kth time block
Xi Needed number of time blocks for the ith EV
ci,k−1 Number of time blocks charged for the ith EV after k − 1 time blocks
pEV(k) The EV charging power in the kth time block
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Table 1. Cont.

Symbol Explanation

pB(k) The battery output in the kth time block
PLoad(k) The battery-supported load power in the kth time block
S(k) SOC (State of Charge) of the battery storage system in the kth time block
Q The energy capacity of the battery storage system in the kth time block
pbase(k) Regular load of regional distribution gird
L Number of the phases that the whole charging period is divided into considering the regular load
T’ The new charging duration in each phase
B Desired value of sum of regular load and EV charging power in the regional distribution gird
Ci(l) The charging demand of the ith EV in lth phase

2. Charging Station Models

2.1. Regional Distribution Grid Models

EV charging stations can be divided into two typical classes: home-based private garages and
dedicated parking lots, shown in Figure 1. EV charging loads in the first class are combined with
residential regular loads to affect capacity, voltage profile, and power loss of the existing distribution
grids. In highly populated cities, such as major cities in China, the second class is more feasible, due to
the lack of private garages and space. In this scenario, a dedicated feeder and transformer must be
constructed to support congregated EV charging loads [24]. New feeders are expensive and, hence,
it is highly desirable to manage EV charging loads properly to maximize the efficiency and usage of
such charging stations.
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Figure 1. Comparison of different construction modes of charging infrastructure in a regional
distribution grid.

This paper will focus on EV charging control strategies of the second class. It aims to resolve two
issues: (1) smoothen the EV load fluctuations in different charge intervals when the charging stations
form a standalone load on a dedicated bus. Addressing this issue will maximize the total number of
EVs that can be charged on the station, under a given power rating of the feeder; and (2) minimize the
probability of incomplete charging for individual EVs. In other words, all EVs should be fully charged
at the end of a predetermined charging period.

2.2. Models of EV Returning-Time and Charging Demand

In this study, we assume that there are M vehicles to be managed on a charging station or a cluster
of charging stations on a common feeder. Each vehicle returns home at a random time with a random
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daily mileage usage, which is translated to the depth of discharge (DOD) of its battery as the charging
demand for the evening. The following assumption is common in studies of EV load distribution.

Assumptions:

(1) The returning time and charging demand of each EV are mutually independent.
(2) The returning times of all the vehicles are independent and identically distributed (i.i.d.) with

density function fs.
(3) The charging demands of all the vehicles are i.i.d. with density function fD.

The actual statistical information on the returning time and charging demand depends on
locations, communities, vehicle types, and many other environmental factors. Studies by the National
Household Travel Survey (NHTS) in 2001 [25,26] have reported some typical statistical models, which
will be used in this paper for simulation. The returning time of EVs obeys a truncated (to a 24-hour
period) and piece-wise normal distribution:

fs(x) =


1

σs
√

2π
exp[− (x−µs)

2

2σs2 ], (µs − 12) < x ≤ 24

1
σs
√

2π
exp[− (x+24−µs)

2

2σs2 ], 0 < x ≤ (µs − 12)
(1)

where the mean of the returning time is µs = 17.6 h (5:36 PM) and the corresponding standard
deviation is σs = 3.4 h.

The daily mileage usage Y is log-normal distributed:

fD(y) =
1

yσD
√

2π
exp[− (ln y− µD)

2

2σD2 ]. (2)

If the average vehicle fuel economy is q (kWh/mile), then the charge demand C (kWh) is C = qY,
which is also log-normal distributed. For case studies in this paper, energy consumption data of the
Nissan Leaf PEV in [27] are used with q = 0.15 kWh/km (0.24 kWh/mile).

Standard EV charging powers vary from country to country. For example, in the US, the on-board
charger power levels are 1.4 kW, 2kW, 6 kW, etc. [28]. In Europe, the most common on-board charger
power levels are 3.6 kW and 7.2 kW [29]. In this paper the Chinese standard is used, which specifies
the maximum output power of on-board chargers pmax = 3.3 kW with rated voltage of 220 V and
current of 16 A [30].

To reduce costs, in this paper, the EVs are to be charged during an off-peak low-price period.
For example, a typical off-peak electricity price period in Beijing is from 11 PM to 7 AM [31]. Since the
charging starting time (11 PM) is far from the expectation of the EV returning time (5:36 PM), and most
EVs (greater than 90%) have returned home by 11 PM, according to the probability distribution of
returning time of EVs, the probability distribution of returning time of EVs has little impact on the
total charging demand of all the EVs.

2.3. Efficiency Analysis of On-Board Chargers

A feature of high-frequency power electronics is that its conversion efficiency deteriorates
significantly under lower power operation, due to increased switching loss [32]. Figure 2 is
a representative efficiency chart, indicating a sharp drop of charger efficiency when the operating power
falls below 30% of the rated power. Figure 2 also indicates that the power factor (real power/apparent
power) drops, adversely affecting grid voltage control and VAR compensation.
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Figure 2. Charger output power vs. efficiency and power factor.

Most of existing load control strategies manage EV loads by regulating charging power
continuously without considering charger efficiency and power factor impact. Let the
predetermined off-peak period be [tstart, tend] of duration T = tend − tstart (hours). The percentage
of vehicles that are charged below 30%. pmax can be obtained from Equation (2) as
P{Y ≤ 0.3pmaxT/q} =

∫ 0.3pmaxT/q
0 fD(y)dy, which increases with augmented T.

To quantitatively examine this issue, we and the China Automotive Engineering Research Institute
tested the efficiency and power factor of the charger on an E150, which is produced by Baic Motor
Corporation, and the rated power of the on-board charger is 3.3 kW. Under a different charge duration
T, the constant charging power of each EV can be obtained. Then we can see percentages of EVs with
the charging power lower than 0.3 pmax, and the average efficiency can also be calculated. Table 2 lists
the loss of power efficiency under the constant power strategy.

Table 2. Charging power efficiency with different T.

Charge Duration T (Hour) 6 7 8 9

% o f EVs with pc < 0.3 pmax 69.2% 81.3% 89.0% 93.5%
Average efficiency 91.3% 90.4% 89.5% 88.7%

From Table 2, we can see that the longer the charge duration T is, the lower the constant average
charging power. That means more EVs have charging power lower than 0.3 pmax, and we will lose
more power efficiency. To achieve high charger efficiency under a fixed T, we introduce a random
switching control mechanism. In this strategy, the charging period is divided into small segments.
The control strategy determines whether to turn on or turn off the charger with a constant power
within the high-efficiency range. The charging power control is realized by controlling the percentage
of “turn-on” segments. This will be detailed in the next section.

This control mechanism entails on-off-type charging profiles of constant current to the battery
system. Since capacity degradation of Li-ion batteries is mainly affected by operational temperature,
charge-discharge rate, DOD, among other factors [33,34], within normal charging current and
temperature ranges, the constant current profiles are desirable for reducing battery aging effects [35].
In addition, the intermittent charging process is beneficial to the completion of the Li-ion diffusion
reaction and can reduce the possibility of Li-ion deposits at the anode [36,37]. It is also noted that
since the decision interval for charging current control is typically 5–15 min (300–900 s), the current
switching frequency is extremely low (0.0011–0.0033 Hz). Consequently, our strategy will not have
a negative impact on normal battery operation or aging.
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3. Autonomous Stochastic Charging Control Strategy (ASCCS)

3.1. Basic Control Strategy

The charging period [tstart, tend] of duration T = tend − tstart is divided into N time blocks of
∆T = 60T/N (minutes) each, indexed by k = 1, . . . , N. Suppose that the constant charging power is
pc. Then, the ith vehicle’s charge demand Ci, which is i.i.d. and log-normal distributed with density
function ln N(µC, σ2

C) and the nth moment mn = E(Cn
i ) = enµC+n2σC

2/2, is converted into the required
number Xi of the time blocks Xi = 60Ci/pc∆T =Ci N/pcT. Let C = [C1, . . . , CM].

We aim to reduce power variations among time blocks and among different days. We introduce
a randomized autonomous control strategy in which each EV does not receive any information about
the fleet. Suppose that ui(k), i = 1, . . . , M, k = 1, . . . , N are i.i.d. in i and k, and uniformly distributed
ui(k) ∼ U[0, 1]. The charging power control for the ith vehicle in the kth block is

λi(k) = pc I{ui(k)≤
Ci

pcT }
(3)

where IA is the indicator function: IA = 1 if A is satisfied; IA = 0, otherwise. As a result,
the conditional expectation of λi(k) is E[λi(k)|Ci] = Ci/T . The total charge power of the kth block is

pEV(k) =
M
∑

i=1
λi(k). Apparently, pEV(k) is i.i.d. in k, and its conditional expectation and variance can

be calculated [38] as

µ(C) = E[pEV(k)|C] =
M

∑
i=1

E[λi(k)|Ci] =
M

∑
i=1

Ci/T (4)

V(C) = E
[
(pEV(k)− µ(C))2

∣∣∣C] = pc

T

M

∑
i=1

Ci(1−
Ci

pcT
). (5)

On the other hand, for each vehicle, the total charge over the entire period is ρi(N) = T
N

N
∑

k=1
λi(k).

The goal is to complete the required charge Ci at tend. The probability of either undercharge or
overcharge by a tolerance ε > 0 is P{|ρi(N)− Ci|> ε}, which is a measure of charge completion.

Charging control aims to achieve the following goals: (a) reduce power fluctuations over
the time blocks, namely to reduce V(C); and (b) reduce P{|ρi(N)− Ci|> ε}. Since both V(C)
and P{|ρi(N)− Ci|> ε} are random variables, their statistical properties will be analyzed in the
next subsections.

3.2. Power Variation Analysis

To be scalable for charging stations of different sizes, we consider the relative power variations by
the average fleet power demand:

η(C) =
V(C)
m1M

=
pc

m1MT

M

∑
i=1

Ci(1−
Ci

pcT
). (6)

Now, the expectation and variance of η(C) can be derived as
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η = E[η(C)] = pc
m1 MT

M
∑

i=1
E[Ci(1− Ci

pcT )]

= pc
m1 MT

M
∑

i=1
(E(Ci)−

E(C2
i )

pcT )

= pc
m1T (m1 − m2

pcT )

(7)

v = E((η(C)− η)2)

= ( pc
m1T )

2 1
M2

M
∑

i=1
(m2 − 2m3

pcT + m4
(pcT)2 − (m1 − m2

pcT )
2
)

= 1
M ( pc

m1T )
2
(m2 − 2m3

pcT + m4
(pcT)2 − (m1 − m2

pcT )
2
) = τ

M .

(8)

Theorem 1. Under Assumption 1, the following convergence properties hold:

(a) η(C)→ η, M→ ∞, with probability 1(w.p.1).
(b) η(C)→ η, M→ ∞, in the mean sense
(c)
√

M( η(C)−η√
τ

)→ N (0, 1), M→ ∞, in distribution.

Proof of Theorem 1.

(a) Let zi = Ci(1− Ci
pcT ). By Assumption 1, zi is i.i.d. Since η(C) = pc

m1TM

M
∑

i=1
zi, by the strong law of

large numbers, η(C)→ pc
m1T E[zi] = η, w.p.1 .

(b) This follows directly from lim
M→∞

v = 0.

(c) This is the Central Limit Theorem [38,39]. ~

Remark 1. Theorem 1 shows that for a large fleet, the variance of power fluctuations over different time blocks
approaches η, which is independent of the size N of the time blocks. In this sense, this is an irreducible power
variation. η can be reduced if pc is decreased or T is increased. This fact will be used to improve power variations
subsequently. Further reduction of power variations will be pursued by using battery storage devices.

Under the log-normal distribution of Equation (2) with µD = 3.2, σD = 0.88 (daily mileage
average eµD+σD

2/2 = 36.12 miles), and the rated power pmax = 3.3 kW, variations of pEV(k) and the
desired average charging power of all vehicles in the charging duration E(pEV) under different M are
shown in Figure 3, and its statistics are listed in Table 3.

The simulation results show that power fluctuations are smaller for larger EV fleets, which
is consistent with the result of Equation (8). However, in practice, the number of EVs within
a regional distribution grid is constrained by its power capacity, the parking space, among others,
and usually the power capacity is sufficient in the regional distribution grid with a small number of
EVs. Algorithm improvements for relatively small fleets will be presented in the Section 4.
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Table 3. Power fluctuations of charging power for different number of EVs.

Number M of EVs 100 300 500 1000

Maximum power fluctuation 29% 15% 12% 6%

3.3. Charge Completion Analysis

Consider now the total charge for the ith vehicle ρi(N) = T
N

N
∑

k=1
λi(k), whose conditional expectation

is E[ρi(N)|Ci] = T
N

N
∑

k=1
E[λi(k)] = Ci and conditional variance Var[ρi(N)|Ci] = Ci(Tpc − Ci)/N.

The following theorem establishes convergence properties.

Theorem 2. Under Assumption 1 and the control strategy given by Equation (3), given Ci,

(a) ρi(N)→ Ci, N → ∞, w.p.1.
(b) ρi(N)→ Ci, N → ∞, in MS
(c)
√

N ρi(N)−Ci√
Ci(Tpc−Ci)

→ N (0, 1), N → ∞, in distribution

Proof of Theorem 2. Since the variables λi(k) are i.i.d., it is well known that it is a strong ergodic
sequence [38–40]. Consequently, its sample means converge to its expectation, in both MS sense and
w.p.1. These establish Claims (a) and (b). Claim (c) is the central limit theorem (pp. 278–284, [39]) for
i.i.d. sequences. ~

Given a (small) energy tolerance ε of either earlier completion ρi(N) ≥ Ci + ε or later completion
ρi(N) ≤ Ci − ε, by Chebyshev’s inequality (p. 151, [39]),

P{|ρi(N)− Ci|≥ ε} ≤ Ci(pcT − Ci)

ε2N
= α. (9)
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If the probability confidence level α = 0.05 or α = 0.01, the corresponding energy tolerance is

ε =

√
Ci(pcT − Ci)

α

1√
N

. (10)

Put another way, for large values of N, the energy deviation from charge completion vanishes at
the rate 1/

√
N.

We now establish the optimality of the control strategy of Equation (3). In fact, we will show that
in a very concrete sense, Equation (3) is the only acceptable strategy.

For any given constant 0 < b < 1, let a control strategy be defined as λ̃i(k) = pc I{ui(k)≤b}. Then,

ρ̃i(N) = T
N

N
∑

k=1
λ̃i(k).

Theorem 3. If b 6= Ci
pcT , then there exists ε > 0 such that lim

N→∞
P{|ρ̃i(N)− Ci|≥ ε} = 1.

Proof of Theorem 3. Suppose b > Ci/pcT. Select ε = 1
2 (pcTb− Ci). Then Ci + ε = pcTb − ε.

From E[ρ̃i(N)] = T
N

N
∑

k=1
E[λ̃i(k)] = pcTb, by Chebyshev’s inequality,

lim
N→∞

P{ρ̃i(N) ≥ Ci + ε} = 1− lim
N→∞

P{ρ̃i(N) ≤ pcTb− ε} = 1.

Similarly, if b < Ci/pcT, we have lim
N→∞

P{ρ̃i(N) ≤ Ci − ε} = 1. ~

Remark 2. Theorem 3 claims that if another control strategy, different from Equation (3), is used, then for
large values of N, with near certainty, it will lead to either premature or late charge completion. In this sense,
the control in Equation (3) is optimal.

Under M = 100, charging power with different numbers of time blocks are depicted in Figure 4,
whose power fluctuations are roughly equal to Theorem 1. The statistics on charge completion with
different values of N are listed in Table 4.
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Table 4. Charge completion statistics with different values of N.

Number N of Time Blocks 16 32 96 480

Charge completion 86.6% 88.8% 94.5% 97.2%

Table 4 concludes that the smaller the time block is, the less likely the charge will be complete.
This conclusion is consistent with the previous theoretical analysis. Since the number of time blocks
is restricted by the minimum switching cycle of on-board chargers due to switching loss, we will
introduce improvement policies for relatively small values of N.

4. Implementation and Improvements of ASCCS

4.1. Individualized Power Management for Reducing Power Variations

From Equations (6) and (7), the daily and average variances of power fluctuations are proportional
to the charging power pc. To reduce power fluctuations among time blocks, it is favorable to have
large T and small pc. However, in our control strategy, we do not try to change T, and we just want to
obtain an optimal pc to ensure both charging efficiency and power fluctuations under the constraint
that the EVs are fully charged. From Figure 2, as long as the charge power is above 0.3 pmax, charging
efficiency remains high.

Based on this observation, we introduce the following power reduction algorithm: for the ith
EV, we first calculate the average charging power p = Ci/T. Then the actual charging power is
max{p, 0.3 pmax}. Figure 2 confirms that the efficiency is above 92.5% when the charging power is
above 0.3 pmax. Additionally, by using lower power, power fluctuations are reduced. Figure 5 compares
power fluctuations with and without applying the power reduction algorithm and verifies that this
algorithm is able to reduce substantially the power variations.

4.2. Adaptive Charging Control for Improving Charge Completion

The control strategy of Equation (3) is i.i.d. and non-adaptive. As shown in Table 4, for small values
of N, charging completion is unsatisfactory. For N = 32, 11.2% EVs will suffer from an incomplete
charge. To ensure charge completion, we introduce an adaptive charging control that adapts its
charging probability at each k, based on the remaining charging demand.

Let the required number of blocks for charging completion be Xi = Ci N
pcT . Then, the control

(Equation (3)) is modified to
λi(k) = pc I{ui(k)≤ fi(k)} (11)

where fi(k) = (Xi − ci,k−1)/(N − k), k = 1, 2, . . . . . ., N, and ci,k−1 =
k−1
∑

j=1
I{ui(j)≤ fi(j)} is the actual

number of the charging blocks up to k – 1. The strategy (Equation (11)) is based on the following ideas:

(a) If at any k = k0 − 1 < N, ci,k−1 = X0, namely, the EV is fully charged, then fi(k) = 0,
k = k0, . . . . . ., N. Hence, overcharging is avoided.

(b) If at any k = k0 − 1 < N, Xi − ci,k0−1 = N − k0, namely, the remaining charging demand is equal
to the remaining available blocks, then fi(k) = 1, k = k0, . . . . . ., N. Hence, incomplete charging
is avoided.

(c) Otherwise, this strategy ensures that Eλi(k) = pc
Xi−ci,k

N−k is the optimal average power for
completing the charge over the remaining blocks based on Theorem 3. Indeed, if we view
the remaining charge demand at k as C̃i(k) = pc(Xi − ci,k)∆T and the remaining time as

T̃(k) = (N − k)∆T, then fi(k) = C̃i(k)
pc T̃(k)i

, which is consistent with the optimal strategy in

Theorem 3.
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Due to these features, this adaptive strategy will guarantee that all EVs will be fully charged
at the end without overcharging. This is stated in the following theorem with its proof included in
the Appendix.

Theorem 4. For any 1 ≤ i ≤ M, ci,N = Xi, with possibility 1 (w.p.1).

Proof of Theorem 4. Show that ci,N = Xi for any 1 ≤ i ≤ M, if the ith EV charging probability in the
kth time block is determined by

fi(k) =
Xi − ci,k−1

N − (k− 1)
, k = 1, 2, . . . . . ., N .

We prove this theorem by contradiction, namely, it is impossible to have ci,N > Xi or ci,N < Xi.
The charging probability is determined by the following recursive formulas:{

p(ci,k = ci,k−1) = 1− (Xi − ci,k−1)/(N − (k− 1))
p(ci,k = ci,k−1 + 1) = (Xi − ci,k−1)/(N − (k− 1))

.

(1) Assume that ci,N > Xi. Noticing that ci,k is monotonically increasing over k and ci,0 = 0, it follows
that there must exist ci,l = Xi for some 1 ≤ l ≤ N − 1 by the assumption ci,N > Xi. However,
we have

p(ci,l+1 = ci,l + 1) = (Xi − ci,l)/(N − (N − l)) = 0

which derives that ci,j = Xi for any l ≤ j ≤ N. This contradicts the assumption ci,N > Xi.

(2) Assume ci,N < Xi. Thus, we have ci,N−1 ≤ Xi − 1. In the case that ci,N−1 = Xi − 1, we have

p(ci,N = ci,N−1 + 1) = (Xi − ci,N−1)/(N − (N − 1)) = 1.

Namely ci,N = Xi, which contradicts the assumption ci,N < Xi. It can be shown that

0 ≤ p(ci,k = ci,k−1 + 1) = (Xi − ci,k−1)/(N − (k− 1)) ≤ 1

by the charging probability formulas given before. In the case that ci,N−1 < Xi − 1, we have

p(ci,N = ci,N−1 + 1) = (Xi − ci,N−1)/(N − (N − 1)) = Xi − ci,N−1 > 1

which contradicts 0 ≤ p(ci,N = ci,N−1 + 1) ≤ 1. Therefore, we prove that ci,N = Xi. ~

4.3. Simulation on Improved ASCCS

Considering a typical residential community in Beijing with 400 families and 100 EVs
(25% penetration), namely M = 100, and the rated power pmax = 3.3 kW. Under the same log-normal
daily mileage distribution, and N = 32, charging power curves using the original and adaptive ASCCS
are shown in Figure 5. The charging power and charging energy curves of one EV, which has the
charging demand of 4.9 kWh are demonstrated in Figure 6.
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Figure 6. Charging power and charging energy curves of one EV. 
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Figure 6. Charging power and charging energy curves of one EV.

From the simulation results, the power fluctuations of the EV charging power are reduced from
29% to 6%, and all of the EVs are fully charged within the predetermined charging period using the
adaptive approach.

It is noted that even for a large M, the variance η = pc
m1T (m1 − m2

pcT ) in Equation (7) has an
irreducible value. To further reduce power fluctuations, a battery system [41] may be leveraged to
absorb instantaneous power variations between blocks. In Section 5, we introduce battery systems to
support grid-level load smoothing.

5. Grid-Support Battery Storage for Reducing Power Variations

5.1. Analysis

From Equation (4), µ(C) = E[pEV(k)|C] =
M
∑

i=1
Ci/T . The battery system is controlled as follows:

if pEV(k) is below µ(C), the battery system is discharged to inject power to the grid; and if pEV(k) is
above µ(C), the battery system is charged to receive power from the grid. Intuitively, the larger the
energy capacity (kWh) is, the smoother the EV load pEV(k) becomes.

To understand this intuition more rigorously, we assume that the battery system has the maximum
power rating pbmax for both charge and discharge operations, and the battery energy capacity is
Q (kWh). Consequently, the battery power output is:
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pB(k) = min{pbmax, |pEV(k)− µ(C)|} × sign(pEV(k)− µ(C)) (12)

where pB(k) > 0 is charged and pB(k) < 0 is discharged. Consequently, the battery-supported load
power becomes:

pLoad(k) = pEV − pB(k) (13)

It is easy to verify that E[pB(k)|C] = 0 , hence the compensation is unbiased and
E[pLoad(k)|C] = µ(C) . However, the variance of pLoad(k) is much smaller than pEV(k). This is
apparent from:

pLoad(k) =


0, if |pEV(k)− µ(C)|≤ pbmax

pEV(k)− pbmax, if pEV(k)− µ(C) > pbmax
pEV(k) + pbmax, if pEV(k)− µ(C) < −pbmax

(14)

The battery system’s SOC S(k) is also a random process:

S(k) = S(0) +
∆T
Q

k

∑
j=1

pB(k) (15)

Since pB(k) is an i.i.d. process of zero mean, S(k) is a stationary process with an independent
increment and, in particular, a martingale. The battery system has its SOC bounds Smin ≤ S(k) ≤ Smax.
When S(k) = Smax, its charge operation is disabled, and when S(k) = Smin, its discharge operation is
disabled. As a result, S(k) is a bounded (or truncated) stochastic process, see [38,40] for its convergence
properties and error analysis. We now use a case study to demonstrate the effectiveness of battery
assistance in alleviating power fluctuations and dependence of such effectiveness upon pbmax and its
energy capacity.

5.2. A Case Study

Let us consider the same scenario in Section 4, but add a grid-support battery storage system.
Assume that 30% ≤ S(k) ≤ 100%. The simulation results are summarized in Table 5.

Table 5. Power fluctuations with different energy capacities.

Case Number 1 2 3 4

Energy capacity (kWh) No battery 6.5 10.4 14.3
Maximum power (kW) No battery 3.25 5.2 7.15

Maximum power fluctuations 6% 5% 3% 1%

In Table 5, we have set three scenarios in which the maximum power fluctuations are reduced
to 5%, 3%, and 1%, accordingly, to compare with the case without a battery, then do the simulation
and try to obtain the energy capacity to meet the demand. From the simulation results, we can see
that with support from the battery storage system with relatively small energy capacity, the power
fluctuations are noticeably curtailed. For example, with a battery system with a maximum power of
7 kW and an energy capacity of 14 kWh, the charge station of 100 EVs with a total load of 785 kWh has
its maximum power fluctuations below 1%. However, this battery storage system is optional since
the power fluctuation is as low as 6% without a battery storage system, and it can be applied in some
special scenarios. The simulation results of Case 4 are presented in Figure 7, where pEV is the EV
charging load curve without the battery energy storage system, pload is the EV charging load curve
after using the battery energy storage system, and pB is the power output curve of the battery energy
storage system.
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It can be seen that the EV charging power curve is smoothened after adding a battery
storage system of very small capacity. It will cost little since the battery capacity is very small.
One interpretation is that by using a randomized control strategy, the probability of consecutive
high (or low) power time blocks are very small. This implies that the battery experiences frequent
charge/discharge alternations and its SOC remains in the middle range with very high probability.
Consequently, a seemingly small battery system can achieve substantial reduction on power
fluctuations. This feature is highly appealing for applications due to its economic benefits.

6. Application of the ASCCS Method in Valley-Filling Problems with a Conventional Load

If a regional distribution grid is loaded with both EV charging demands and regular loads, it is
possible that the EV loads can be managed to fill load valleys. Consider the problem of managing EV
loads such that: (a) EV loads are placed during an interval of low regular loads; and (b) during this
interval, the combined regular and EV loads are smoothened over designated time blocks. The regular
load pbase(k) is time-varying. Assume that pbase(k) has been obtained by historical data analysis and
known in EV load management. This assumption is valid for the experimental site of this study where
daily variations of pbase(k) are very small.

To approach this problem, we employ a two-time-scale methodology. The main idea of our control
strategy can be summarized as follows:

(a) Based on the information on the regular loads pbase(k) and daily EV load demand C,
the grid scheduler assigns a time interval [T1, T2] ⊆ [tstart, tstart + T] to be the interval of the
valley-filling operation.

(b) [T1, T2] is divided into N time blocks, which are then grouped into L phases of K = N / L blocks
each (for simplicity, let K be an integer). The new charging duration in each phase is

T′ = (T2 − T1)/L. (16)

(c) For the ith EV, its daily charge demand Ci is distributed to each phase as Ci(l) such that
L
∑

l=1
Ci(l) = Ci.

(d) Within each phase, the adaptive ASCCS algorithm, described in Section 4.2, is applied, which
reduces load fluctuations among the time blocks in each phase and guarantees that the charge
demand Ci(l) will be completed at the end of each phase.

The control goal is to keep the sum of the EV loads and conventional loads as flat as possible
during the charging period. We now detail these steps.

First, we should determine the “valley-filling” target, namely, the expected sum of the EV charging
load and conventional load. Thus, we can calculate the expected EV load in different phases with
respect to the conventional load data and the “valley-filling” target. Suppose that a constant b satisfies
the following conditions:
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b = pbase(T1) = pbase(T2)

(T2 − T1)b =
N
∑

k=1
pbase(k) +

M
∑

i=1
Ci

. (17)

It follows that the expected charging load in the lth phase is

max
{

0, bT′ − pbase(l)
}

(18)

where pbase(l) is the total conventional loads in the lth phase.
The charge demand of the ith EV in the lth phase is

Ci(l) =
bT′ − pbase(l)

L
∑

l=1
(bT′ − pbase(l))

×Ci (19)

Finally, the adaptive ASCCS (Equation (11)) is employed with T, replaced by T′ from Equation (16)
and Ci by Ci(l) from Equation (19).

At the starting time of the valley-filling operation, the charging service provider transmits the
information on the expected regular loads to each EV. The “valley-filling” control utilizes such
information to implement the adaptive ASCCS. There is neither bi-directional data transmission
between the EVs and the central control system nor the real-time global control signal during the
charging period.

Consider the same simulation conditions as in Section 4, but add conventional loads from the
residential users. Divide the “valley-filling” period into four phases, L1, L2, L3, and L4. In each
phase, the total charge load variations from the adaptive ASCCS and the total load trajectories are
demonstrated in Figure 8, where pEV is the EV charging load by using the proposed improved ASCCS,
pbase is the conventional load, and psum is the sum of the EV charging and conventional loads. It is
evident that in each phase the EV charging loads are close to their average. Hence, the goal of
“valley-filling” for the whole charging period is approximately fulfilled. It also reveals that more
phases and more blocks will result in to more effective “valley-filling”.
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7. Conclusions

The ASCCS proposed in this paper is essentially a strategy that uses uniform random numbers
created by the EVs themselves to control the charging probability for achieving the average charging
load within the charging period. The charging strategy proposed in the paper can always make the
on-board charger work in the high efficiency operational range, does not need the central processing
unit to provide a common reference signal, and it really fulfills the unidirectional data transmission
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of the whole control system. Further improvements on the core strategy, including individualized
power management, adaptive strategies, and battery support systems, are introduced to reduce power
variances and to guarantee charge completion. These desirable properties are established by rigorous
analysis and verified by simulations and case studies. A battery energy storage system with small
capacity is employed to further reduce the charging load fluctuation, and effective “valley-filling” also
can achieve by using the proposed strategy.

While this paper concentrates on EV load management, the key principles are readily extendable
to charging infrastructures powered by intermittent renewable energy sources, e.g., solar and wind
power. For instance, by employing power-generating characteristics of photovoltaic (PV) systems
and/or wind generators, EV charging probabilities are adapted to procure maximum energy utilization
and to power demand perturbations to regional distribution grids.

There are some important open issues along the direction of this paper. In this work, off-line
forecasting of regular loads is used in the valley-filling operation. In consideration of load changes
due to holidays, events, and weather conditions, more precise control schemes can potentially be
developed by means of more advanced predictive control algorithms.
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