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This paper considers the recursive identification of errors-in-variables Wiener-Hammerstein system,
which is composed of a static nonlinearity sandwiched by two linear dynamic subsystems. Both the
system input and output are observed with additive noises being ARMA processes with unknown
coefficients. By the stochastic approximation algorithms incorporated with the deconvolution kernel
functions, the coefficients of the linear subsystems and the values of the nonlinear function are
recursively estimated. All the estimates are proved to converge to the true values with probability one.
A simulation example is given to verify the theoretical analysis.
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1. Introduction

The block-oriented systems [14] are widely applied to model
the practical nonlinear systems owing to their simple structure
and excellent modeling ability. The Wiener-Hammerstein system
composed of two dynamic linear subsystems with a static non-
linear function in between has a great flexibility for modeling
practical systems, for example, sensor systems, electromechanical
systems in robotics, mechatronics, biological and chemical sys-
tems, and others. The well-studied Hammerstein and Wiener
systems can be thought of the special cases of the Wiener-
Hammerstein system. Thus, the identification issue of Wiener—
Hammerstein systems has received a considerable attention from
both theoretical researchers and engineers.

In the early literature [5,3,16] on identification of the Wiener-
Hammerstein system, the impulse responses of the two linear sub-
systems are connected with the correlation functions between the
system input and output under the Gaussian input. Based on the
maximum likelihood method, a time domain identification algorithm
is proposed in [6], and a simple recursive identification technique for
multi-input single-output Wiener-Hammerstein system is presented
in [4] with the help of a weighted extended least squares method.
Some recent work can be found in [25,29,12,18], and among others.

To identify the nonlinear function in a Wiener-Hammerstein
system there are parametric [2-4,6,25] and nonparametric
approaches [18,15], according to the different descriptions of the
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nonlinear function. The parametric approach is applied when the
nonlinear function is expressed as a linear combination of basis
functions such as polynomials, cubic splines functions, piecewise
linear functions, neural networks with unknown coefficients, etc.
In this case identification turns out to be a parameter estimation
problem that can be solved by the standard optimization method
such as the gradient method, Newton-Raphson method, and
others. The nonparametric approach is used to estimate the values
of the nonlinear function at any given point with the help of the
kernel functions, requiring no structural information about the
nonlinearity. For this there have been some literature [23,22]
dealing with nonparametric regression by stochastic approxima-
tion involving the kernel functions. Likewise, we adopt the
nonparametric method in the paper. To be specific, the stochastic
approximation and the deconvolution kernel functions are
together used to achieve this. Here we consider the case where
the input and output of the system are not accurately available, but
they are observed with additive noises, i.e., we intend to identify
the errors-in-variables (EIV) Wiener-Hammerstein systems.
There exist some papers on identifiability [1] and identification
[24] of the linear EIV systems. Various estimation methods for
identifying linear EIV systems, for example, the instrumental
variables based methods, the bias-compensation approaches, the
Frisch scheme, the frequency domain methods, the prediction
error and the ML methods, are well summarized in the survey
paper [24], but the methods mentioned there are nonrecursive.
The recursive identification for the linear EIV systems is consid-
ered under different assumptions on the system input and on the
observation noise in [26,8,30,18]. There are also a few papers
[28,17,19] on the identification of nonlinear EIV systems.
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Fig. 1. EIV Wiener-Hammerstein system.

In the paper we consider the SISO EIV Wiener-Hammerstein
system (see Fig. 1) described as follows:

P@)Vi 41 =Q@uy, )
@ =Fv)+ny, )
C(Z)y2+1 :D(Z)§0k+§k+1, (3)

where z denotes the backward-shift operator zyJ , | =y%, while f(-)
is the unknown nonlinear function, and

P(2) =1+p1z+py2°+ - +Pn 2", @
Q@) =1+ 12+ G2 + -+, 2", s
C@)=1+c1z+C2% 4 +cn 2™, ©
D@)=1+d1z+drZ? + - 4dp, 2™ -

are polynomials with unknown coefficients but with known
orders n,, ng, n¢, ng. The noise-free input u 2 and output y, 0 are

observed with additive noises ¢\ and £{':

2
we=ul+e, ye=y2+ed. 8)

Identification of the EIV Wiener-Hammerstein system is more
difficult in comparison with that for the EIV Wiener system
discussed in [19]:

(1) The output of the EIV Wiener system is an @-mixing with
mixing coefficients decaying exponentially to zero but this is no
longer true for the EIV Wiener-Hammerstein system. In [19] it is
seen that the mixing property plays an important role in conver-
gence analysis.

(2) Because of the linear subsystem at the output end, more
complicated relationships relating the impulse responses and the
correlation functions should be taken into account (see Lemma 1).

The goal of this paper is to recursively estimate the unknown
parameters of the two linear subsystems {p;, cesDnys Qs -5 ny»
€15 ..., Cn, d1, ..., dy,} and the value of f{x) at any given x at the real
axis on the basis of the observed data {uy,y,}.

The rest of the paper is arranged as follows. The system
assumptions and the recursive algorithms are given in Section 2.
The strong consistency of the estimates for the linear and non-
linear parts is proved in Sections 3 and 4, respectively. A numerical
example is presented in Section 5, and a brief conclusion is given
in Section 6.

2. Assumptions and recursive identification algorithms
2.1. Assumptions

We first give the conditions for identifying the two linear
subsystems.

H1: The noise-free input {u} is a sequence of mutually
mdependent 1dent1cally distributed (i.i.d.) Gaussian random vari-
ables: uf e N(O, 92 ) with unknown 9 > 0, and is independent of
the internal noises {#;} and {&,} and the observation noises {e“)}
and ().

H2: P(z) and Q(z) are coprime and P(z) is stable: P(z)#0,

Viz|<1.

H3: ((z) and D(z) are coprime and both are stable: C(z) # 0 and
D(z)#0, V|z| < 1.
By the stability of P(z) and C(z), we have

A Qz )_ 3
LS b = ©
D@ &
H(z) & - ,:Zoh’z’ (10)

where |;|=0(e "), r; >0, i>1 and |hj|=0(e "), r, >0, i>1,
and lp =1 and hy =1 since all polynomials (4)-(7) are monic. The
numbers {l;,i >0} and {h;,i> 0} are called the impulse responses
of the two linear subsystems, respectively.

H4: Both the measurement noises {¢\'} and {¢”} belong to the
ARMA process:

F1@e! =626}, F22)e = Ga(2)s?, (11)
where

Fi@ =1+f112+f122" + - +f10, 2", (12)
Ci(@)=1+8112+8122° + - +81 5, 7", (13)
FZ(Z):1+f2,1z+f2,222+"'+f2,nfzznf2’ (14)
G2(2) =1+8212+8227° ++++8ap, 2. (15)

The polynomial F;(z) has no common factor with G;(2)Gy(z~1)z"1,
and Fi(z) and Fy(z) are both stable. The driven noises {c{"}
and {g,2)} and the internal noises {z,} and {&,} are mutually
independent, and each of them is a sequence of i.i.d. zero mean
random variables with probability density. Moreover, E(|77,,|*) < oo,
E(&®) < oo, E(lg"1A*3) < 00, and E(I¢?’[4) < oo for some A > 3.
H5: The nonlinear function f(-) is measurable and has both the
left limit f(x ~) and the right limit f(x*) at any point x. The growth

rate of f{x) as |x| - oo is not faster than a polynomial. Further, at
least one of the parameters p and « is nonzero, where

pa Wir 58/ (X% — 292 f (x)e X /279 dx, (16)
o ﬁ /72("3 —3029°x)f ()e /27 dx, (17)

2_
where ¢ =Y I

Remark 1. The growth rate restriction in H5 implies that there are
constants @ > 0 and £ > 1 such that

Fl<al+x1%) vxeR. (18)
Therefore, the integrals (16) and (17) are finite.

Let us explain conditions imposed here. Conditions H1 and H4
and also H6 and H7 to be introduced later concern the signals in the
system, while Conditions H2, H3, and H5 are on the structure of the
system. The purpose of applying the Gaussian input in H1 is to derive
the explicit relationships (25)-(28) connecting the impulse responses
of the two linear subsystems and the correlation functions between
the observed input and output. These relationships are the basis
of the proposed algorithms for estimating the impulse responses
by using the observed input and output. It is clear that H2 and H3 are
the standard condition on the linear subsystems. Condition H4
concerns the measurement errors, which are not negligible in
consideration of the present paper. Here we allow them to be
correlated. In Condition H5, the function f(-) is allowed to be
discontinuous: it is discontinuous at x if f(x~)#f(x"). Further,
the assumption that at least one of the constants p and k is non-
zero holds for many practical nonlinearities including polynomials,
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preloads, saturations, deadlines, quantized functions, and many
others as discussed in [18]. It is seen that the two constants
characterize some kind of correlation between the input signal vy
of the nonlinearity and its output f(vy). An intuitive explanation
for this assumption is that the persistently exciting property of
the signal {v,} remains in a certain sense after passing through
the nonlinearity f(-). At last, additional Conditions H6 and H7 are
employed to obtain the nonparametric estimation of f(-) by the
deconvolution kernel functions.
Assuming ug =0, Yk <0, we have

Vi = Zluk i 1» (19)
£
and hence vy e NV(0,6%) where o2 2 Yk- 112 — o2,
From (2) and (3) it follows that koo
Y1 =C 7' @D@f i) +C ™' @D@m+C ™ (@ 1

k k
= T W+ ,zohmk,,»+C”<z)5k+1. (20)
J= J=

2.2. Estimation of {p;, cesPnys Qs - Cne>d1, ..., dn,}

»Gn,} and {cy, ...,
We first estimate the impulse responses of the two linear
subsystems, and then recover their coefficients by the convolution
relationship between the impulse responses and the coefficients of
the linear subsystems.
According to Lemma 3.1 in [18], under H1-H5 we have the
following limits:

Ewkﬂ«uﬁ_f_lf—192)1,;;/),-2 hif_; vi=o, @1
E[Vk+1“271“2471],:; pli Vix=1, (22)
E[Vk+1((u2471)3_3'92”&1'71)]%—0’0 Kjéohjl?‘j vi>0, (23)
E[Vm((u}?,])z7192)u2,,-,1]’:o Kl Vi>1, (24)

which are the basis of identifying the two linear subsystems.
However, in the EIV case, the true input {ug} and its variance 92 are
unknown, so (21)-(24) cannot be directly applied. We have to
establish similar limits but without involving {uk} and 92

Lemma 1. Assume that H1-H5 hold. Then the following limits take
place:

i

B0kt =BV Ui i1l p X Iyl iz 0, (25)
I

Bl 1 —Eyie DU 1tk-i-a]— pli Viz1, (26)

i
E[(yk+l*EYk+l)(u£—i—173Eui—i71)uk—i—l]k_) K Zohjl?fj vix>0,
—oo =
(27)
(ks 1 —EYiey DU —Eu_)ugei 1]
_ZE[yk+luk—1]E[uk—1ulc—i—l]IH_O’QKli vix>1. (28)

Proof. By (21) and the mutual independence of {uf}, { “’}, and

{e?), we see that

E((.yk+l *EYk+1)u§_i_1)
=EW1 — By D@ P+ P2 e’ )

=E<(yk+1—Eyk+1)(u§3,,~,1>2)=E(vk+1((u2,,~,1)2—192>)
—>th[ vi>0. (29)

k— o0

Similarly, by (22) and the independence of signals involved, we
see that

E(Wks1 —EVis DU 1Uk—i—1)
0 0 0 (1 (1)
=E(Wks1 —EVip DWR_qu)_+up 8 e
a M
te 8 i 1)):E((yk+l—EYI<+1)UI<_1uk_i_1)

:E(y"“u"’]u"*")l:ophi i>1. (30)

By (23), it follows that

Elk1 —EVi s )W i1y —3Euf_;_1)]
=E[(k 1~ EVies DWR_ ;P +uf_; 46
7382uk—i—173uk—i—1E(£;<]f)i71) +2uk—i—1(€;<]f)i71)2)]
=E[¥Vey 1 — BV, D@ )* =38%u)_, )]

1
=EYe (@03 =390, Dl— K zohjl?,j i=0. (31)
k— oo ji=

By (24), we then have
E[(Vi 1 —EYVis DUk i1 (ui_y —Eug_ )]
= E[Vkr1—EVies DM@ 2 +ud D 2 -9
1 1
—u24715(5§<31)2+2”2 1f§<)1€§<): ]
= E[Ves 1 — EVies D)2 —8ud_;_,
+2“2 1€;<)18§<1)1 Dl

2.0 0 1)
= EYe 1R )= 9%u_; D142Ely U el 2],

(32)
which, by noticing that Efu jup ; 1]=E[e) &, IVi=1,
implies that
ElWkes 1 = EViey DU i1 Uy — Eti_y)]

_2E[yk+1ul<—1]E[uk—1uk—i—1]lH_o’oKli: i>1. (33)
The proof of the lemma is completed. o

In order to estimate the impulse responses {l;,i>1} and
{h;,i>1}, it is necessary to obtain the estimates for Ey,,
E(yy,1uk_1), and E(uiug_;),i>0 in (25)-(28). For this, we use the
stochastic approximation algorithms with expanding truncations
(SAAWETs) [7] to recursively estimate Eyy. 1, E(V, Ux_1), and
E(upuy_;),1> 0, respectively:

) i)

A =1 = /Ry Ve OV Do o -y, o< (34
k
k-1
5k - Z IW’ amna” —yj+1>\>Mﬁu>]’ G335
(7) (1) (1)
A =W = /R = Vit Ol Do e —y, D<M o]
k
(36)

(1) _
O 2 I[w" AN =yt 1)|>M5m] 37

(i,u) (i,u) (i,u) X .
Aeer = = /R = U 1l 1)]- I[M‘k’-“’7(1/@(»;“’7uk+1uk,(+1>\ <Myin]®
k

(38)
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S = i>0, (39)

Z I[M"”) A/HA :+1)\>Muu>] =

where {M;} is an arbitrarily chosen sequence of positive real
numbers increasingly diverging to infinity, A’, A%, and 18’”) are
the arbitrary initial values, respectively, and I5 denotes the
indicator function of a set A.

Noticing that the right-hand sides of (25) and (27) are equal to
p and k, respectively, when i=0, so we can derive the estimates for
{l,i>1} and {h;,j > 1} by (25) and (26) if the constant p # 0, or by
(27) and (28) if k ## 0. However, we only know that at least one of p
and k is nonzero by H5, so we design a switching mechanism
between the two ways. This is realized by comparing the absolute
values of the estimates for p and « at each step.

We first give the estimates for p and x based on (25) and (27),
respectively, as follows:

0L =109 — (1/k)O> = Vs 1 — AL, U2

1 167 = A/O = Wiy =4 2 _ ) < Myop 1 (40)
k
(0.p) _
O Z I 107 = /DO = @1 =27 D2 DI > M0,))° “41)
1
(0,6) (0.x) (0.K)
0k+1 _[6 (1/’()(0 _(yk+l /1k+1)(uk 1 _3/1 )uk 1)]
1 16 = A /KNG = W1 = A, P2 =340y _1)] < M on (42)
(05) _
Sk 2 Iue“’“ A/HOE =1 = A0 W =345 1)1 > M (ok.l (43)

If |0§{0f1) | > |9§<0f1) |, then the following algorithm motivated by (26)
is used to estimate pl;, i>1:

0, =101 — (1 /YO = Vi1 — A, Dt Wi 1)]

1 (44)

1647 = /06" = Wiy 1 =A% D1t i Dl < M 1
k

('/)) .
Oy Z 1“91,;. A~y i>1, (45)

H)UJ Ui 1)|>M>um]

here @ is obtained from the previous step of the recursion if
1007] > [60°|. Otherwise, i.e., if [0L7”| < |#], then 6 has not
been computed in accordance with (44) and (45). In this case ij"’)

in (44) is set to equal 9}?‘” )l,-,k. After having the estimates for p and
pli, the estimates for the impulse responses {I;,i > 1} at time k+1
are given by

g(i,l))
P

lis1 2 00 (46)
0 if 6% =

k+1—
Based on (25) the following algorithms are employed to estimate
/’ZJ— J ij
A0 =1 = A/ = Vs = A DU 1)]

k+1—
.I[Mth.m 7(1/k)(/1;<i»m Vi 74{1])“?47 Dl SMy(fJJ‘]’ 47)
k
(Lp) _ .
]/k Z IMum (1/])(1“/” Vo1 — i>1, (48)

12 2
AL I>M )
j

where ﬂ}f”’) is obtained from the previous step of the recursion if
|9§<0'” )| > \9}?””|. Otherwise, they are set to equal 9}?”’)2}: Ohj,kl,-z, ik
In this case the estimates for {h;,i > 1} are given by

/Ig)p)l i 00)
o S 2 if 0
hi,k A ekofl) = Jk+1H—jk+1 (49)
0 if 627 =0
Conversely, if |0;(0+"1)| < |9;:)+K;| then based on (28) the following

algorlthms are employed to estimate E[(y;,q—Ey, U2 ,—
Eug_pug_i4). i>1:

(i,K) (IK) (1,K)
O =10 — (/KO — Vg1 — /1k+1)(”k 1*/1 )Uk i—1)]
‘Ina‘k'-"—<1/k><9‘k‘-"—ayk“—l'kyl,)<u2 = A - DI= Myl (50)
5(”() Z 1 ix) (0.5 p (O.u) i>1
165 =1 /O™ = 1~ 4 Pras =47 D i 1)\>MO(,K>] =
(51)

Similar to the previous case, 9}}’0 is derived from the previous step
of the recursion if [#07”| < |0}>*|. Otherwise, i.e., if |87 > [0,
then Gg"() has not been computed in accordance with (50) and (51).
In this case, 8™ in (50) is set to equal @0l +247A%". As
results, the estimates for {l;,i > 1} at time k+1 are given by

(i.K) (T) 4w
9k+1_2’1k+1’1k+1 (0.)
A Q(O’K) if 9k+1
li,k+1 = k+1 (52)
0 if Hfffl) =

Based on (27) we introduce the following algorithms to estimate
KXi_ohill

(i,5) (i,6) (i,K) ) 2 (i, U)
/1k+1 /1 (‘l/k)(/1 *(yk+17/1k+1)(uk7i71 j’ )uk i— 1)]
'I[ML"”'—(1/k>(/1‘k"“—<ym A oa =34 D)l <M in]’ 53)
k
(i) _ .
43 Z Tt — 1 paso — -9 32wy 1= M0 iz1,
(54)

where /l(i”() is obtained from the previous step of the recursion if
1099 > 10°7)|. Otherwise, they are set to equal 6 K)Z] _ohil?
In this case the estimates for {h;,i > 1} are given by

i—jk*

l;jml i 3 (OK)
= S Rl kg if G
by § O 0T (55)
0 if 9% =

It is important to note that after establishing strong consistency
of %7 and 6> in Section 3, switching between the algorithms
(44)-(49) and (50)-(55) ceases in a finite number of steps, because
by H5 at least one of p and k is nonzero and hence either
10071 = 16029 or 1027 < 1627 takes place for all sufficiently
large k.

Remark 2. If the constant

ra 72710—319 /R xf(e /29" dx

is nonzero, then the impulse responses of the linear subsystem at
the output end can be more efficiently estimated based on the
limit

i
E[_yk+1uk,,»,1]—> T 2 hjl,’,]’, i>0.
k— oo j=0
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Similar to [20,21], once the estimates {l;;,i >0} for the impulse
response {l;,i > 0} are obtained, then the estimates for the parameters
{P1,--+sPn,» 41 -+ qn,} Of the linear subsystem at the input end can be
derived by using the convolution relationship between the impulse
responses {l;,i > 0} and the parameters {p;, ceesPys Qs s G, -

Define the matrix:

lnq lnq -1 lnq—np+1
LA lnq+1 lnq lnq—np+2
lnq+n,,—l lnq+n,,—2 lnq

Then the matrix L is nonsingular under H2 (see [20,21]), and hence the
matrix L, obtained from L with {l;,i > 0} replaced by their estimates
{li.i> 0} and with I;;, = 0 for i < 0 is also nonsingular for sufficiently
large k, since li”‘k_o; l; as. as to be shown by Theorem 1.

The estimates for {p;, ces D> 15 -+ G, } AT€ naturally defined as
follows:

P1sePoke -+ Prysed” 2 =L g 1 Ing 200 -+ Ing i (56)
iAny .

Qix 2L+ X Pirlicjr. 1=1.2,....nq. (57)
i

Similarly, the estimates for {cy, ..., ¢y, ds, ..., dy,} are obtained in
the same way as that used for estimating coefficients of the linear
subsystem at the input end.

For this define

hnd hnd—l hnd—nf+l
hy, h h
g+ 1 ng Ng—ne+2
H£ . . .
hnd+nc—1 hnd+n5—2 hnd

with h; =0 for i <O0.

The matrix H is nonsingular under H3 (see [20,21]), and hence
the corresponding estimate H, for H with {h;,i>0} replaced
by {h;y,i>0} is also nonsingular for sufficiently large k since
hi’kk_o: h; a.s. as to be shown by Theorem 1.

Similar to (56) and (57), the estimates for {c1, ..., Cp.. d1, ..., dn,}
are given as follows:

[Cl,k, Coksons Cnc,k]T & — Hl: ! [hnd +1.k> hnd +2,ks s hnd + nc,k]Ta (58)
N iAne .
dix 2 hjp+ '21 Gixhi_jk, 1=1,2,..,nq4. (59)
]:

2.3. Nonparametric estimation of f(-)

For estimating f{x) with x being an arbitrary point at the real axis,
the useful sequences {v;} and {f(v,)} are not directly observed.
Instead, we estimate their noisy values {iy,} (see (62)) and {(;}
(see (68)), and then apply SAAWET incorporated with the deconvo-
lution kernel functions [13,27,11] to remove the noise influence.

Let us start with estimating {y,}.

Define
Wi 2P (@Q@uk 1, (60)
e 2P~ (2Q@)e | = (P@)F1(2) ' (Q@)Gi(2)g|” ;. (61)

According to (1), (8), and (11), we have

wi=P '@Q@u)_, +IP@F1(2)] 'Q@2)Gi ()6’ , = Vi +er.  (62)

Define
-p 1 1 1
p2 gal| ® cal®
: -l ) ' ) : )
-ps 0 - 0 qs_1 0

and s £ max(np, ng+1), where p; £ 0 for i > n, and g; 2 0 for j > n,.
Then, Eq. (60) connecting yj and uy can be expressed in the state
space form:

X1 =P+ Que, Wi =G X 1. (63)

Replacing p;, i=1,...,s and g;, j=1,...,s in P and Q with p;; and
g« given by (56) and (57), respectively, we obtain the estimates Py
and Qg for P and Q at time k, and hence the estimate y, for y; is
given as follows:

o~ ~ o~ T/\
Xk41 :PI<+1XI<+Qk+1uka Yii1= G Xk41 (64)

with an arbitrary initial value Xj.
Similarly, from (3) and (8), we have

C@Wi 11 =DV +m)+C@el) | +E 1. (65)
By defining

GAD ' @C@WYk1, G 2D @&, and y, 2D '(@)C@)e?

k+1°

(66)
then f(vy) in (65) can be expressed as
fw)=D"'@C@Yi 1 -D ' @C@e , D @1~ (67)
or
Sk =FW) + )+ i+ (68)

The first equation in (66) can be expressed in the state space form:

—T
[ :Dtk—l—Cka, Ck:G thi1, (69)
where
—d; 1 1 1
: Cq _
D L]oes S 62
_d§ O e 0 C§7‘1 0

and § £ max(ng, nc+1).

Let C, and D, be the estimates obtained from C and D with
entries replaced by their estimates given by (58) and (59). Then
the estimate {, for {, is recursively given by the following
algorithm with an arbitrary initial value ty:

—~ —~ ~ T~
tir1 =Dis1ti+Cr1Viy1, k=G tiiq (70)

In order to eliminate the influence of e, involved in y;, we
apply the deconvolution kernel functions, but for this the addi-
tional assumptions are needed.

H6: The variance 92 of the noise-free input uf is known.

H7: The driven noise {¢{"} in (11) is a sequence of iid. zero
mean Gaussian random variables.

Let us introduce the Sinc kernel function [27,11]:

sin (X)

K(x)= e 71

Then we have its Fourier transformation
Dy (t) £ / eKx) dx = Iy <1y, (72)
R

where 1 denotes the imaginary unit 2= —1.
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Under H7, {e,} is still a sequence of zero mean Gaussian random
variables, and its characteristic function is

1
V2zone)

where cZ(e) £ Eek is the variance of e,. Denote by ¢2(e) the limit of
o2(e). It is clear that |o2(e) —oZ(e)| = O(e ") for some r, > 0.

We now introduce the deconvolution kernel wy(x), but for this
we first define

1 i Dr(d) 1 /Y
L __ ix__ TR 4 — itx pa2(e)t? /2b
Ki) Zﬂ/ne D, (t/by) de 27:/,1 e e L, 73)

where by = (ba?(e)/log k)!/? is the bandwidth with b> 3 being a
constant chosen in advance.
Thus the function wy(x) is defined by

—xz /20%(e) dx=e~ al(e)t?/2

quk (t) N ltX

Wy (x) & —K Yi—X :L/l el =x/bgo 7@ /2D dt
by bk 27by
1/by
- _ o2(e)t2 /2b2 _ l/
2zby, /71 cos [(yi X)t/byle’k k dt =
cos [(y; —X)1]e’i @ /2 dt. (74)

Notice that 62(6) in (73) and (74) is unknown. To obtain its
estimate ak(e) we first estimate the spectral density of s;:), and
then derive the estimate for the spectral density of e, by means of
the estimates for the linear subsystem at the input end. Finally, the
estimate 3%(8) for oZ(e) can be obtained by the inverse Fourier
transformation of the spectral density estimate for ey.

For simplicity, we assume that the orders 1y, and ng, in (12) and
(13) are known in the procedure of estimating the spectral density of
s,() When the orders n; and ng, are unknown, their strongly
consistent estimates can be derived by the method provided in [9].

The autocovariances aj(e}’) 2 E(e{Vel” ), i >0 of & is recur-
sively estimated by SAAWET:

Aot 1(67) = [agu(el) — (1/Kk) (@ (el) + 87 — 12 )]

I[laok<s“ = (/R @)+ 9~ D<M o)) 73)
ak' k
(0,55{”) B k—1
o = ; I[\UOJ(E}I))*(1/j)(ﬂo,j'(8](]))+192 “HDIZM )P (76)
b]
1 1 1
Qig1(e)) = [ael) — (/K@) = e 1Uge—i141)]
'I[laf,k<s‘k">—<1/k)<a,¢k<e‘k">—umuk,mn =M ) a7
P Tk
5(i’f§<1)) k—1 X
k = ;l I[\ﬂ;j(ELl))*(1/j)(ﬂi‘i(€j<]')*Ujﬂujqﬂ)\ >M “{_11))]’ i1 78)
= 5. k

J
It is noticed that the algorithms (77) and (78) comc1de w1th (38)
and (39) for i > 1, where /'L('“1 is rewritten as a,k+1(sk )) just for

consistency with notations used here.
Define the Hankel matrix

1 (1) 1)
angl ,k(“—‘k ) ang] -1, k(e ) ang1 =1y, +1,k(8k )
(1)

(1 (1)
A, +1.k(€k ) ang k(f Ang, —ny, w2kl )

el 2

(1)

(1)
Ang, 4y, —lk(é‘k ) O, +npy -2, k(€ ng, k(&)

(79)

where a;x(el) 2 a_;(e}") for i < 0. Since a,»’k(e“’)—> ai(el)), i=0

as to be shown in Lemma 4 and the limit of Fk(sk )) is nonsingular

under H4 [21], the matrix I” k(sf)) is nonsingular for sufficiently
large k. Therefore, at time k, the parameters {f;1,f 2, ""fl-”fl} of

F1(z) in (12) can be estimated by the Yule-Walker equation:
[f],l,k’fl,Z,k’ ",

-1 1 (1 1
=-TIy (“i ))[ang1 +1.k(E )), ng, +2,k(s§< )),

T
f],n[] ,k]

(1)
s Qng 4y k(&g

(80)
The spectral density S,a)(z) of sf) equals
k
GGz~ et
(1) 1 k
SSL"(Z)— 2 a(s, 2 = Fofhc ) 81)
or
Fi(2)F1(z" 1) z a2 = Gi@)Giz~ Mo, (82)

where 62(¢{") denotes the variance of ¢{".

By comparing the coefficients of the same order of z at both
sides of (82), we derive

= —ng

ng, noong
Gi@Giz el = X (Z E apyjoilef )fufu> (83)

i=0j=0

where only a finite number of autocovariances a,(sf’), — g,
—ny, <l<ng +ng, are involved.
As a consequence, the estimate for S, (2) is obtained as follows:
k

n n
5 0@ s g, (024 il o+ ikE ) 1ikf 1007 4
é‘(]) - " - Y
¢ 7 o1 E of 14279

and by (61) the spectral density Se,(z) of ey is estimated by

§e,((Z) (2 oq1 kZ )(2 = oq] kZ )A m(Z) (85)
(Z 0p1 kZl)(zJ = op] kZ ])

Finally, the variance s2(e) of ey is approximated by the inverse
Fourier transformation:

~ 1 ("<

Uﬁ(e):ﬂ [ ”Sek(e“") dw. (86)

Therefore, the estimate for wy(x) at time k is given by

~ 1 ]/;" —~ ~2 2

W02 / CoS (77— X)1e7O 2 d, 87)
0

where by, = (b5(e)/log k)'/2.
We now give the algorithms to estimate f{x):

Hicp 10 = [ (00 — (1 /)y (%) — W (%))]
0t oo —yeon < M) (88)
(1)
5 ®)= :Z (g 1 (0 = (/i) _ 1 (%) — W](X))|>MUH ] (89)
B 1) = [B®) — (1 /KB — W0 )]
1 (90)
180 — (A /R Brx) — Wk(X)Ck)\ <M)(/);(X'
—1
= "3 1 @1)

=1 B0 =A/MB - W,(X)C]))|>M5w) I

As a matter of fact, 4, (x) defined by (88) and (89) and f3,(x) defined
by (90) and (91) are applied to estimate p(x) and p(x)f(x) (the
definition of f(x) is given in (112)), respectively, where

px) = (1/5/27c9)e~¥/279 is the limit of the density function of
V. The estimate for f{x) is naturally defined as
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Prii® .

Peaa® o

Fre 1@ 2 Hr 1) if py (%) # o
0 if gy 1(x)=0.

3. Strong consistency of estimates for linear subsystems

The methods and the mathematical tools of proving the strong
consistency of the estimates proposed in Section 2 are essentially
the same as those given in [19]. We will not repeat similar
derivatives, but give the new ones.

Lemma 2. Assume that H1-H5 hold. Then, A, A\, and A", i>0
defined by (34) and (35), (36) and (37), and (38) and (39),
respectively, have the following convergence rate:

i o) veno
- 1

AP —Eyye 2))—0< 12— c) ve>0, 4

‘ﬂ;j’u)—E(ukuk—i)) =0<#) vc>0, i>0. (95)

The proof is similar to that for Lemma 6 in [19].

Theorem 1. Assume that HI1-H5 hold. Then, {ljy,i>1} and
{hjx.j>=1} generated by (40)-(55) converge to {l,;i>1} and
{h;.j = 1}, respectively, with the rate of convergence

lix—lil=0k™) as. vve(0,1/2), i=1, (96)
lhjx—hjl=0(k™™) as. Yve(0,1/2), j>1. (97)

As consequences, from (56)-(59) the following convergence rates also
take place:

Ipix—pil=0k™) as. Yve(0,1/2), i=1,....np, (98)
g —qil=0k™") as. Yve(0,1/2), j=1,...,nq, (99)
lck—cl=o0k™) as. Yve(0,1/2), I=1,...,nc (100)
|dnx—dml=0k™) as. Yve(0,1/2), m=1,...,ny (101)

Proof. We first prove that 8" and 8>, respectively, defined by
(40) and (41) and by (42) and (43) converge a.s. with the following
convergence rate:

1007 —pl=o(k™*) as. Yve(0,1/2), (102)
100 —k|=o0(k™") as. Yve(0,1/2). (103)
We rewrite (40) as
007 =007 — (1 /0" —p)—(1/k)el?)]
i00n — o0 - piy-a e < MR
where
6 =P = W1 = AL DUy = (P—E@ics1 — EVis DU 1)
+EOks1—EVier DU )= ks 1 = EVier DU 1)
+ A = By DU (104)

Since p is the single root of the linear function —(y—p), by
Theorem 3.1.1 in [7], for proving (102), it suffices to show

Dzo] ,ll Dsfffl) <oo as.vVve(0,1/2).

(105)

Noticing (29) and carrying out the treatment similar to that used in
Lemma 4.3 of [18], we have |p—E((Vi41—EVis1) u2_)I=0(e""k)
for some r; >0 since o2 —02 =3, l2 =0(e~"*) for some r; > 0.
This assures that (105) holds with &*”) replaced by the first term at

k+1
the right-hands of (104).
From (20) and (29) it follows that

x 1
k21 kl—_u(E((vkﬂ —Eyi DU )= Vi1 —Evi DU

= 1
-z k1—,y<E(yk+1((u§3_1>2 — 9N Yisa (@ 1 =9%)

00 192
+ E kl U(EYk+1)((uk V) -9+ E]F(EYkH*J’kH)
+ Z k] U(Eyk+1_.Vk+1)(3 1)2
+ Z BV =Y DU (106)

k]l/

By (4.16) and (4.20) of Lemma 4.5 in [ 18], we see that the first term
at the right-hand side of (106) converges a.s. Since {(ugf])2 —9%is
a sequence of zero mean ii.d. random variables and E(y,, ) < oo,
by the Khintchine-Kolmogorov convergence theorem (see Theo-
rem 1 of Section 5.1 in [10]), we find that the second term at the
right-hand side of (106) converges a.s. due to

—192)2 < o0.

oo (E 2
k§:1 szl(kltlu)) E((u271)2

For the fourth term at the right-hand side of (106), by (8) and
(20) we have

o0

1
> T EVisa Vi DED D?
k=1k

-3 § B )~ e
j: :

0

C'@D@m)(e )

! (Z)§I<+ 1 )(872 1 )2

1—
k=1k v

;{2) (1) )
k] v +1

|
M 8

(107)

Define zg) 2 (1/k" " YEf vie_j) —f(vi ,j))(s;:l . Then by Remark 2 in
[19] and by the hereditary property of mixing processes, {f(v,)} and
{(e:;])) } are a-mixing sequences with the mlxmg coefficients decay-
ing exponentially to zero. Since {v,} and {g, (U are mutually inde-
pendent, z’ is a zero mean a-mixing sequence with the mixing
coefficients decaying exponentially to zero. By H5 and Lemma 3 in
[19], we find that E|f(vy_j)>*¢ <oo and E|(e}” )I*?*+® < oo for
some ¢ > 0. By applying the C; inequalities, we have

4
Z (Elz(l)|2+s)2/(2+s)< 2 2(1 D)(E[f(vk J)|2+g)2/(2+5)
=j

x 1
(El(el) PET)HETO < O( L i _y)> <oo.
k=j
Therefore, by Lemma 4 in [19] we obtain

z;?-%

. K- D(Ef(vk - —fvi— ]))(é‘k 1) <oo as,
=J =jk

which implies that

kozo: = Ef (Vi) —fvi_ NED )zj—>0 as.,
] —00
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and

i—1

PR L p—foi e
=j

! -1/3):0(]-1/3+C+v) as.
K=j

Since |f(vij)I/j° — 0 as. forany ¢ > 0and (¢{,)?/j'> — O as.
J—o0 ]2
by the Borel-Cantelli lemma [10], H5 and H4, when j < k < 2j. Thus
we have

o(j1PT) as.

© 1

kZ AF(Ef Vi) —f Vi) )
By noticing that |h;| = O(e~™), 1, >0, j=1, we have
Z hy Z s A ()~ el ) <00 as

The convergence of the remaining terms at the right-hand side of
(107) can be proved in a similar way, and hence the fourth term at
the right-hand side of (106) converges a.s. Likewise, the rest at the
right-hand side of (106) can be shown to be convergent a.s., and
hence the second term at the right-hands of (104) also satisfies
(105) with /) replaced by it.

Noticing (93) and applying the method similar to that used to
verify (73) in Lemma 7 of [19], we see that the last term at the
right-hands of (104) satisfies (105) with &} replaced by it.

Therefore, we have proved (102), while (103) can be similarly
proved.

As pointed out before, by H5 at least one of p and « is nonzero,
so switching between (44)-(49) and (50)-(55) may happen only a

finite number of times. Therefore, noticing (94) and (95), for

proving (96) and (97) it suffices to show Vv e (0,1/2),

1007 —plil =o(k™") as.i=1, (108)
@ip) i 2 —v .

Ak —pjgjohjl,;j =ok™) as.i>1, (109)

08" —ElYi 1 —Evi, DWE_ —Eu_pue_i_qll=0k™) as.ix>1,
(110)
Y as.i>1.

jl=o(k™ (111)

(W50 LB
/1k —K 2 hjll;
io

Similar to proving (102), we can show (108)-(111), while the
assertions (98)-(101) straightforwardly follow from (96) and (97). ©

4. Strong consistency of estimates for f(-)

Lemma 3. Under Conditions H1-H7, the following assertions for
wi(x) defined by (74) take place:

EW(x)]— P, EWi(0f ()l — px)f (), (112)

where p(x) = (1//2769)e*/279 52 = =y I, and
fo=fo) [ Ko derfoe) [T Ko,
which equals f(x) for any x where f(-) is continuous.

For the proof, we refer to Lemma 9 in [19].

Lemma 4. Assume that H1, H4, H6 and H7 hold. Then both a, k(s,
defined by (75) and (76) and ai,k(s )),i>1 defined by (77) and (78)

have the convergence rate

1 )
ai’k(sg))—ai(sf(”)‘:o(k]/T> vc>0, i>0. (113)

The proof is similar to that for Lemma 10 in [19].

Corollary 1. Assume that H1-H7 hold. Then &ﬁ(e) defined by (86)
converges to oi(e) a.s. with the following convergence rate:

_ 1
‘ai(e)faﬁ(e)‘=0<kl/ﬁ) ve>0. (114)

Lemma 5. Assume H1-H7 hold. Then there is a constant ¢ > 0 with
1/6—1/2b—2c > 0 such that

> 1
]Ck%k\ =O(7k1/67C)’ (115)
_ 1
|l//k_l//k|:O<k1/272C>; (1]6)
_ log k)*/?
[Wie(x) = Wi(x)| =°<k1(/zog1/z)bzc>- 117)

For (115), we refer to Lemma 4.10 in [18], while for (116) and
(117), we refer to Lemma 11 in [19].

Theorem 2. Assume that H1-H7 hold. Then p,(x) defined by (88)
and (89) and f,(x) defined by (90) and (91) are convergent:

) — pX) as., (118)
P — pXf(x) as. (119)

As a consequence, fi(x) defined by (92) is strongly consistent

fuo— fe as. (120)

Proof. The algorithm (88) can be rewritten as
[ ) — (1 /) (p () = p(x)) — (1 / k) 1 (X))

I[\m(X) (1/k)(py (%) — p(x)) — (1/I<)ek+1(X)\<M,w» 1

*)

Hip1(X) =

where

€1 1(X) = P(X) = Wi(X) = [p(X) — EWi (X)]+ [Ewg(x) — Wi (X)]

+[Wi(x) — Wi (X)]. (121)

Since p(x) is the single root of the linear function —(y—p(x)), by
Theorem 2.1.1 in [7], for convergence of s, (x) it suffices to show

T
llm 11m sup T zkj ’ 1/pej 1| =0 VT, e[0,T] (122)
J=m

for any convergent subsequence u, (x), where m(k,T)£ max{m :
7L (1/j) <T). By the first limit in (112) and (117), it follows that
(122) holds for the first and last terms at the right-hand side of (121),
respectively. By the method similar to that used to verify (102) in [19],
it is shown that the second term at the right-hand side of (121)
satisfies (122). The proof of (119) can be similarly carried out. There-
fore, the estimate (92) is strongly consistent. ©
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Fig. 4. Estimates for f(x) =x*>—0.5x—1.

5. Example

Let the linear subsystem at the input end be

0 0 0
Vk+D1Vk—1+D2Vk—2 =Up_1+q U _o+ Uy _3,

10
8r f(-2.6)=7.06 1
‘“: rha ST S s TR e = T T T~
6F Jwt 4
r/ f(-2)=4
44+ S S—
) o e LT T TR T
Mv : f(-1.6)=2.36
2 N’“M\ NSNS R =T —
!
ol 1(0.9)=-0.64 |
_2, 4

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Fig. 5. Estimates for f{x) at some fixed points.

where p;=0.2, p»=0.6, ¢; = —0.3 and g»=1.2, and let the linear
subsystem at the output end be given by

Ve +teyi oyt 1 =op+dig +dapy 5 +E 1.

where ¢; = —0.15, ¢; =0.5,d; =0.2 and d, = —0.4. Let the non-
linear function be

f(x)=x>—0.5x—1.

The input signal {ul} is a sequence of Gaussian random
variables: uQ e N(0,1.2%). The driven noises {¢\"} and {¢”}
and the internal noises {7} and {&} all are sequences of mut-
ually independent Gaussian random variables: A/(0,0.3%). The
measurement noises {¢} and (¢} are the following ARMA
processes, respectively:

(1) 1 (1 (1)
& =07 1 =¢6,"+05¢

k—1°
(2) 2 _ @ (2)
& +04e”  =¢”—06¢

k-1

In the figures listed below, the solid lines represent the true
values of the system, while the dashed lines denote the corre-
sponding estimates. Figs. 2 and 3 demonstrate the recursive
estimates for the coefficients of the two linear subsystems,
respectively, while the estimate for the nonlinear function at time
k=10 000 is given in Fig. 4. The behavior of the estimates for the
nonlinearity at points {—2.6, —2, —1.6, 0.9} versus time is demon-
strated in Fig. 5.

6. Conclusion

The recursive algorithms for identifying the EIV Wiener—-Hammer-
stein systems are proposed in the paper. The estimation is carried out
by the stochastic approximation algorithms incorporated with the
deconvolution kernel. The estimates for the two linear subsystems as
well as for the nonlinearity are shown to be convergent to the true
values with probability one.

For further research it is of interest to consider identification of
other EIV nonlinear systems, for example, the MIMO EIV Wiener-
Hammerstein systems.
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