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a b s t r a c t

The kernel-based regularization method has two core issues: kernel design and hyperparameter esti-

mation. In this paper, we focus on the second issue and study the properties of several hyperparameter

estimators including the empirical Bayes (EB) estimator, two Stein’s unbiased risk estimators (SURE) (one

related to impulse response reconstruction and the other related to output prediction) and their corre-

sponding Oracle counterparts, with an emphasis on the asymptotic properties of these hyperparameter

estimators. To this goal, we first derive and then rewrite the first order optimality conditions of these

hyperparameter estimators, leading to several insights on these hyperparameter estimators. Then we

show that as the number of data goes to infinity, the two SUREs converge to the best hyperparameter

minimizing the corresponding mean square error, respectively, while the more widely used EB estimator

converges to another best hyperparameter minimizing the expectation of the EB estimation criterion.

This indicates that the two SUREs are asymptotically optimal in the corresponding MSE senses but the EB

estimator is not. Surprisingly, the convergence rate of two SUREs is slower than that of the EB estimator,

and moreover, unlike the two SUREs, the EB estimator is independent of the convergence rate of �T�/N
to its limit, where � is the regression matrix and N is the number of data. A Monte Carlo simulation is

provided to demonstrate the theoretical results.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The kernel-based regularization methods (KRM) from machine

learning and statistics were first introduced to the system identi-

fication community in Pillonetto and De Nicolao (2010) and then

further developed in Chen, Andersen, Ljung, Chiuso, and Pillonetto

(2014), Chen, Ohlsson, and Ljung (2012) and Pillonetto, Chiuso, and

De Nicolao (2011). These methods attract increasing attention in

the community and have become a complement to the classical

maximum likelihood/prediction error methods (ML/PEM) (Chen

et al., 2012; Ljung, Singh, & Chen, 2015; Pillonetto & Chiuso, 2015).

In particular, KRM may have better average accuracy and robust-

ness thanML/PEMwhen the data is short and/or has low signal-to-

noise ratio (SNR).
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There are two core issues for KRM: kernel design and hyperpa-

rameter estimation. The former is regarding how to parameterize

the kernel matrix with a parameter vector, called hyperparameter,

to embed the prior knowledge of the system to be identified, and

the latter is regarding how to estimate the hyperparameter based

on the data such that the resulting model estimator achieves a

good bias–variance trade-off or equivalently, suitably balances the

adherence to the data and the model complexity.

The kernel design plays a similar role as the model structure

design forML/PEMand determines the underlyingmodel structure

for KRM. In the past few years, many efforts have been spent

on this issue and several kernels have been invented to embed

various types of prior knowledge, e.g., Carli, Chen, and Ljung

(2017), Chen (2018a), Chen et al. (2014), Chen et al. (2016), Chen

et al. (2012), Chen and Pillonetto (2018), Dinuzzo (2015), Mar-

conato, Schoukens, and Schoukens (2016), Pillonetto, Chen, Chiuso,

Nicolao, and Ljung (2016), Pillonetto et al. (2011), Pillonetto and

De Nicolao (2010) and Zorzi and Chiuso (2017). In particular, two

systematic kernel design methods (one is from amachine learning

perspective and the other one is from a system theory perspective)

were developed in Chen (2018b) by embedding the corresponding

type of prior knowledge.
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The hyperparameter estimation plays a similar role as the

model order selection in ML/PEM and its essence is to determine

a suitable model complexity based on the data. As mentioned in

the survey of KRM (Pillonetto, Dinuzzo, Chen, De Nicolao, & Ljung,

2014), many methods can be used for hyperparameter estimation,

such as the cross-validation (CV), empirical Bayes (EB), Cp statistics

and Stein’s unbiased risk estimator (SURE) and etc. In contrast

with the numerous results on kernel design, there are however

few results on hyperparameter estimation except Aravkin, Burke,

Chiuso, & Pillonetto (2012a, b, 2014), Chen et al. (2014) and Pil-

lonetto & Chiuso (2015). In Aravkin et al. (2012a, b, 2014), two

types of diagonal kernel matrices are considered. When �T�/N
is an identity matrix, where� is the regressionmatrix and N is the

number of data, the optimal hyperparameter estimate of the EB

estimator has explicit form and is shown to be consistent in terms

of the mean square error (MSE). When �T�/N is not an identity

matrix, the EB estimator is shown to asymptotically minimize a

weighted MSE. In Chen et al. (2014), the EB with linear multiple

kernel is shown to be a difference of convex programming problem

and moreover, the optimal hyperparameter estimate is sparse. In

Pillonetto and Chiuso (2015), the robustness of the EB estimator is

analysed.

In this paper, we study the properties of the EB estimator and

two SUREs in Pillonetto and Chiuso (2015) with an emphasis on

the asymptotic properties of these hyperparameter estimators. In

particular, we are interested in the following questions: When the

number of data goes to infinity,

(1) what will be the best kernel matrix, or equivalently, the best

value of the hyperparameter?

(2) which estimator (method) shall be chosen such that the

hyperparameter estimate tends to this best value in the

given sense?

(3) what will be the convergence rate of that the hyperparame-

ter estimate tends to this best value? and what factors does

this rate depend on?

In order to answer these questions, we employ the regularized

least squaresmethod for FIRmodel estimation in Chen et al. (2012).

As a motivation, we first show that the regularized least squares

estimate can have smaller MSE than the least squares estimate for

any data length if the kernelmatrix is chosen carefully.We thende-

rive the first order optimality conditions of these hyperparameter

estimators and their corresponding Oracle counterparts (relying

on the true impulse response, see Section 3.2 for details). These

first order optimality conditions are then rewritten in a way to

better expose their relations, leading to several insights on these

hyperparameter estimators. For instance, one insight is that for

the Oracle estimators, for any data length, and without structure

constraints on the kernel matrix, the optimal kernel matrices are

same as the one in Chen et al. (2012) and equal to the outer product

of the vector of the true impulse response and its transpose. More-

over, explicit solutions of the optimal hyperparameter estimate

for two special cases are derived accordingly. Then we turn to the

asymptotic analysis of these hyperparameter estimators. Regard-

less of the parameterization of the kernel matrix, we first show

that the two SUREs actually converge to the best hyperparameter

minimizing the corresponding MSE, respectively, as the number

of data goes to infinity, while the more widely used EB estimator

converges to the best hyperparameter minimizing the expectation

of the EB estimation criterion. In general, these best hyperparam-

eters are different from each other except for some special cases.

This means that the two SUREs are asymptotically optimal in the

corresponding MSE senses but the EB estimator is not. We then

show that the convergence rate of two SUREs is slower than that

of the EB estimator, and moreover, unlike the two SUREs, the EB

estimator is independent of the convergence rate of �T�/N to its

limit.

The remaining parts of the paper is organized as follows. In

Section 2, we recap the regularized least squares method for FIR

model estimation and introduce two types of MSE. In Section 3,

we introduce six hyperparameter estimators, including the EB es-

timator, two SUREs, and their corresponding Oracle counterparts.

In Section 4,we derive the first order optimality conditions of these

hyperparameter estimators and put them in a form that clearly

shows their relation, leading to several insights. In Section 5, we

give the asymptotic analysis of these hyperparameter estimators,

including the asymptotic convergence and the corresponding con-

vergence rate. In Section 6, we illustrate our theoretical results

with Monte Carlo simulations. Finally, we conclude this paper in

Section 7. All proofs of the theoretical results are postponed to

Appendix A.

2. Regularized least squares approach for FIRmodel estimation

2.1. Regularized least squares and two types of MSEs

Consider a single-input single-output linear discrete-time in-

variant, stable and causal system

y(t) = G
0

(q)u(t) + v(t), t = 1, . . . ,N (1)

where t is the time index, y(t), u(t), v(t) are the output, input

and disturbance of the system at time t , respectively, G
0

(q) is the
rational transfer function of the system and q is the forward shift

operator: qu(t) = u(t + 1). Assume that the input u(t) is known

(deterministic) and the input–output data are collected at time

instants t = 1, . . . ,N , and moreover, the disturbance v(t) is a zero
mean white noise with finite variance � 2 > 0. The problem is to

estimate amodel forG
0

(q) aswell as possible based on the available

data {u(t � 1), y(t)}Nt=1

.

The transfer function G
0

(q) can be written as

G
0

(q) =
1X

k=1

g0

k q
�k

(2)

where g0

k , k = 1, . . . ,1 form the impulse response of the system.

Since the impulse response coefficients {g0

k } of the stable ratio-

nal transfer function G
0

(q) decay exponentially, it is possible to

truncate the infinite impulse response at a sufficiently high order,

leading to the finite impulse response (FIR) model:

G(q) =
nX

k=1

gkq�k, ✓ = [g
1

, . . . , gn]T 2 Rn. (3)

With the FIR model (3), system (1) is now written as

y(t) = �T
(t)✓ + v(t), t = 1, . . . ,N

where �(t) = [u(t �1), . . . , u(t �n)]T 2 Rn
, and its matrix–vector

form is

Y = �✓ + V , where (4)

Y = [y(1) y(2) · · · y(N)]T
� = [�(1) �(2) · · · �(N)]T
V = [v(1) v(2) · · · v(N)]T .
The well-known least squares (LS) estimator

b✓ LS = argmin

✓2Rn
kY � �✓k2

(5a)

= (�T�)

�1�T Y (5b)

where k · k is the Euclidean norm, is unbiased with respect to the

FIR model (4) but may have large variance and mean square error
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(MSE) (e.g., when the input is low-pass filtered white noise). The

large variance can be mitigated if some bias is allowed and traded

for smaller variance and smaller MSE.

One possible way to achieve this goal is to add a regularization

term � 2✓ T P�1✓ in the LS criterion (5a), leading to the regularized

least squares (RLS) estimator:

b✓R = argmin

✓2Rn
kY � �✓k2 + � 2✓ T P�1✓ (6a)

= P�T
(�P�T + � 2IN )�1Y (6b)

where P is symmetric and positive semidefinite and is called the

kernelmatrix (� 2P�1

is often called the regularizationmatrix), and

IN is the N-dimensional identity matrix.

Remark 1. As is well known, the RLS estimator (6b) has a Bayesian

interpretation. Specifically, assume that ✓ and v(t) are independent
and Gaussian distributed with

✓ ⇠ N (0, P), v(t) ⇠ N (0, � 2

) (7)

where P is the prior covariance matrix. Then ✓ and Y are jointly

Gaussian distributed and moreover, the posterior distribution of ✓

given Y is

✓ |Y ⇠ N (

b✓R,bPR

)

b✓R = P�T
(�P�T + � 2IN )�1Y

bPR = P � P�T
(�P�T + � 2IN )�1�P .

Two types of MSE could be used to evaluate the performance

of the RLS estimator (6b). The first one is the MSE related to the

impulse response reconstruction, see e.g., Chen et al. (2012) and

Pillonetto and Chiuso (2015),

MSEg(P) = Ekb✓R � ✓
0

k2

(8)

where ✓
0

= [g0

1

, . . . , g0

n ]T with g0

i , i = 1, . . . , n, defined in

(2) and E(·) is the mathematical expectation with respect to the

noise distribution. The second one is the MSE related to output

prediction, see e.g., Pillonetto and Chiuso (2015),

MSEy(P) = E

"
NX

t=1

�
�T

(t)✓
0

+ v⇤
(t) �by(t)

�
2

#
(9)

where

by(t) = �T
(t)b✓R

and v⇤
(t) is an independent copy of the noise

v(t). Interestingly, the two MSEs (8) and (9) are related with each

other through

MSEy(P) = Tr

�
E(b✓R�✓

0

)(

b✓R�✓
0

)

T�T�
�
+N� 2

(10)

where Tr(·) is the trace of a square matrix. Moreover, they have

explicit expressions, which are given in the following proposition.

Proposition 1. For a given kernel matrix P, the two MSEs (8) and (9)

take the following form

MSEg(P) = kP�TQ�1�✓
0

� ✓
0

k2

+ � 2

Tr(P�TQ�1Q�T�PT
) (11a)

MSEy(P) = k�P�TQ�1�✓
0

� �✓
0

k2 + N� 2

+ � 2

Tr(�P�TQ�1Q�T�PT�T
) (11b)

where A�T means (A�1

)

T for a non-singular matrix A and

Q = �P�T + � 2IN . (12)

2.2. RLS estimator can outperform LS estimator

It is interesting to investigate whether the RLS estimator (6b)

with a suitable choice of the kernelmatrix P can have smallerMSEs

(8) and (9) than the LS estimator (5b). The answer is affirmative for

MSEg (8) and for the ridge regression case, where P�1 = (�/� 2

)In
with � > 0, Hoerl and Kennard (1970) and Theobald (1974). In

what follows, we further show that this property also holds for

more general P for MSEg (8) and MSEy (9).

Proposition 2. Consider the RLS estimator (6b) and the LS estimator
(5b). Suppose that P�1 = �A/� 2, where � > 0 and A is symmetric
and positive semidefinite. Then for the given A, there exists � > 0 such
that (6b) has a smaller MSEg (8) andMSEy (9) than (5b). Moreover, if
A is positive definite, then (6b) has a smaller MSEg (8) and MSEy (9)

than (5b) whenever 0 < � < 2� 2/(✓ T
0

A✓
0

).

Proposition 2 shows that for any data length N , the RLS es-

timator (6b) can have smaller MSEg (8) and MSEy (9) than the

LS estimator (5b) with a sufficiently small regularization ‘‘in any

direction’’ and thismeritmotivates to further explore the potential

of the RLS estimator (6b) by careful design of the kernel matrix P .
It is worth to note the paper (Zorzi, 2017) also shows the Bayesian

estimator is still optimal when a priori information is known with

some uncertainty.

3. Design of kernel matrix and hyperparameter estimation

The regularization method has two core issues: kernel matrix

design, namely parameterization of the kernelmatrix by a parame-

ter vector, called hyperparameter, andhyperparameter estimation.

3.1. Parameterization of kernel matrix

For efficient regularization, the symmetric and positive

semidefinite kernel matrix P has to be chosen carefully. It is

typically done by postulating a parameterized family of matrices

P(⌘), ⌘ 2 ⌦ ⇢ Rp
(13)

where ⌘ is called the hyperparameter and the feasible set ⌦ of ⌘ is

assumed to be compact. The choice of parameterization is a trade-

off of the same kind as the choice of model class in identification:

On one hand it should be a large and flexible class to allow as

much benefits from regularization as possible. On the other hand,

a large set requires larger dimensions of ⌘, and the estimation

of these comes with their own penalties (much in the spirit of

the Akaike’s criterion). Since P is the prior covariance of the true

impulse response, the prior knowledge of the underlying system

to be identified, e.g., exponential stability and smoothness, should

be embedded in the parameterized matrix P(⌘).
A popular way to achieve this goal is through a parameterized

positive semidefinite kernel function. So far, several kernels have

been invented, such as the stable spline (SS) kernel (Pillonetto &

De Nicolao, 2010), the diagonal correlated (DC) kernel and the

tuned-correlated (TC) kernel (Chen et al., 2012), which are defined

as follows:

SS : Pkj(⌘) = c
⇣↵k+j+max(k,j)

2

� ↵3max(k,j)

6

⌘

⌘ = [c, ↵] 2 ⌦ = {c � 0, 0  ↵  1}; (14a)

DC : Pkj(⌘) = c↵(k+j)/2⇢|j�k|

⌘ = [c, ↵, ⇢] 2 ⌦ = {c � 0, 0  ↵  1, |⇢|  1}; (14b)

TC : Pkj(⌘) = c↵max(k,j)

⌘ = [c, ↵] 2 ⌦ = {c � 0, 0  ↵  1}. (14c)
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Remark 2. For nonlinearly parameterized kernels, e.g., the ker-

nels in (14), the optimal hyperparameter should be located in the

interior of the set ⌦ . To justify this, we take the DC kernel as an

example. For the case where either c = 0 or ↵ = 0, P(⌘) =
0 and thus (6b) is trivially 0. For the case where ↵ = 1, this

violates the stability of the system. For the case where |⇢| = 1,

the coefficients of the impulse response are perfectly positive or

negative correlated, but this is impossible for a stable system. In

fact, more formal justification regarding this issue can be found in

Pillonetto and Chiuso (2015, p. 115),which shows that themeasure

of the set containing all optimal estimates lying on the boundary

of ⌦ is zero and thus can be neglected when making almost sure

convergence statement.

3.2. Hyperparameter estimation

Once a parameterized family of the kernel matrix P(⌘) has been
chosen, the task is to estimate, or ‘‘tune’’, the hyperparameter ⌘
based on the data.

Severalmethods are suggested in the literature, see e.g., Section

14 of Pillonetto et al. (2014), including the empirical Bayes (EB) and

SURE methods. The EB method uses the Bayesian interpretation in

Remark 1. It follows from the assumption (7) that Y is Gaussian

with mean zero and covariance matrix Q . As a result, it is possible

to estimate the hyperparameter ⌘ by maximizing the (marginal)

likelihood of Y , i.e.,

EB :b⌘
EB

= argmin

⌘2⌦

F
EB

(P(⌘)) (15a)

F
EB

(P) = YTQ�1Y + log det(Q ) (15b)

where Q is defined in (12) and det(·) denotes the determinant

of a square matrix. The SURE method first constructs a Stein’s

unbiased risk estimator (SURE) of the MSE and then estimates the

hyperparameter by minimizing the constructed estimator. Two

variants of the SURE method were considered in Pillonetto and

Chiuso (2015), which construct the SUREs for MSEg(P) in (11a)

and MSEy(P) in (11b), and are referred to as SUREg and SUREy,

respectively:

F
Sg

(P) = kb✓ LS �b✓Rk2 + � 2

Tr

�
2R�1� (�T�)

�1

�

= � 4YTQ�T�(�T�)

�2�TQ�1Y
+ � 2

Tr

�
2R�1� (�T�)

�1

�
(16a)

F
Sy

(P)=kY� �b✓Rk2+2� 2

Tr

�
�P�TQ�1

�

=� 4YTQ�TQ�1Y+2� 2

Tr

�
�P�TQ�1

�
(16b)

where

R = �T� + � 2P�1. (17)

Then the hyperparameter ⌘ is estimated by minimizing the SUREg

(16a) and SUREy (16b):

SUREg :b⌘
Sg

= argmin

⌘2⌦

F
Sg

(P(⌘)) (18a)

SUREy :b⌘
Sy

= argmin

⌘2⌦

F
Sy

(P(⌘)). (18b)

In the following sections, we will study the properties of the above

three estimators EB, SUREg and SUREy. To set reference for these

estimators, we introduce their corresponding Oracle counterparts

that depend on the true impulse response ✓
0

:

MSEg :b⌘
MSEg

= argmin

⌘2⌦

E[F
Sg

(P(⌘))]

= argmin

⌘2⌦

MSEg(P(⌘)) (19a)

MSEy :b⌘
MSEy

= argmin

⌘2⌦

E[F
Sy

(P(⌘))]

= argmin

⌘2⌦

MSEy(P(⌘)) (19b)

EEB : b⌘
EEB

= argmin

⌘2⌦

E[F
EB

(P(⌘))]

= argmin

⌘2⌦

EEB(P(⌘)) (19c)

whereMSEg(P) andMSEy(P) are defined in (11a) and (11b), respec-

tively, and

EEB(P) = ✓ T
0

�TQ�1�✓
0

+� 2

Tr(Q�1

) + log det(Q ). (20)

The hyperparameter estimators (19a) and (19b) give the opti-

mal hyperparameter estimates for any data length in the corre-

sponding MSE sense and thus provide reference when evaluating

the performance of hyperparameter estimators.

Remark 3. Among these hyperparameter estimators, only SUREg

(16a) depends on (�T�)

�1

. When (�T�)

�1

is ill-conditioned,

SUREg (16a) should be avoided for hyperparameter estimation.

Onemay also note that (�T�)

�1

in the second term is independent

of P and thus can actually be removed in the calculation.

Remark 4. It is interesting to note that the first terms of F
Sg

(P),
F

Sy

(P), and F
EB

(P) given in (16a), (16b), and (15b) contain the

same factors Y and Q�1

. Moreover, similar to (10), F
Sg

(P) and

F
Sy

(P) are related with each other through

F
Sy

(P) = Tr

�⇥
(

b✓ LS � !b✓R

)(

b✓ LS �b✓R

)

T

+ � 2

(2R�1 � (�T�)

�1

)

⇤
�T�

 

+ YT�(�T�)

�1�T Y�YTY � n� 2.| {z }
independent of the kernel matrix P

(21)

Inwhat follows, wewill investigate the properties of the hyper-

parameter estimators EB, SUREg, and SUREy and their correspond-

ing Oracle estimators EEB, MSEg and MSEy. Before proceeding to

the details, we make, without loss of generality, the following

assumption.

Assumption 1. The hyperparameter estimatesb⌘
Sg

,b⌘
Sy

,b⌘
EB

,b⌘
MSEg

,

b⌘
MSEy

andb⌘
EEB

are interior points of ⌦ .

4. Properties of hyperparameter estimators: finite data case

In this section, focusing on the finite data case we first give the

first order optimality conditions of the hyperparameter estimators

and then we consider two special cases for which closed-form ex-

pressions of the optimal hyperparameter estimates are available.

4.1. First order optimality conditions

The hyperparameter estimatesb⌘
Sg

,b⌘
Sy

, andb⌘
EB

in (18a), (18b),

and (15a) should satisfy the first order optimality conditions if they

are interior points of ⌦ . For convenience, we let C to denote one

of the following estimation criteria F
Sg

, F
Sy

, F
EB

, MSEg, MSEy or

EEB. Then the corresponding hyperparameter estimate is a root of

the system of equations:

@C (P(⌘))
@⌘

= 0. (22)

By the chain rule of compound functions, we have

Tr

✓
@C (P)

@P

⇣@P(⌘)
@⌘i

⌘T
◆

= 0, 1  i  p (23)

where, for convenience, when calculating

@C (P)
@P the symmetry of

P is ignored according to Lemma B1, that is, the elements of P are

treated independently. One merit of using

@C (P)
@P without imposing

the structure information on P is that explicit expressions for the

estimation criteria (16a), (16b), and (15b) are available.
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Proposition 3. The first order partial derivatives of (16a), (16b), and
(15b) with respect to P are, respectively,
@F

Sg

(P)
@P

= �2� 4�TQ�T�(�T�)

�2�TQ�1YYTQ�T�

+ 2� 4H�TH
�T

(24a)

@F
Sy

(P)
@P

= �2� 4�TQ�TQ�1YYTQ�T�

+ 2� 4�TQ�TQ�T� (24b)

@F
EB

(P)
@P

= ��TQ�T YY TQ�T� + �TQ�T� (24c)

where

H = P�T� + � 2In, H = �T�P + � 2In. (25)

Similarly, the partial derivatives of MSEg(P), MSEy(P), and

EEB(P) with respect to P are also available.

Proposition 4. The first order partial derivatives of (11a), (11b), and
(20) with respect to P are, respectively,
@MSEg(P)

@P
= �2� 4H�TH�1✓

0

✓ T
0

�TQ�T�

+ 2� 4H�TH�1P�TQ�T� (26a)

@MSEy(P)
@P

= �2� 4�TQ�TQ�1�✓
0

✓ T
0

�TQ�T�

+ 2� 4�TQ�TQ�1�P�TQ�T� (26b)

@EEB(P)
@P

= ��TQ�T�✓
0

✓ T
0

�TQ�T�

+ �TQ�T�PT�TQ�T� (26c)

where H is defined in (25).

In order to better expose the relation among the partial deriva-

tives derived in Propositions 3 and 4, we define

S = P + � 2

(�T�)

�1. (27)

With the use of (27) and the identities (B.11)–(B.13) in the Ap-

pendix, we rewrite the partial derivatives derived in Propositions 3

and 4 as follows.

Corollary 1. The partial derivatives derived in Propositions 3 and 4

can be rewritten as follows:
@MSEg(P)

@P
= 2� 4S�T

(�T�)

�2S�1

(P � ✓
0

✓ T
0

)S�T
(28a)

@F
Sg

(P)
@P

= 2� 4S�T
(�T�)

�2S�1

�
S �b✓ LS

(

b✓ LS

)

T �S�T
(28b)

@MSEy(P)
@P

= 2� 4S�T
(�T�)

�1S�1

(P � ✓
0

✓ T
0

)S�T
(28c)

@F
Sy

(P)
@P

= 2� 4S�T
(�T�)

�1S�1

�
S �b✓ LS

(

b✓ LS

)

T �S�T
(28d)

@EEB(P)
@P

= S�T
(PT � ✓

0

✓ T
0

)S�T
(28e)

@F
EB

(P)
@P

= S�T �ST �b✓ LS

(

b✓ LS

)

T �S�T . (28f)

It follows from Corollary 1 that the difference between the par-

tial derivatives of F
Sg

(P), F
Sy

(P), F
EB

(P) and that of their Oracle

counterparts is that the factor S�b✓ LS

(

b✓ LS

)

T
is replaced by P �✓

0

✓ T
0

.

Moreover, the difference between the partial derivative of F
Sg

(P)
and that of F

Sy

(P) is that there is one extra factor (�T�)

�1

. The

difference between the first order derivative of F
Sy

(P) and that of

F
EB

(P) is that there is one extra factor 2� 4

(�T�)

�1S�1 = 2� 4H�1

.

The above relations extend to the partial derivatives of their Oracle

counterparts.

Remark 5. It is important to note from Propositions 3 and 4

that only the first term of

@F
Sg

(P)
@P depends on the possibly ill-

conditioned (�T�)

�1

. With the use of S in (27), all partial deriva-

tives of the hyperparameter estimators seemingly depend on the

possibly ill-conditioned term (�T�)

�1

. However, it should be

stressed that the partial derivatives derived in Corollary 1 are not

intended for numerical calculation but for theoretical analysis and

for better exposition of the relation among the partial derivatives

derived in Propositions 3 and 4.

Remark6. Wekeep the transpose notation for symmetricmatrices

in Propositions 3 and 4 and Corollary 1 because they are derived by

using Lemma B1 without imposing the symmetric assumption on

P . After we have derived

@C (P)
@P and made the symmetric assump-

tion on P , the first optimality condition (23) can be written as

Tr

✓
@C (P)

@P
@P(⌘)
@⌘i

◆
= 0, 1  i  p

where the transpose notation appearing in

@C (P)
@P can be dropped

for symmetric matrices, e.g. ST = S, and Q�TQ�1

can be written

as Q�2

.

Setting

@MSEg(P)
@P = 0,

@MSEg(P)
@P = 0, and

@EEB(P)
@P = 0 in Corollary 1

leads to the next proposition.

Proposition 5. The optimal kernel matrix that minimizes MSEg(P),
MSEy(P), and EEB(P) without structure constraints on P is

P = ✓
0

✓ T
0

. (29)

It was found in Chen et al. (2012) that (29) minimizes the MSE

matrix E(b✓R � ✓
0

)(

b✓R � ✓
0

)

T
in the matrix sense. Here we further

find that (29) is optimal for MSEg(P), MSEy(P) and EEB(P), and for

any data length N .

4.2. Two special cases

In general, there is no explicit expression of these hyperparam-

eter estimators. However, there exist some special cases, for which

it is possible to derive the explicit solution based on Corollary 1. In

the following, we consider two special cases.

4.2.1. Ridge regression with �T� = NIn
Let P(⌘) = ⌘In with ⌘ � 0 and assume �T� = NIn. Then we

have the following result.

Proposition 6. Consider P(⌘) = ⌘In with ⌘ � 0. Further assume that
�T� = NIn. Then we have

b⌘
Sg

=b⌘
Sy

=b⌘
EB

= max

⇣
0,

(

b✓ LS

)

Tb✓ LS

n
� � 2

N

⌘
. (30)

Moreover,

b⌘
MSEg

=b⌘
MSEy

=b⌘
EEB

= ✓ T
0

✓
0

/n. (31)

Remark 7. It is worth noting that the optimal hyperparameter

✓ T
0

✓
0

/n holds for any N . Moreover, one has

MSEg(✓ T
0

✓
0

/nIn) = n� 2

N + n� 2/(✓ T
0

✓
0

)

<
n� 2

N

where n� 2/N is the MSEg of the LS estimator (5b). This means that

the ridge regression with P = ✓ T
0

✓
0

/nIn has a smaller MSEg than

the LS estimator (5b) when�T� = NIn. Finally, (30) is a consistent
estimate of ✓ T

0

✓
0

/n if

b✓ LS �! ✓
0

as N �! 1.
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4.2.2. Diagonal kernel matrix with �T� = NIn
Let P(⌘) be a diagonal kernel matrix (in this case we have p =

n.), i.e.,

P(⌘) = diag[⌘
1

, . . . , ⌘n] with ⌘i � 0, 1  i  n (32)

where ⌘
1

, . . . , ⌘n are the main diagonal elements of the diagonal

matrix diag[⌘
1

, . . . , ⌘n]. Then under the assumption �T� = NIn,
we have the following result.

Proposition 7. Consider P(⌘) in (32) and assume that �T� = NIn.
Then we have

b⌘
Sg

=b⌘
Sy

=b⌘
EB

=
⇥
max{0,bg2

1

�� 2/N},
· · · ,max{0,bg2

n �� 2/N}
⇤T

(33)

where bgi is the ith element of the LS estimate (5b), i = 1, . . . , n.
Moreover,

b⌘
MSEg

=b⌘
MSEy

=b⌘
EEB

=
⇥
(g0

1

)

2, . . . , (g0

n )
2

⇤T
. (34)

Remark 8. In the papers Aravkin et al. (2012b, 2014), the lin-

ear model (4) but with a slightly different setting is considered,

where the parameter ✓ is partitioned into m sub-vectors ✓ =
[✓ (1)

T
, . . . , ✓ (m)

T ]T and the dimension of ✓ (i)
is ni so that n =Pm

i=1

ni. In addition, the prior distribution of ✓ (i)
is set to be

N (0, ⌘iIni ) and ⌘i is an independent and identically distributed

exponential random variable with probability density p� (⌘i) =
� exp(�� ⌘i)� (⌘i) where � is a positive scalar and � (t) = 1 for

t � 0 and 0 otherwise. Under the setting given above, the solution

maximizing the marginal posterior of ⌘ given the data and the

optimal solution of the MSEg are derived in Aravkin et al. (2012b,

2014) when �T� = NIn. When m = 1, n
1

= n, � = 0, their

estimates become (30) and (31), respectively. When n = m, ni = 1

for i = 1, . . . , n, and � = 0, their solutions become (33) and (34),

respectively. In contrast, we study here the SUREg, SUREy, MSEy,

and EEB estimators besides the EB and MSEg estimators and find

their solutions are the same under the simplified setting. Clearly,

max{0,bg2

i � � 2/N} is a consistent estimator of (g0

i )
2

, i = 1, . . . , n.

5. Properties of hyperparameter estimators: when the data

length goes to infinity

In this section, we investigate the asymptotic properties of

these hyperparameter estimators. For this purpose, it is useful to

first consider the asymptotic property of the partial derivatives

derived in Corollary 1. Noting the finding of Corollary 1 and that

S �b✓ LS

(

b✓ LS

)

T
converges to P � ✓

0

✓ T
0

under proper conditions, we

can derive the following proposition.

Proposition 8. Consider the partial derivatives derived in Corollary 1.
Assume that P is nonsingular and �T�/N �! ⌃ almost surely as
N �! 1, where ⌃ is positive definite. Then we have as N �! 1

N2

@MSEg(P)
@P

�!2� 4P�T⌃�2P�1

(P � ✓
0

✓ T
0

)P�T
(35a)

N2

@F
Sg

(P)
@P

�!2� 4P�T⌃�2P�1

(P � ✓
0

✓ T
0

)P�T
(35b)

N
@MSEy(P)

@P
�!2� 4P�T⌃�1P�1

(P � ✓
0

✓ T
0

)P�T
(35c)

N
@F

Sy

(P)
@P

�!2� 4P�T⌃�1P�1

(P � ✓
0

✓ T
0

)P�T
(35d)

@EEB(P)
@P

�!P�T
(PT � ✓

0

✓ T
0

)P�T
(35e)

@F
EB

(P)
@P

�!P�T
(PT � ✓

0

✓ T
0

)P�T
(35f)

almost surely.

Proposition 8 shows that the three pairs, N2

@MSEg(P)
@P and

N2

@F
Sg

(P)
@P , N @MSEy(P)

@P and N @F
Sy

(P)
@P , and

@EEB(P)
@P and

@F
EB

(P)
@P , have

respectively the same limit as N goes to 1. This observation

motivates to explore if this property also holds for the estimation

criteria of these hyperparameter estimators. The answer is affirma-

tive and we have the following result.

Proposition 9. Consider the hyperparameter estimation criteria
SUREg (16a), SUREy (16b), and EB (15b), and their corresponding
Oracle counterparts MSEg (11a), MSEy (11b), and EEB (20). Assume
that P is nonsingular and �T�/N �! ⌃ almost surely as N �! 1,
where ⌃ is positive definite. Then we have as N �! 1
N2

(MSEg(P) � � 2

Tr((�T�)

�1

)) �! Wg (P, ⌃, ✓
0

) (36a)

N2

(F
Sg

(P) � � 2

Tr((�T�)

�1

)) �! Wg (P, ⌃, ✓
0

) (36b)

N(MSEy(P) � (n + N)� 2

) �! Wy(P, ⌃, ✓
0

) (36c)

N(F
Sy

(P) + YT�(�T�)

�1�T Y � YTY � 2n� 2

)

�! Wy(P, ⌃, ✓
0

) (36d)

EEB(P) � (N � n)
� (N�n) log � 2�log det(�T�)�!W

B

(P, ✓
0

) (36e)

F
EB

(P) + YT�(�T�)

�1�T Y/� 2 � YTY/� 2

� (N�n) log � 2�log det(�T�)�!W
B

(P, ✓
0

) (36f)

almost surely, where

Wg (P, ⌃, ✓
0

) = � 4✓ T
0

P�1⌃�2P�1✓
0

� 2� 4

Tr

�
⌃�1P�1⌃�1

�
(37a)

Wy(P, ⌃, ✓
0

) = � 4✓ T
0

P�1⌃�1P�1✓
0

� 2� 4

Tr

�
⌃�1P�1

�
(37b)

W
B

(P, ✓
0

) = ✓ T
0

P�1✓
0

+ log det(P). (37c)

Remark 9. For these hyperparameter estimation criteria,

Wg (P, ⌃, ✓
0

), Wy(P, ⌃, ✓
0

) and WB(P, ✓
0

) contain all information

about the asymptotic benefits of regularization: how it depends

on any kernel matrix P , any true impulse response vector ✓
0

and

any stationary properties of the input covariance matrix ⌃ .

Proposition 9 enables us to derive asymptotic properties of

these hyperparameter estimators for any parameterization P(⌘) of
the kernel matrix. Moreover, it also implies that the estimatorsb⌘

Sg

,

b⌘
Sy

, andb⌘
EB

possibly share the same limits with their correspond-

ing Oracle counterpartsb⌘
MSEg

,b⌘
MSEy

, andb⌘
EEB

, respectively.

To state the result, we need an extra assumption. It is worth to

note that the limit functions Wg (P(⌘), ⌃, ✓
0

), Wy(P(⌘), ⌃, ✓
0

) and

W
B

(P(⌘), ✓
0

) may not have a unique global minimum, respectively.

In this case, the analysis of howminimizing elements of a sequence

of functionsMN (⌘) converge to theminimizing element of the limit

function limMN (⌘), i.e.,

‘‘ lim argminMN (⌘) = argmin limMN (⌘)
00

(38)

where MN (⌘) denotes any function on the left hand side of ‘‘!’’

in (36), follows the same idea as for prediction error identification

methods, see, e.g. Lemma 8.2 and Theorem 8.2 in Ljung (1999).

Accordingly, it is useful in this context to let ‘‘argmin’’ denote

the set of minimizing arguments in case where Wg (P(⌘), ⌃, ✓
0

),

Wy(P(⌘), ⌃, ✓
0

) andW
B

(P(⌘), ✓
0

) do not have a unique global min-

imum, respectively,:

argmin

⌘2⌦
M(⌘) =

�
⌘|⌘ 2 ⌦,M(⌘) = min

⌘02⌦
M(⌘0

)

 
(39)

where M(⌘) could be any one of Wg (P(⌘), ⌃, ✓
0

), Wy(P(⌘), ⌃, ✓
0

)

and W
B

(P(⌘), ✓
0

).
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Now we define

⌘⇤
g = argmin

⌘2⌦
Wg (P(⌘), ⌃, ✓

0

) (40)

⌘⇤
y

= argmin

⌘2⌦

Wy(P(⌘), ⌃, ✓
0

) (41)

⌘⇤
B

= argmin

⌘2⌦

W
B

(P(⌘), ✓
0

). (42)

Remark 10. The optimal hyperparameter ⌘⇤
B

has the following

interpretation: under the assumption ✓
0

⇠ N (0, P(⌘)), ⌘⇤
B

maxi-

mizes the value of the probability density function of ✓
0

.

The following assumption is also needed.

Assumption 2. The sets ⌘⇤
g , ⌘

⇤
y and ⌘⇤

B consist of interior points of

⌦ , and are discrete, i.e., made up of only isolated points, respec-

tively.

Then we have the following theorem.

Theorem 1. Assume that P(⌘) is any parameterization of the kernel
matrix such that P(⌘) is positive definite and moreover, �T�/N �!
⌃ almost surely as N �! 1, where ⌃ is positive definite. Then we
have as N �! 1
b⌘

MSEg

�! ⌘⇤
g

, b⌘
Sg

�! ⌘⇤
g

(43a)

b⌘
MSEy

�! ⌘⇤
y

, b⌘
Sy

�! ⌘⇤
y

(43b)

b⌘
EEB

�! ⌘⇤
B

, b⌘
EB

�! ⌘⇤
B

(43c)

almost surely. Moreover, ⌘⇤
g

, ⌘⇤
y

, and ⌘⇤
B

are roots of the system of
equations, respectively, i = 1, . . . , p:

Tr

⇣
P(⌘)�1⌃�2P(⌘)�1

�
P(⌘) � ✓

0

✓ T
0

�
P(⌘)�1

@P(⌘)
@⌘i

⌘
= 0

Tr

⇣
P(⌘)�1⌃�1P(⌘)�1

�
P(⌘) � ✓

0

✓ T
0

�
P(⌘)�1

@P(⌘)
@⌘i

⌘
= 0

Tr

⇣
P(⌘)�1

�
P(⌘) � ✓

0

✓ T
0

�
P(⌘)�1

@P(⌘)
@⌘i

⌘
= 0.

The Oracle estimatorsb⌘
MSEg

andb⌘
MSEg

are optimal for any data

length N in the average sense if we are concerned with the ability

to reproduce the true impulse response and predict the future

outputs of the system respectively, while the SUREgb⌘
Sg

and the

SUREyb⌘
Sy

are not optimal in general. Surprisingly, a nice property

of b⌘
Sg

and b⌘
Sy

is that they converge to the best possible hyper-

parameter ⌘⇤
g

and ⌘⇤
y

, respectively, for any chosen parameterized

kernel matrix P(⌘). It is so to speak that the two SUREmethods are

‘‘asymptotically consistent or asymptotically optimal’’. This means

that when N is sufficiently large,b⌘
Sg

andb⌘
Sy

perform as well as

b⌘
MSEg

and b⌘
MSEy

, respectively. It is also worth noting that even

with increasing number of data the EB estimatorb⌘
EB

has another

preference than to minimize MSEg and MSEy.

Remark 11. In contrast with Wg (P, ⌃, ✓
0

) and Wy(P, ⌃, ✓
0

), a

unique property ofW
B

(P, ✓
0

) is that it does not depend on the limit

⌃ of�T�/N . This can to someextent explainwhy the EB estimator

is more robust than the SUREg and SUREy especially when �T� is

ill-conditioned. Interested readers can find experimental evidence

for this in Pillonetto and Chiuso (2015). However, in contrast

with the SUREg and SUREy, the EB estimator is not asymptotically

optimal in the MSEg/MSEy sense.

Remark 12. The different expressions of the limit functions

Wg (P(⌘), ⌃, ✓
0

), Wy(P(⌘), ⌃, ✓
0

), and W
B

(P(⌘), ✓
0

) imply that the

optimal hyperparameters ⌘⇤
g

, ⌘⇤
y

, and ⌘⇤
B

may be different. To check

this, we consider a special case: P = ⌘K , where ⌘ > 0 and K is

fixed and positive definite. In this case, (40), (41) and (42) become

⌘⇤
g

= argmin

⌘�0

� 4

⌘2

✓ T
0

K�1⌃�2K�1✓
0

� 2� 4

⌘
Tr(⌃�1K�1⌃�1

)

= ✓ T
0

K�1⌃�2K�1✓
0

Tr(⌃�1K�1⌃�1

)

⌘⇤
y

= argmin

⌘�0

� 4

⌘2

✓ T
0

K�1⌃�1K�1✓
0

� 2� 4

⌘
Tr(⌃�1K�1

)

= ✓ T
0

K�1⌃�1K�1✓
0

Tr(⌃�1K�1

)

⌘⇤
B

= argmin

⌘�0

✓ T
0

K�1✓
0

/⌘ + log ⌘n + log det(K )

= ✓ T
0

K�1✓
0

/n

which shows that ⌘⇤
g

, ⌘⇤
y

and ⌘⇤
B

can be different. Clearly, when

K = In and ⌃ = dIn with d > 0, ⌘⇤
g

= ⌘⇤
y

= ⌘⇤
B

. For this case,

the optimal value ⌘⇤
B

has been given in Theorem 7.3 of Pillonetto

and Chiuso (2015).

Corollary 2. Assume that �T�/N �! dIn almost surely with d > 0

and P(⌘) is any positive definite parameterization of the kernelmatrix.
Then we have

⌘⇤
g

= ⌘⇤
y

= argmin

⌘2⌦

✓ T
0

P(⌘)�2✓
0

� 2Tr(P(⌘)�1

)

⌘⇤
B

= argmin

⌘2⌦

✓ T
0

P(⌘)�1✓
0

+ log det(P(⌘))

and further ⌘⇤
g

and ⌘⇤
B

are roots of the following system of equations,
respectively:

Tr

⇣
P(⌘)�2

�
P(⌘) � ✓

0

✓ T
0

�
P(⌘)�1

@P(⌘)
@⌘i

⌘
= 0, i = 1, . . . , p

Tr

⇣
P(⌘)�1

�
P(⌘) � ✓

0

✓ T
0

�
P(⌘)�1

@P(⌘)
@⌘i

⌘
= 0, i = 1, . . . , p.

In addition, for the diagonal kernel matrix (32), we have

⌘⇤
g

= ⌘⇤
y

= ⌘⇤
B

=
⇥
(g0

1

)

2, . . . , (g0

n )
2

⇤T
.

In Theorem 1, we have considered the convergence of those

hyperparameter estimators. In fact, we can further derive their

corresponding convergence rate. To this end, we let ⇠N = op(aN )
denote that the sequence {⇠N/aN} for nonzero sequence {aN} con-
verges in probability to zero, i.e., 8✏ > 0, P(|⇠N/aN | > ✏) ! 0 as

N ! 1, while ⇠N = Op(aN ) denote that {⇠N/aN} is bounded in

probability, i.e., 8✏ > 0, 9L > 0 such that P(|⇠N/aN | > L) < ✏, 8N .

Then we have the following theorem.

Theorem 2. Assume that k�T�/N � ⌃k = Op(�N ), where k · k
denotes the Frobenius norm for a square matrix, �N �! 0 as N �! 1
and P(⌘) is any positive definite parameterization of the kernelmatrix.
Then we have

kb⌘
MSEg

� ⌘⇤
g

k = Op($N ), kb⌘
Sg

� ⌘⇤
g

k = Op(µN ) (44a)

kb⌘
MSEy

� ⌘⇤
y

k = Op($N ), kb⌘
Sy

� ⌘⇤
y

k = Op(µN ) (44b)

kb⌘
EEB

� ⌘⇤
B

k = Op(1/N), kb⌘
EB

� ⌘⇤
B

k = Op(1/
p
N) (44c)

where

$N = max

�
Op(�N ),Op(1/N)

�
(45a)

µN = max

�
Op(�N ),Op(1/

p
N)

�
. (45b)

Theorem 2 shows that the convergence rate ofb⌘
EEB

andb⌘
EB

to

⌘⇤
B

depends only on the fact �T�/N �! ⌃ as N �! 1 (�T� =
Op(N)) but not on the rate k�T�/N �⌃k = Op(�N ). Moreover, we

have
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• the convergence rate ofb⌘
EEB

to ⌘⇤
B

is faster than that ofb⌘
MSEg

to ⌘⇤
g

and that ofb⌘
MSEy

to ⌘⇤
y

.

• the convergence rate ofb⌘
EB

to ⌘⇤
B

is faster than that ofb⌘
Sg

to

⌘⇤
g

and that ofb⌘
Sy

to ⌘⇤
y

.

• the convergence rate ofb⌘
MSEg

,b⌘
MSEy

andb⌘
EEB

to ⌘⇤
g

, ⌘⇤
y

and

⌘⇤
B

, respectively, is faster than that ofb⌘
Sg

,b⌘
Sy

andb⌘
EB

to ⌘⇤
g

,

⌘⇤
y

and ⌘⇤
B

, respectively.

Theorem 2 has the following corollary.

Corollary 3. Assume that k�T�/N � ⌃k = Op(�N ), where �N �! 0

as N �! 1 and P(⌘) is any positive definite parameterization of the
kernel matrix. Then

kb⌘
MSEg

�b⌘
Sg

k = Op(µN ) (46a)

kb⌘
MSEy

�b⌘
Sy

k = Op(µN ) (46b)

kb⌘
EEB

�b⌘
EB

k = Op(1/
p
N) (46c)

where µN is defined in (45b).

This corollary shows that the convergence rate of kb⌘
EEB

�b⌘
EB

k
to zero is faster than that of kb⌘

MSEg

�b⌘
Sg

k and kb⌘
MSEy

�b⌘
Sy

k to

zero.

6. Numerical simulation

In this section, we illustrate the theoretical results with numer-

ical simulation.

6.1. Test data-bank

The method in Chen et al. (2012) and Pillonetto and Chiuso

(2015) is used to generate 1000 30th order test systems. Then for

each test system, we consider four different test inputs:

• The first two test inputs are implemented by the MAT-

LAB command idinput choosing the bandlimited white

Gaussian noise with normalized bands [0, 0.6] and [0, 1],
respectively, and denoted by IT1 and IT2, respectively.

• The third and fourth test inputs are thewhite Gaussian noise

of unit variance filtered by a second order rational transfer

function 1/(1 � aq�1

)

2

with a chosen to be 0.95 and 0.05,

respectively, and denoted by IT3 and IT4, respectively.

To generate the data set, we simulate each system with one of

the four test inputs to get the output, which is then corrupted by

an additive white Gaussian noise. The signal-to-noise ratio (SNR),

i.e., the ratio between the variance of the noise-free output and the

noise, is uniformly distributed over [1, 10], and is kept the same for

the four test inputs.

Finally, in order to test the finite sample and asymptotic be-

haviour of the hyperparameter estimators, we consider data sets

with different data lengths N = 500 and 8000, respectively.

6.2. Simulation setup

The performance of the RLS estimator (6b) is evaluated by the

measure of fit (Ljung, 2012) defined as follows :

Fit = 100 ⇥
✓
1 � kb✓ � ✓

0

k
k✓

0

� ✓̄
0

k

◆
, ✓̄

0

= 1

n

nX

k=1

g0

k

where n is set to 200. This fit is actually to evaluate the RLS

estimator in the MSEg sense.

Here the unknown inputsu�1

, . . . , u�n+1

are not used (nonwin-

dowed). The TC kernel (14c) is considered and its hyperparameter

⌘ = [c, ↵]T is estimated by using the estimators SUREg (18a),

Table 1

Average fits for 1000 test systems and data sets.

MSEg Sg MSEy Sy EEB EB

IT1

N = 500 80.34 �2.4E9 78.07 53.83 77.98 77.26

N = 8000 90.63 �8.6E8 88.08 78.39 88.39 88.36

IT2

N = 500 87.11 84.46 87.02 86.03 86.60 86.16

N = 8000 96.67 96.60 96.67 96.60 96.47 96.44

IT3

N = 500 46.95 �2220 41.61 �146.4 39.47 39.03

N = 8000 57.67 �176.8 53.63 38.86 51.05 50.86

IT4

N = 500 86.78 83.89 86.69 85.66 86.24 85.84

N = 8000 96.57 96.49 96.56 96.49 96.38 96.35

SUREy (18b), and EB (15a), respectively. For reference, we also

consider their corresponding Oracle counterparts, i.e., the esti-

mators MSEg (19a), MSEy (19b), and EEB (19c), respectively. The

notations Sg, Sy, EB, MSEg, MSEy, and EEB are used to denote the

corresponding simulation results, respectively.

6.3. Simulation results

The average fits are given in Table 1. The boxplots of the 1000

fits for IT1 and IT2 are displayed in Figs. 1–2, respectively. The

boxplots for IT3 and IT4 are skipped because of their similaritywith

IT1 and IT2.

6.4. Findings

Firstly, for all tested cases and in terms of average accuracy

and robustness, the Oracle estimators MSEg and MSEy (not imple-

mentable in practice) are better than Sg and Sy, respectively, while

EB is just a little bitworse than but very close to its Oracle estimator

EEB.

Secondly, we consider the cases with input IT1, where �T� is

very ill-conditioned for both N = 500 and N = 8000. In this case

and in termsof average accuracy and robustness, Sg performsbadly

because it depends on (�T�)

�1

. Moreover, Sy is better than Sg, but

worse than EB.

Thirdly, we consider the case with input IT2 and N = 500,

where �T� is much better conditioned than the cases with input

IT1. In this case and in terms of average accuracy and robustness,

Sg behaves much better in contrast with the cases with input IT1.

Moreover, EB and Sy are quite close though EB is a little bit better,

and they are all better than Sg.

Lastly, we consider the case with input IT2 and N = 8000,

where �T� is very well-conditioned and in terms of average

accuracy and robustness, Sg behaves much better in contrast with

all the other cases, and performs as well as Sy and better than EB.

Moreover, Sg and Sy are very close to the corresponding Oracle

estimators MSEg and MSEy. These observations coincide with the

results found in Theorem 1 and Corollary 2. Namely, Sg and Sy

are asymptotically optimal but EB is not in the MSEg/MSEy senses

and moreover, Sg and Sy give the same optimal hyperparameter

estimate as their Oracle counterparts MSEg andMSEy, because the

limit ⌃ = In of �T�/N as N ! 1. It can also be seen from

Figs. 1 and 2 that the boxplots of EEB and EB are closer than that of

MSEg and Sg and that of MSEy and Sy. This observation coincides

with the result found in Corollary 3, that is, the convergence rate

of kb⌘
EEB

� b⌘
EB

k to zero is faster than that of kb⌘
MSEg

� b⌘
Sg

k and

kb⌘
MSEy

�b⌘
Sy

k to zero.

Based on the theoretical and simulation results, we have the fol-

lowing suggestions for choosing the hyperparameter estimators:
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Fig. 1. Boxplot of the 1000 fits for the bandlimited white Gaussian noise input with the normalized band [0, 0.6] and boxplot of the condition numbers of the matrix �T�:

data lengths N = 500 (left) and N = 8000 (right).

Fig. 2. Boxplot of the 1000 fits for the bandlimited white Gaussian noise input with the normalized band [0, 1] and boxplot of the condition numbers of the matrix �T�:

data lengths N = 500 (left) and N = 8000 (right).

(i) When the regression matrix is well-conditioned and the

data is sufficiently long, the two SUREs should be used since

they are asymptotically optimal;

(ii) When the regression matrix is ill-conditioned or the data is

short, the EB estimator should be used.

7. Conclusions

Kernel matrix design and hyperparameter estimation are two

core issues for the kernel based regularizationmethods. In contrast

with the former issue, there are few results reported for the latter

issue. In this paper, we focused on the latter issue and studied

the properties of several hyperparameter estimators including the

empirical Bayes (EB) estimator, two Stein’s unbiased risk estima-

tors (SURE) and their corresponding Oracle counterparts, with an

emphasis on the asymptotic properties of these hyperparameter

estimators. Our major results are the following:

• The first order optimality conditions of these hyperparam-

eter estimators are put in similar forms that better expose

their relation and lead to several insights on these hyperpa-

rameter estimators.

• As the number of data goes to infinity, the two SUREs con-

verge to the best hyperparameter minimizing the corre-

sponding mean square error, respectively, while the more

widely used EB estimator converges to another best hyper-

parameter minimizing the expectation of the EB estimation

criterion. This indicates that the two SUREs are asymptot-

ically optimal in the corresponding MSE sense but the EB

estimator is not.

• The convergence rate of two SUREs is slower than that of the

EB estimator, and moreover, unlike the two SUREs, the EB

estimator is independent of the convergence rate of�T�/N
to its limit.

The results enhance our understanding about these hyperparam-

eter estimators and are one step forward towards the goal of

building a theory of the hyperparameter estimation for the kernel-

based regularization methods.
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Appendix A

Appendix A contains the proof of the results in the paper, for

which the technical lemmas are placed inAppendix B. The proofs of

Propositions 1, 5, 7, 8 and Corollaries 1, 2, and 3 are straightforward

and thus omitted.

A.1. Proof of Proposition 2

Under the setting P�1 = �A/� 2

, the MSEg (11a) of the RLS

estimator (6b) is a function of � for a given A:

MSEg(�) = Bias(�) + Var(�) where (A.1)

Bias(�) = �2✓ T
0

A(�T� + �A)�1

(�T� + �A)�1A✓
0

Var(�) = � 2

Tr

�
(�T� + �A)�1�T�(�T� + �A)�1

�
.

Note that MSEg(0) = � 2

Tr

�
(�T�)

�1

�
corresponds to the MSEg of

the LS estimator (5b). The derivatives of Bias(�) and Var(�) with

respect to � are as follows:

dBias(�)

d�
= 2�✓ T

0

A(�T� + �A)�1

(�T� + �A)�1A✓
0

� 2�2✓ T
0

A(�T� + �A)�1A(�T� + �A)�1

⇥ (�T� + �A)�1A✓
0

(A.2)

dVar(�)

d�
= � 2� 2

Tr

�
(�T� + �A)�1A(�T� + �A)�1

⇥ �T�(�T� + �A)�1

�
(A.3)

where the formula

dC�1

(�)
d�

= �C�1

(�) dC(�)
d�

C�1

(�) for an invertible

matrix C(�) is used. Then we have

dBias(�)

d�

���
��!0

+
= 0

dVar(�)

d�

���
��!0

+
= �2� 2

Tr

�
(�T�)

�1A(�T�)

�1

�
< 0.

Therefore, we have

dMSEg(�)
d�

���
��!0

+
< 0. This means that

MSEg(�) < MSEg(0) in some small right neighbourhood of the

origin � = 0.

Under the assumption that A is positive definite, denote

M(�)
4= E(b✓R � ✓

0

)(

b✓R � ✓
0

)

T .

We first prove M(0) � M(�) > 0 for 0 < � < 2� 2/(✓ T
0

A✓
0

). A

straightforward calculation gives

M(0) � M(�)

= � 2

(�T�)

�1 � � 2

(�T� + �A)�1�T�(�T� + �A)�1

� �2

(�T� + �A)�1A✓
0

✓ T
0

A(�T� + �A)�1

= �(�T� + �A)�1

�
� 2[2A + �A(�T�)

�1A] � �A✓
0

✓ T
0

A
�

⇥ (�T� + �A)�1.

As a result, to proveM(0) � M(�) > 0, it suffices to show

� 2[2A + �A(�T�)

�1A] � �A✓
0

✓ T
0

A > 0 (A.4)

which is true if 2� 2In � �A1/2✓
0

✓ T
0

A1/2 > 0 due to

� 2[2A + �A(�T�)

�1A] � �A✓
0

✓ T
0

A
> 2� 2A � �A✓

0

✓ T
0

A
= A1/2

(2� 2In � �A1/2✓
0

✓ T
0

A1/2
)A1/2 > 0

where A1/2
is the symmetric and positive definite square root

of A when A is positive definite. In addition, the eigenvalues of

A1/2✓
0

✓ T
0

A1/2
are ✓ T

0

A✓
0

and zero (with multiplicity n � 1). This

shows 2� 2In � �A1/2✓
0

✓ T
0

A1/2 > 0 for 0 < � < 2� 2/(✓ T
0

A✓
0

).

Note that MSEg(�) = Tr(M(�)). One has proved that M(0) �
M(�) is positive definite if 0 < � < 2� 2/(✓ T

0

A✓
0

), so we have

MSEg(0) � MSEg(�) = Tr(M(0) � M(�)) > 0.

The proof for theMSEy (11b) is similar to that for theMSEg (11a)

by using the connection (10).

Remark A1. When � �! 1, from the MSEg (A.1) we have

(1) Bias(�) �! ✓ T
0

✓
0

and

dBias(�)
d�

�! 0,

(2) Var(�) �! 0 and

dVar(�)
d�

�! 0,

(3) MSEg(�) �! ✓ T
0

✓
0

and

dMSEg(�)
d�

�! 0.

A.2. Proof of Proposition 3

To prove (24a), let us set

F
Sg

1

(P) = � 4YTQ�T�(�T�)

�2�TQ�1Y
F

Sg

2

(P) = � 2

Tr

�
2R�1� (�T�)

�1

�
.

By (B.1) and (B.4), the derivative of F
Sg1 (P) is

@F
Sg

1

(P)
@P

= � 4

X

i,j

�
2�(�T�)

�2�TQ�1YYT �
ij
@(Q�1

)ij

@P

= �2� 4

X

i,j

(�(�T�)

�2�TQ�1YYT
)ij�

TQ�T JijQ�T�

= �2� 4�TQ�T�(�T�)

�2�TQ�1YYTQ�T� (A.5)

and using (B.16) implies the derivative of F
Sg2 (P)

@F
Sg

2

(P)
@P

= 2� 2

nX

i=1

@(R�1

)ii

@P

= 2� 4P�T R�T R�T P�T = 2� 4H�TH
�T

. (A.6)

Combining (A.5) with (A.6) derives (24a).

The proof of (24b) and (24c) is similar by using Lemma B1 and

so it is omitted.

A.3. Proof of Proposition 4

Recall that R = �T� + � 2P�1

and V is the noise vector. It

follows from (6b) that

b✓R�✓
0

= R�1�T Y � ✓
0

= �� 2R�1P�1✓
0

+ R�1�T V
= �� 2H�1✓

0

+ R�1�T V

which derives

MSEg(P) = � 4✓ T
0

H�TH�1✓
0

+ � 2

Tr(R�1�T�R�T
)

= MSEg1(P) + MSEg2(P).
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For the term MSEg1(P), using the formulae (B.1) and (B.4) gives

@MSEg1(P)
@P

= � 4

X

i,j

�
2H�1✓

0

✓ T
0

�
ij

@
�
H�1

�
ij

@P

= � 4

X

i,j

�
2H�1✓

0

✓ T
0

�
ij

�
�H�T JijH�T�T�

�

= � 2� 4H�TH�1✓
0

✓ T
0

H�T�T�

= � 2� 4H�TH�1✓
0

✓ T
0

�TQ�T�. (A.7)

By using the formulae (B.6) and (B.16), one derives

MSEg2(P)
@P

= � 2

X

i,j

�
2R�1�T�

�
ij

@
�
R�1

�
ij

@P

= � 2

X

i,j

�
2R�1�T�

�
ij(�

2P�T R�T JijR�T P�T
)

= 2� 4P�T R�T R�1�T�R�T P�T

= 2� 4H�TH�1P�TQ�T�. (A.8)

Combining (A.7) with (A.8) implies the conclusion (26a).

The proof of (26b) and (26c) is similar by using Lemma B1 and

so it is omitted.

A.4. Proof of Proposition 6

Let us first consider the EB estimator. Under the assumptions

that P(⌘) = ⌘In and �T� = NIn, we have S�1 = 1/(⌘ + � 2/N)In.
Further, by using (28f) and (23), we obtain

dF
EB

(P(⌘))
d⌘

= nN2

(⌘N + � 2

)

2

⇣
⌘ + � 2

N
� (

b✓ LS

)

Tb✓ LS

n

⌘
.

By using the Lagrange multiplier, the resulting Lagrangian is

L
EB

(⌘, �) = F
EB

(P(⌘)) � �⌘

where � is the Lagrange multiplier. Thus the corresponding

Karush–Kuhn–Tucker (KKT) conditions (Boyd & Vandenberghe,

2004) are

nN2

(⌘N + � 2

)

2

⇣
⌘ + � 2

N
� (

b✓ LS

)

Tb✓ LS

n

⌘
� � = 0

�⌘ = 0, � � 0, ⌘ � 0

and its solution is8
>><

>>:

b⌘ = (

b✓ LS

)

Tb✓ LS

n
� � 2

N
,b� = 0 if

(

b✓ LS

)

Tb✓ LS

n
� � 2

N

b⌘ = 0,b� = nN2

� 4

⇣� 2

N
� (

b✓ LS

)

Tb✓ LS

n

⌘
if

(

b✓ LS

)

Tb✓ LS

n
<

� 2

N
.

Therefore, we obtain the hyperparameter ⌘ estimated by the EB

estimator is

max

⇣
0,

(

b✓ LS

)

Tb✓ LS

n
� � 2

N

⌘
. (A.9)

Under the same setting �T� = NIn, the KKT conditions corre-

sponding to the SUREg and SUREy estimators derive that the ar-

guments minimizing F
Sg

(P(⌘)) and F
Sy

(P(⌘)) under the constraint
⌘ � 0 are also (A.9), respectively.

Likewise, by using (28a), (28c), and (28e) we have all the hyper-

parametersminimizing theMSEg(P(⌘)),MSEy(P(⌘)), andEEB(P(⌘))
satisfy the equation

Tr

�
⌘In � ✓

0

✓ T
0

�
= 0

and its solution is ✓ T
0

✓
0

/n.

A.5. Proof of Proposition 9

Under the assumptions that �T�/N �! ⌃ > 0 and the white

noise v(t), we have (�T�)

�1 = Op(1/N) �! 0, S�1 �! P�1

,

NR�1 �! ⌃�1

, R�1�T� �! In, andb✓ LS �! ✓
0

almost surely as

N �! 1.

Let us first prove (36a). Using (27), we rewrite MSEg(P) in (11a)

as follows:

MSEg(P) = � 4✓ T
0

S�1

(�T�)

�2S�1✓
0

+ � 2

Tr(R�1�T�R�1

).

The limit

N2

�
R�1�T�R�1 � (�T�)

�1

�

=�� 2N2R�1

�
2P�1+� 2P�1

(�T�)

�1P�1

�
R�1

�! � 2� 2⌃�1P�1⌃�1

(A.10)

yields that

N2

(MSEg(P) � � 2

Tr((�T�)

�1

))

= � 4✓ T
0

S�1

(N2

(�T�)

�2

)S�1✓
0

+ � 2N2

Tr

�
R�1�T�R�1 � (�T�)

�1

�

�!� 4✓ T
0

P�1⌃�2P�1✓
0

� 2� 4

Tr

�
⌃�1P�1⌃�1

�

= Wg (P, ⌃, ✓
0

). (A.11)

To prove (36b), note that the first term of F
Sg

(P) can be rewritten

as � 4

(

b✓ LS

)

T S�1

(�T�)

�2S�1b✓ LS

. Thus one derives

N2

(F
Sg

(P) � � 2

Tr((�T�)

�1

))

= � 4

(

b✓ LS

)

T S�1N2

(�T�)

�2S�1b✓ LS

+ 2� 2N2

Tr

�
R�1� (�T�)

�1

�

�!Wg (P, ⌃, ✓
0

) (A.12)

where we use the limit

N2

(R�1� (�T�)

�1

) = �� 2NR�1P�1N(�T�)

�1

�! �� 2⌃�1P�1⌃�1.

Similarly, we can rewrite MSEy(P) as

MSEy(P) = � 4✓ T
0

S�1

(�T�)

�1S�1✓
0

+ N� 2

+ Tr

�
R�1�T�R�1�T�

�
(A.13)

and hence the assertion (36c) is proved by

N(MSEy(P)�(n+N)� 2

)

= � 4✓ T
0

S�1N(�T�)

�1S�1✓
0

+ � 2NTr

�
R�1�T�R�1�T�� In

�
(A.14)

�! Wy(P, ⌃, ✓
0

)

where we use the formulae

N(R�1�T�R�1�T� � In)
=�� 2NR�1

⇥
2P�1+� 2P�1

(�T�)

�1P�1

⇤
R�1�T�

�! � 2� 2⌃�1P�1.

To prove (36d), we need some identities. A straightforward calcu-

lation shows that

Q (IN � �(�T�)

�1�T
)Q = � 4

(IN � �(�T�)

�1�T
).

This means that

� 4Q�1

(IN � �(�T�)

�1�T
)Q�1 = IN � �(�T�)

�1�T
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and hence we derive

� 4YTQ�2Y + YT�(�T�)

�1�T Y � YTY
= � 4YTQ�1�(�T�)

�1�TQ�1Y .

It follows from (B.11) and (B.14) that

N
⇥
F

Sy

(P) + YT�(�T�)

�1�T Y � YTY � 2n� 2

⇤

= N
⇥
� 4YTQ�1�(�T�)

�1�TQ�1Y+2� 2

Tr(R�1�T� � In)
⇤

= N
⇥
� 4

(

b✓ LS

)

T S�1

(�T�)

�1S�1b✓ LS+2� 2

Tr(R�1�T� � In)
⇤

�! Wy(P, ⌃, ✓
0

) (A.15)

where we use the limit

N(R�1�T� � In) = �� 2NR�1P�1 �! �� 2⌃�1P�1.

Similarly, we need two identities to prove (36e). Using the

Sylvester’s determinant identity det(In+AB) = det(IN+BA) derives

det(Q ) = � 2(N�n)
det(�T�) det(P + � 2

(�T�)

�1

)

which implies

log det(Q ) � (N � n) log � 2 � log det(�T�)

= log det(S) �! log det(P). (A.16)

Starting with the identity IN =� 2Q�1 + �P�TQ�1

gives

� 2

Tr(Q�1

) = N � Tr(�P�TQ�1

)

= N � Tr(R�1�T�) �! N � n.

Therefore, the limit (36e) is proved by

EEB(P)�(N�n)�(N�n) log � 2�log det(�T�)

= ✓ T
0

S�1✓
0

+
�
� 2

Tr(Q�1

) � (N � n)
�

+ log det(Q ) � (N � n) log � 2 � log det(�T�)

�! ✓ T
0

P�1✓
0

+ log det(P) = W
B

(P, ✓
0

). (A.17)

At last, we finish the proof by checking (36f). The identity

Q (IN � �(�T�)

�1�T
)/� 2 = IN � �(�T�)

�1�T

implies that

YTQ�1Y + YT�(�T�)

�1�T Y/� 2 � YTY/� 2

= YTQ�1�(�T�)

�1�T Y . (A.18)

It follows from (A.16), (A.18), and (B.11) that

F
EB

(P) + YT�(�T�)

�1�T Y/� 2 � YTY/� 2

� (N�n) log � 2�log det(�T�)

= YTQ�1Y + YT�(�T�)

�1�T Y/� 2 � YTY/� 2

+ log det(Q ) � (N � n) log � 2 � log det(�T�)

= YTQ�1�(�T�)

�1�T Y + log det(S)
�! W

B

(P, ✓
0

). (A.19)

A.6. Proof of Theorem 1

Firstly, we proveb⌘
MSEg

�! ⌘⇤
g

as N �! 1. Define

MSEg(P) 4= N2

�
MSEg(P) � � 2

Tr((�T�)

�1

)

�
. (A.20)

Clearly, we haveb⌘
MSEg

also minimizes MSEg(P(⌘)), i.e.,

b⌘
MSEg

= argmin

⌘2⌦

MSEg(P(⌘)).

Under Assumption 2, there exists a compact set

⌦ ⇢ ⌦ (A.21)

containing ⌘⇤
g

such that 0 < d
1

 kP(⌘)k  d
2

< 1 for all ⌘ 2 ⌦ .

Then by LemmaB3 in Appendix B, to proveb⌘
MSEg

�! ⌘⇤
g

asN �! 1,

it suffices to show that MSEg(P(⌘)) converges to Wg (P(⌘), ⌃, ✓
0

)

almost surely and uniformly in ⌦ , as N ! 1.

It follows from (A.11) and (A.10) that

MSEg(P(⌘)) � Wg (P, ⌃, ✓
0

)

= � 4Z
1

+ 2� 4

Tr

�
Z
2

�
� � 6

Tr

�
Z
3

�
(A.22)

Z
1

= ✓ T
0

S�1

(N2

(�T�)

�2

)S�1✓
0

� ✓ T
0

P�1⌃�2P�1✓
0

Z
2

= ⌃�1P�1⌃�1 � N2R�1P�1R�1

(A.23)

Z
3

= � N2R�1P�1

(�T�)

�1P�1R�1.

For the term Z
1

, we have

Z
1

= ✓ T
0

(S�1 � P�1

)(N2

(�T�)

�2

)S�1✓
0

+ ✓ T
0

P�1

(N2

(�T�)

�2 � ⌃�2

)S�1✓
0

+ ✓ T
0

P�1⌃�2

(S�1 � P�1

)✓
0

(A.24)

where

S�1 � P�1 = �� 2S�1

(�T�)

�1P�1. (A.25)

Note that �T�/N �! ⌃ implies that kN(�T�)

�1k = Op(1).

Then further noting that d
1

 kP(⌘)k  d
2

and kS(⌘)�1k <
k(P(⌘))�1k  1/d

1

for ⌘ 2 ⌦ , we have Z
1

converges to zero almost

surely and uniformly in ⌦ .

For the term Z
2

, we have

⌃�1P�1⌃�1 � N2R�1P�1R�1

= (⌃�1�NR�1

)P�1⌃�1+NR�1P�1

(⌃�1�NR�1

).

The assertions NR�1 �! ⌃�1

and kNR�1 � ⌃�1k = Op(1) yield

that Z
2

converges to zero almost surely and uniformly in⌦ . Finally,

by noting (�T�)

�1 �! 0 as N ! 1 it is easy to see that Z
3

also

converges to zero almost surely and uniformly.Making use of these

facts shows that MSEg(P(⌘)) converges to Wg (P(⌘), ⌃, ✓
0

) almost

surely and uniformly in ⌦ and hence, by Lemma B3,b⌘
MSEg

�! ⌘⇤
g

as N ! 1 almost surely.

Secondly, we prove thatb⌘
Sg

�! ⌘⇤
g

as N ! 1 and the proof is

similar to that ofb⌘
MSEg

�! ⌘⇤
g

as N ! 1. Define

F
Sg

(P(⌘)) 4= N2

�
F

Sg

(P(⌘)) � � 2

Tr((�T�)

�1

)

�
.

Then, we have

b⌘
Sg

= argmin

⌘2⌦

F
Sg

(P(⌘)). (A.26)

It follows from (A.12) that

F
Sg

(P(⌘)) � Wg (P, ⌃, ✓
0

) = � 4Z 0
1

+ 2� 4

Tr

�
Z 0
2

�

Z 0
1

= (

b✓ LS

)

T S�1N2

(�T�)

�2S�1b✓ LS � ✓ T
0

P�1⌃�2P�1✓
0

Z 0
2

= ⌃�1P�1⌃�1 � NR�1P�1N(�T�)

�1.

For the terms Z 0
1

and Z 0
2

, we have

Z 0
1

=
�b✓ LS � ✓

0

�T S�1N2

(�T�)

�2S�1b✓ LS

+ ✓ T
0

�
S�1� P�1

�
N2

(�T�)

�2S�1b✓ LS

+ ✓ T
0

P�1

�
N2

(�T�)

�2 � ⌃�2

�
S�1b✓ LS

+ ✓ T
0

P�1⌃�2

�
S�1 � P�1

�b✓ LS

+ ✓ T
0

P�1⌃�2P�1

�b✓ LS � ✓
0

�
(A.27)

Z 0
2

=
�
⌃�1 � NR�1

�
P�1⌃�1

+ NR�1P�1

�
⌃�1 � N(�T�)

�1

�
. (A.28)
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Then, noting that

b✓ LS �! ✓
0

, S�1 �! P�1

, N(�T�)

�1 �! ⌃�1

,

NR�1 �! ⌃�1

almost surely as N �! 1, and kNR�1k = Op(1),

kb✓ LSk = Op(1), and d
1

 kP(⌘)k  d
2

, kS(⌘)�1k < k(P(⌘))�1k 
1/d

1

, for ⌘ 2 ⌦ , one can show that each term of (A.27) and

(A.28), and thus both Z 0
1

and Z 0
2

converge to zero almost surely and

uniformly in ⌦ . Therefore, F
Sg

(P(⌘)) converges to Wg (P, ⌃, ✓
0

)

almost surely and uniformly in ⌦ . It then follows from Lemma B3

thatb⌘
Sg

�! ⌘⇤
g

almost surely as N �! 1.

The proof of (43b) and (43c) can be done similarly and thus is

omitted. The first order optimality conditions of ⌘⇤
g , ⌘

⇤
y , and ⌘⇤

B

can

be derived in a similar way as Proposition 4 and thus is omitted.

This completes the proof.

A.7. Proof of Theorem 2

We first prove that kb⌘
MSEg

� ⌘⇤
g

k = Op($N ).

Noting (A.11), the ith elements of the gradient vectors of

MSEg(P(⌘)) andWg (P(⌘), ⌃, ✓
0

)with respect to ⌘ are, respectively,

for 1  i  p,

@MSEg(P(⌘))
@⌘i

= 2� 4N2✓ T
0

S�1

(�T�)

�2

@S�1

@⌘i
✓
0

+ 2� 2N2

Tr

⇣@R�1

@⌘i
�T�R�1

⌘

@Wg (P(⌘), ⌃, ✓
0

)

@⌘i
= 2� 4✓ T

0

P�1⌃�2

@P�1

@⌘i
✓
0

� 2� 4

Tr

⇣
⌃�1

@P�1

@⌘i
⌃�1

⌘
. (A.29)

Using the identity

@R�1

@⌘i
= �R�1

@R
@⌘i

R�1 = �� 2R�1

@P�1

@⌘i
R�1

, we see

their difference is

@MSEg(P(⌘))
@⌘i

� @Wg (P(⌘), ⌃, ✓
0

)

@⌘i
= 2� 4

�
⌥

1

+Tr(⌥
2

)

�

where ⌥
1

= ✓ T
0

S�1

�
N2

(�T�)

�2

�@S�1

@⌘i
✓
0

� ✓ T
0

P�1⌃�2

@P�1

@⌘i
✓
0

,

⌥
2

= ⌃�1

@P�1

@⌘i
⌃�1 � NR�1

@P�1

@⌘i
R�1�T�NR�1.

Noting kN(�T�)

�1 � ⌃�1k = Op(�N ), kS�1 � P�1k = Op(1/N),�� @S�1

@⌘i
� @P�1

@⌘i

�� = Op(1/N),

��R�1�T� � In
�� = Op(1/N),

��NR�1 �
⌃�1

�� = Op(�N ), and d
1

 kP(⌘)k  d
2

and kS(⌘)�1k <

k(P(⌘))�1k  1/d
1

for ⌘ 2 ⌦ yields

|⌥
1

| = Op($N ), |Tr(⌥
2

)| = Op($N ) (A.30)

uniformly in ⌦ , where ⌦ is defined in (A.21). Therefore,

���
@MSEg(P(⌘))

@⌘
� @Wg (P(⌘), ⌃, ✓

0

)

@⌘

��� = Op($N )

uniformly for any ⌘ 2 ⌦ . Sinceb⌘
MSEg

and ⌘⇤
g

minimize MSEg(P)
andWg (P, ⌃, ✓

0

), respectively, we have

@MSEg(P(⌘))
@⌘

���
⌘=b⌘

MSEg

= 0 and

@Wg (P(⌘), ⌃, ✓
0

)

@⌘

���
⌘=⌘⇤

g

= 0.

It follows that

@MSEg(P(⌘))
@⌘

���
⌘=⌘⇤

g

= Op($N ).

In addition, by using (A.29), the (i, j)-element of the Hessianmatrix

ofWg (P(⌘), ⌃, ✓
0

) is

@2Wg (P(⌘), ⌃, ✓
0

)

@⌘i@⌘j

= 2� 4✓ T
0

P�1⌃�2

@2P�1

@⌘i@⌘j
✓
0

+ 2� 4✓ T
0

@P�1

@⌘j
⌃�2

@P�1

@⌘i
✓
0

� 2� 4

Tr

⇣
⌃�1

@2P�1

@⌘i@⌘j
⌃�1

⌘
. (A.31)

The Hessian matrix

@2MSEg(P(⌘))
@⌘@⌘T

of MSEg(P(⌘)) is omitted here for

simplicity. Then, it can be shown that

���
@2

MSEg(P(⌘))
@⌘@⌘T � @2Wg (P(⌘), ⌃, ✓

0

)

@⌘@⌘T

��� = op(1)

uniformly for any ⌘ 2 ⌦ . Applying the Taylor expansion to

@MSEg(P(⌘))
@⌘

yields

0 = @MSEg(P(⌘))
@⌘

���
⌘=b⌘

MSEg

= @MSEg(P(⌘))
@⌘

���
⌘=⌘⇤

g

+ @2

MSEg(P(⌘))
@⌘@⌘T

���
⌘=⌘̄

(b⌘
MSEg

� ⌘⇤
g

)

where ⌘̄ lies betweenb⌘
MSEg

and ⌘⇤
g

.

Clearly,

@2Wg (P(⌘), ⌃, ✓
0

)

@⌘@⌘T

���
⌘=⌘⇤

g

= Op(1).

Then under Assumption 2, we have

@2Wg (P(⌘),⌃,✓
0

)

@⌘@⌘T

���
⌘=⌘⇤

g

is positive

definite. For sufficiently largeN , ⌘̄would be close to ⌘⇤
g

. In this case,

we also have

@2Wg (P(⌘),⌃,✓
0

)

@⌘@⌘T

���
⌘=⌘̄

is positive definite. Then it follows

that

b⌘
MSEg

� ⌘⇤
g

= �
⇣@2

MSEg(P(⌘))
@⌘@⌘T

���
⌘=⌘̄

⌘�1 @MSEg(P(⌘))
@⌘

���
⌘=⌘⇤

g

= Op(1)Op($N ) = Op($N ).

Now,we prove kb⌘
Sg

�⌘⇤
g

k = Op(µN ) and the proof is similar to that

of kb⌘
MSEg

� ⌘⇤
g

k = Op($N ). By (A.12), the ith element of gradient

vector of F
Sg

(P(⌘)) is

@F
Sg

(P(⌘))
@⌘i

= 2� 4

(

b✓ LS

)

TS�1N2

(�T�)

�2

@S�1

@⌘i
b✓ LS

+ 2� 2N2

Tr

⇣@R�1

@⌘i

⌘
. (A.32)

Using the identity

@R�1

@⌘i
=�� 2R�1

@P�1

@⌘i
R�1

, we see

@F
Sg

(P(⌘))
@⌘i

� @Wg (P(⌘), ⌃, ✓
0

)

@⌘i
= 2� 4⌥ 0

1

+ 2� 4

Tr

�
⌥ 0

2

�

where ⌥ 0
1

= (

b✓ LS

)

TS�1N2

(�T�)

�2

@S�1

@⌘i
b✓ LS

� ✓ T
0

P�1⌃�2

@P�1

@⌘i
✓
0

(A.33)

⌥ 0
2

= ⌃�1

@P�1

@⌘i
⌃�1 � NR�1

@P�1

@⌘i
NR�1.
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Since�T�/N �! ⌃ and v(t) is awhite noise, we have kb✓ LS�✓
0

k =
Op(1/

p
N). Then noting that kN(�T�)

�1�⌃�1k = Op(�N ), kS�1�
P�1k = Op(1/N),

�� @S�1

@⌘i
� @P�1

@⌘i

�� = Op(1/N),

��NR�1 � ⌃�1

�� =
Op(�N ), and kNR�1k = Op(1), kb✓ LSk = Op(1), and d

1

 kP(⌘)k  d
2

and kS(⌘)�1k < k(P(⌘))�1k  1/d
1

for ⌘ 2 ⌦ , yields

|⌥ 0
1

|=max

�
Op(1/

p
N),Op(1/N),Op(�N )

�
= Op(µN )

|Tr
�
⌥ 0

2

�
|=Op(�N )

uniformly in ⌦ . It follows that

���
@F

Sg

(P(⌘))
@⌘

� @Wg (P(⌘), ⌃, ✓
0

)

@⌘

��� = Op(µN )

uniformly for any ⌘ 2 ⌦ . This implies

@F
Sg

(P(⌘))
@⌘

���
⌘=⌘⇤

g

= Op(µN ). (A.34)

Similarly, one can obtain the Hessian matrix of F
Sg

(P(⌘)) and can

show that

���
@2F

Sg

(P(⌘))
@⌘@⌘T � @2Wg (P(⌘), ⌃, ✓

0

)

@⌘@⌘T

��� = op(1) (A.35)

uniformly for any ⌘ 2 ⌦ . Applying the Taylor expansion of

@F
Sg

(P(⌘))
@⌘

shows

0 = @F
Sg

(P(⌘))
@⌘

���
⌘=b⌘

Sg

= @F
Sg

(P(⌘))
@⌘

���
⌘=⌘⇤

g

+ @2

MSEg(P(⌘))
@⌘@⌘T

���
⌘=e⌘

(b⌘
MSEg

� ⌘⇤
g

)

wheree⌘ lies betweenb⌘
Sg

and ⌘⇤
g

. For sufficiently large N , we have

b⌘
Sg

� ⌘⇤
g

= �
⇣@2F

Sg

(P(⌘))
@⌘@⌘T

���
⌘=e⌘

⌘�1 @F
Sg

(P(⌘))
@⌘

���
⌘=⌘⇤

g

= Op(1)Op(µN ) = Op(µN ).

The proof of (44b) and (44c) can be done in a similar way and thus

is omitted. This completes the proof.

Appendix B

This appendix contains the technical lemmas used in the proof

in Appendix A.

B.1. Matrix differentials and related identities

This section introduces the differentiation of a function f (X)
where X is a matrix. It is assumed that X has no special structure,

i.e., that the elements of X are independent. For convenience and

readability, the formulae used in the paper are stated in the follow-

ing lemmas.

Lemma B1 (Petersen & Pedersen, 2012). Assume that b is a column
vector, and A, B and X are matrices with compatible dimensions. Then
we have
@bTXTAXb

@X
= (A + AT

)XbbT (B.1)

@bTX�1b
@X

= �X�T bbTX�T
(B.2)

@ log|det(X)|
@X

= X�T
(B.3)

@(X�1

)kl

@Xij
= �(X�1

)ki(X�1

)jl (B.4)

@Tr(AX�1B)
@X

= �(X�1BAX�1

)

T
(B.5)

@Tr(AXBXTAT
)

@X
= ATAX(B + BT

) (B.6)

where (·)ij denotes the (i, j)th element of a matrix.

Lemma B2. We have the following identities:
X

ij

(A)ijJij = A (B.7)

Y � �b✓R = � 2Q�1Y (B.8)

b✓ LS �b✓R = � 2

(�T�)

�1�TQ�1Y (B.9)

A(IN + BA)�1 = (In + AB)�1A (B.10)

�TQ�1� = S�1 �TQ�1Y = S�1b✓ LS

(B.11)

�TQ�TQ�T� = S�T
(�T�)

�1S�T
(B.12)

�TQ�TQ�1Y = S�T
(�T�)

�1S�1b✓ LS

(B.13)

IN � � 2Q�1 = �P�TQ�1 = Q�1�P�T = �R�1�T
(B.14)

@(Q�1

)ij

@P
= ��TQ�T JijQ�T� (B.15)

@(R�1

)ij

@P
= � 2P�T R�T JijR�T P�T

(B.16)

where Jij is the matrix whose (i, j)-element is one and zero for all other
elements.

Proof. The identities (B.7)–(B.14) can be verified by a straightfor-

ward calculation. Using (B.4) gives

@(Q�1

)ij

@Pst
=
X

a,b

@(Q�1

)ij

@Qab

@Qab

@Pst

= �
X

a,b

(Q�1

)ia(Q�1

)bj�as(�
T
)tb

= �
X

a,b

(�T
)sa(Q�T

)ai(Q�T
)jb�bt

= � (�TQ�T
)si(Q�T�)jt

which implies (B.15). While (B.16) can be proved in a similar

way. ⇤

B.2. Convergence result for extremum estimators

Lemma B3 (Ljung, 1999, Theorem 8.2). Assume that

(1) M(⌘) is a deterministic function that is continuous in ⌘ 2 ⌦
and minimized at the set

D = argmin

⌘2⌦

M(⌘) =
�
⌘|⌘ 2 ⌦,M(⌘) = min

⌘02⌦
M(⌘0

)

 

where ⌦ is a compact subset of Rp.
(2) A sequence of functions {MN (⌘)} converges to M(⌘) almost

surely and uniformly in ⌦ as N goes to 1.

Thenb⌘N = argmin⌘2⌦MN (⌘) converges to D almost surely, namely,

inf

⌘⇤2D
kb⌘N � ⌘⇤k �! 0, as N �! 1.
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