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a b s t r a c t

This paper considers identification of nonlinear rational systems defined as the ratio of two nonlinear
functions of past inputs and outputs. Despite its long history, a globally consistent identification algorithm
remains illusive. This paper proposes a globally convergent identification algorithm for such nonlinear
rational systems. To the best of our knowledge, this is the first globally convergent algorithm for the
nonlinear rational systems. The technique employed is a two-step estimator. Though two-step estimators
are known to produce consistent nonlinear least squares estimates if a

p
N consistent estimate can be

determined in the first step, how to find such a
p
N consistent estimate in the first step for nonlinear

rational systems is nontrivial and is not answered by any two-step estimators. The technical contribution
of the paper is to develop a globally consistent estimator for nonlinear rational systems in the first step.
This is achieved by involving model transformation, bias analysis, noise variance estimation, and bias
compensation in the paper. Two simulation examples and a practical example are provided to verify the
good performance of the proposed two-step estimator.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

System identification aims to build a mathematical model for a
system from the measured data in some optimal way. If a system
is linear or is well approximated by a linear system, then linear
system models are a good choice. Thus, well-developed linear
identificationmethods introduced for example in Ljung (1999) and
Söderström and Stoica (1989) are available to identify the system.
On the other hand, if a system shows a strong nonlinear behavior,
then nonlinear system models and the corresponding nonlinear
identification algorithms become necessary.

I The material in this paper was partially presented at the 35th Chinese Control
Conference, July 27–29, 2016, Chengdu, China. This paper was recommended for
publication in revised form by Associate Editor Cristian R. Rojas under the direction
of Editor Torsten Söderström.
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(Q. Zhu).
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A growing number of studies have demonstrated that the non-
linear autoregressivemoving average with exogenous input (NAR-
MAX) model (Chen & Billings, 1989; Haber & Unbehauen, 1990;
Leontaritis & Billings, 1985) may provide a unified representation
for a wide class of nonlinear systems that include several known
nonlinear systems as special cases. However, the NARMAX repre-
sentation is too general and inefficient in a variety of applications
where a system does have some unique structures that are ignored
by the general NARMAX representation. Froman engineering point
of view, the available structural information should be embedded
into system models as well as identification algorithms. The non-
linear rational system is such a case. The study of nonlinear ra-
tional models has a long history and has been driven by practical
applications and theoretical interests. On the application side, an
early reported example was the catalytic dehydration of n-hexyl
alcohol model (Box & Hunter, 1965)

y(k) = ✓3✓1u1(k)
1 + ✓1u1(k) + ✓2u2(k)

,

where y is the rate of reaction, u1 the partial pressure of alcohol, u2
the partial pressure of olefin, ✓1 absorption equilibrium constant
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of alcohol, ✓2 absorption equilibrium constant of olefin and
✓3 effective reaction rate constant. The purpose is to estimate
✓i, i = 1, 2, 3 from the measurements of y, u1 and u2. Interested
readers can find quite a few real-world nonlinear rational systems
in Bates and Watts (2007).

A unique feature of the nonlinear rational system is that
both the numerator and denominator are linear combinations of
known nonlinear functions ofmeasurable variables with unknown
coefficients or parameters. Thus, the system is nonlinear in
terms of parameters in the denominator that makes identification
nontrivial. Since that early paper, nonlinear rational systems have
been widely used to model various biological phenomena in life
science, for example, gene expression, metabolic networks, and
enzyme catalyzed reactionswithin systems biology (Klipp, Herwig,
Kowald, Wierling, & Lehrach, 2005) and chemical kinetics of
catalytic reactions in chemical engineering (Dimitrov & Kamenski,
1991; Kamenski & Dimitrov, 1993). They have also found
applications in economic systems, physics, and engineering.

On the theoretical side, it was shown in Bartosiewicz (1987)
and Sontag (1979) that a nonlinear system possesses a realizable
and bounded polynomial response if and only if the system is
a rational model. Further, Bartosiewicz (1987) established that a
smooth system may be immersed into a rational system if the
observation field is a finitely generated extension of R, and stated
that rational systems could be simpler and more powerful than
smooth systems. In addition, the existence of rational realizations
of response maps was investigated in N•mcová and van Schuppen
(2009, 2010). It was shown that if a response map is realized
by a rational system, then there also exists a minimal rational
realization of the map (N•mcová & van Schuppen, 2010). These
evidences from the viewpoint of theory indicate that nonlinear
rational systems can well approximate a wide range of nonlinear
systems and actually provide a superior performance.

A number of identification algorithms have been proposed in
the literature to estimate theunknownparameters in thenonlinear
rational systems. They include prediction error estimator (Billings
& Chen, 1989), extended least-squares estimator (Billings &
Zhu, 1991), some variants of Newton-type methods (Dimitrov
& Kamenski, 1991; Heiser & Parrish, 1989), back propagation
parameter estimator (Zhu, 2003) and implicit least squares
parameter estimator (Zhu, 2005). However, none of the estimators
mentioned above are globally convergent. The main difficulties
are: (a) Nonlinear rational systems could be transformed into
a system which is linear in the parameters by multiplying the
denominator on both sides. However, the resultant regressor is
correlated with the noise and even with white noise, the resulting
least squares estimate is biased. (b) The prediction error type
objective function has many local minima since nonlinear rational
systems are nonlinear in the parameters. Hence, various developed
nonlinear optimization algorithms based on gradient descent are
only locally convergent, and these results are summarized in a
survey paper (Zhu, Wang, Zhao, Li, & Billings, 2015).

As explained before, nonlinear rational systems can be con-
verted into a system that is linear in parameters, but directly ap-
plying the ordinary least squares (OLS) estimator will lead to a
biased estimate. Realizing this problem, this paper uses a two-
step estimator to derive a convergent nonlinear least squares (NLS)
estimator. The two-step estimator is known to produce a conver-
gent NLS estimate (Gourieroux & Monfort, 1995) if the initial esti-
mate provided by the first step is

p
N-consistent. This means that

to produce a convergent NLS estimator it is sufficient to develop
a

p
N-consistent estimator by the available data in the first step.

In the paper, by a detailed analysis for the bias of the OLS estima-
tor, it is shown that the bias can be removed if a consistent esti-
mate for the variance of the noise is available. Consequently, the

keys are a reliable estimate of the noise variance and the subse-
quent compensation of noise effects. Thus, this paper first provides
a consistent estimate for the noise variance by seeking the mini-
mum positive root of a polynomial constructed with the available
data and demonstrates that the search is independent of the least
squares estimator. Then by substituting the consistent estimate
for the noise variance into the least squares estimator produces a
globally

p
N-consistent estimator for nonlinear rational systems.

Finally, the globally convergent NLS estimate for the nonlinear ra-
tional systems defined as the ratio of two nonlinear functions (not
limited to polynomials) of past inputs and outputs is obtained by
the second step of the two-step estimator.

The contribution of the paper is a globally convergent
identification algorithm for nonlinear rational systems. To the best
our knowledge, this is the first time that a globally convergent
identification algorithm is proposed for nonlinear rational systems.
We comment that the idea of two-step estimators is known in
the literature (Gourieroux & Monfort, 1995). However, how to
find a

p
N consistent estimate at the first step for nonlinear

national systems is nontrivial and is not answered by any two-
step estimators. Thus, the technical contribution of the paper is to
develop a

p
N consistent estimate for nonlinear rational systems

at the first step so that it can be used as an initial estimate
in the second step. We also comment that bias compensation
approaches have been used in compensation of linear least
squares identification algorithms (Stoica & Söderström, 1982;
Zheng, 1998; Zheng & Feng, 1995) and in errors-in-variable linear
system identification (Söderström, 2007; Zheng, 2002). There
are however several distinct differences between the technique
proposed here and the bias compensation approach used in errors-
in-variables systems and linear systems (Zheng, 1998, 2002; Zheng
& Feng, 1995). First, obviously the systems considered above
for the bias compensation approaches are linear systems and
rational systems studied herein are nonlinear systems. Second,
the bias compensation approaches need to construct a multi-
dimensional auxiliary vector that satisfies certain properties. This
is possible because the noise is independent of the inputs. For
nonlinear rational systems, however, the resulting noise is a
function of the inputs. It is not clear at this point if such an
auxiliary vector exists for nonlinear rational systems. In the work
reported here, instead of finding an auxiliary vector, it is shown
that selection of an auxiliary vector is actually unnecessary and
only a consistent estimate of the noise variance is required,
which is one dimensional and therefore is much more efficient.
The approach proposed in this paper may be considered as an
extension of the technique for linear least squares compensation
(Stoica & Söderström, 1982). However, because the technique of
Stoica and Söderström (1982) is for linear systems and rational
systems are nonlinear systems, both noise variance estimation and
noise compensation for nonlinear rational systems become more
involved and nontrivial. More technical details will be provided in
the relevant Section 4.1.

The rest of the paper is organized as follows. Section 2
describes nonlinear rational systems under consideration and
some assumptions on the system. Section 3 introduces briefly two-
step estimators and their properties. A corrected least squares
(CLS) estimator, which is obtained by model transformation,
bias analysis, noise variance estimation, and bias compensation,
is proposed in Section 4. The CLS is proved to converge
to the true parameters in the global sense under proper
conditions and its asymptotical normality is also established. Two
simulation examples and a practical example are provided to
verify the effectiveness of the proposedmethod in Section 5. Some
concluding remarks are made in Section 6. Some technical details
and the proofs are given in Appendix.
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2. Problem formulation

The nonlinear rational system under consideration is described
as follows:

y(k) =

qP
i=1
�ifi(k)

g0(k) +
pP

j=1
↵jgj(k)

+ "(k), 1  k  N, (1)

where fi(k), gj(k), 1  i  q, 0  j  p are a priori known
functions of the delayed outputs and inputs {y(k � 1), . . . , y(k �
ny), u(k � 1), . . . , u(k � nu)} with positive integers ny, nu, ✓⇤ ,
[↵1, . . . ,↵p,�1, . . . ,�q]T is the unknown parameter vector that
needs to be estimated, and "(k) is the observation noise. It is worth
pointing out that the estimator for the nonlinear rational system
(1) developed in the paper is applicable to the static case, i.e.,
fi(k), gj(k), 1  i  q, 0  j  p are known functions of
some exogenous variables. It is seen that the output y(k) is linear
in the parameters {�1, . . . ,�q} but is nonlinear in the parameters
{↵1, . . . ,↵p}, which is also the difficulty of identifying the rational
system (1).

For ease of representation, define the denominator a(k) ,
g0(k) + Pp

j=1 ↵jgj(k), the numerator b(k) ,
Pq

i=1 �ifi(k), and the
true output v(k, ✓⇤) = b(k)/a(k). Then the system (1) can be
rewritten as

y(k) = b(k)
a(k)

+ "(k) = v(k, ✓⇤) + "(k). (2)

Let us give some remarks on the system (1). First, one assumes
that the coefficient corresponding to the item g0(k) in (1) is 1 due
to the identifiability reason of (1). This is always possible. Let the
coefficient corresponding to the term g0(k) be denoted by↵0. Then,
without loss of generality, one can assume ↵0 6= 0; otherwise, one
can select any other item gj(k), 1  j  p with ↵j 6= 0 to play the
role of the item g0(k) with ↵0 since at least there is a parameter
↵j 6= 0 among {↵1, . . . ,↵p}. Next, dividing the numerator and
the denominator by ↵0 leads to the representation (1). An implicit
assumption on the system (1) is that a(k) 6= 0.

In the following, let us give the conditions on the system, input,
and noise for estimating the unknown parameters.

Assumption 1. There is no undermodelling error for the system
(1), i.e., the structure of the system including a(k) and b(k) is
known and the noise "(k) is white. Further, E|"(k)|2� < 1 for
some � > 2. Let � 2 , Var("(k)).

Assumption 2. The sequence {x(k), k � 1} with x(k) , [y(k �
1), . . . , y(k � ny), u(k � 1), . . . , u(k � nu)] is asymptotically
stationary in the wide sense and is an ↵-mixing process
with mixing coefficients exponentially decaying to zero. Also,
Ekx(k)k2� < 1 for some � > 2.

We make a comment on the second assumption. Note the
nonlinear rational model (1) can be regarded as a special case of
nonlinear autoregressive systems with exogenous input (NARX)

y(k) = h(y(k � 1), . . . , y(k � ny),

u(k � 1), . . . , u(k � nu)) + "(k), (3)

where h(·) is a (ny+nu)-dimensional nonlinear function. By Lemma
1 in Zhao, Zheng, and Bai (2013), the chain x(k) , [y(k �
1), . . . , y(k � ny), u(k � 1), . . . , u(k � nu)] constructed by the
outputs and inputs of NARX (3) is geometrically ergodic and
is an ↵-mixing with mixing coefficients exponentially decaying
to zero if the following conditions are satisfied: (1) both the
input and the noise are sequences of independent and identically

distributed (i.i.d.) random variables with zero mean and finite
variance; (2) the system (3) satisfies a certain stability condition.
Note that the random vector x(k) is geometrically ergodic, that is,
the distribution of x(k) tends to the invariant distribution at an
exponential rate. This means that there is no essential difference
between the stationarity assumption and asymptotical stationarity
assumption on {x(k)}. For derivation simplicity, assume that the
process {x(k)} in Assumption 2 is stationary in the subsequent
sections. These explanations indicate that Assumption 2 is not
restrictive and in fact it is a standard assumption in the nonlinear
system identification literature.

3. A standard two-step estimator

Prediction error methods are a natural idea for identifying the
unknown parameter vector ✓⇤ of the system (1) as that used
in Billings and Chen (1989) and Dimitrov and Kamenski (1991).
Define the objective function with a prediction error form as

QN(✓) = 1
N

NX

k=1

(y(k) � v(k, ✓))2. (4)

The vector minimizing (4) on a compact subset ⇥ of Rp+q

containing ✓⇤ is called the nonlinear least squares (NLS) estimator
for ✓⇤ based on the observations {u(k), y(k), 1  k  N} and is
denoted byb✓NLSN . Clearly, the gradient vector of v(k, ✓) is given by

@v(k, ✓)
@✓

=
h
� b(k)

a2(k)
⇥
g1(k), . . . , gp(k)

⇤
,

1
a(k)

⇥
f1(k), . . . , fq(k)

⇤iT
.

We first give the conditions for the convergence of the NLS
estimator.

Assumption 3. (i) Q (✓) , E
�
v(k, ✓) � v(k, ✓⇤)

�2 has a unique
minimum at ✓ = ✓⇤ in the compact set⇥ .

(ii) The true parameter vector ✓⇤ is an interior point of ⇥ and the
matrix M(✓⇤) is nonsingular, where

M(✓) , E
✓
@v(k, ✓)
@✓

@v(k, ✓)
@✓ T

◆
.

The NLS estimator b✓NLSN enjoys the following consistency and
asymptotical normality, which can be derived by directly adopting
the steps as what presented in Jennrich (1969).

Theorem 1 (Jennrich, 1969, Theorem 7). Let b✓NLSN be the NLS
estimator of (4). Under Assumptions1–3 (i), we haveb✓NLSN �! ✓⇤ with
probability one as N tends to infinity. Further, if Assumption 3 (ii) also
holds, then
p
N(b✓NLSN � ✓⇤) �! N (0, � 2M�1(✓⇤)) as N ! 1. (5)

The NLS estimator involves a search for the solution of non-
convex objective function (4), whichmay lead to that the gradient-
based optimization algorithm converges to a local minimum if
the starting point is outside the attraction neighborhood of the
true value. Thus, the gradient-based optimization algorithm is
generally applied to improve the precision when a good initial
estimator,which is close to the true value, has obtained sinceQN(✓)
is approximately convex in a small neighborhood of the true value.
Additionally, it can be expected that the number of steps required
for numerical convergence of the algorithm will be smaller by
starting from an initial value close to ✓⇤.

Thus, the finding of the NLS estimatorb✓NLSN is often done in two
steps (Gourieroux & Monfort, 1995):

Step (1) Determine a consistent but not necessarily precise
estimate.
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Step (2) Use this preliminary estimate as an initial value for some
algorithm that determines the NLS estimator.

In Step (2), the Gauss–Newton (GN) or other Newton-based
algorithms are commonly used for improving the accuracy of the
consistent estimator obtained in Step (1). TheGN algorithmhas the
iterative form:

✓n+1 = ✓n + (JT (✓n)J(✓n))�1JT (✓n)(Y � v(✓n)), (6)

where the initial value ✓0 is the consistent estimator obtained in
Step (1), Y = [y(1), . . . , y(N)]T,
v(✓n) = [v(1, ✓n), . . . , v(N, ✓n)]T ,

J(✓n) =

@v(1, ✓n)
@✓

, . . . ,
@v(N, ✓n)

@✓

�T
.

The standard two-step estimator given above has the following
attractive property.

Theorem 2 (Lehmann&Casella, 1998). Letb✓NLSN be the NLS estimator
of (4). Suppose that b✓N is a

p
N-consistent estimator of ✓⇤, i.e.,

b✓N � ✓⇤ = Op(1/
p
N). Denote the one-step GN iteration of b✓N by

✓GNN , i.e.,

✓GNN =b✓N + (JT (b✓N)J(b✓N))�1JT (b✓N)(Y � v(b✓N)).

Thus under Assumptions 1–3 we have

✓GNN �b✓NLSN = op(1/
p
N).

This means that ✓GNN has the same asymptotic property that b✓NLSN
possesses.

It is seen that a key that the two-step estimator enjoys the desired
property is to find a

p
N-consistent estimate of ✓⇤ in Step (1). In

fact, this is also the major difficulty for solving this kind of non-
convex optimization problem.

4. A

p
N-consistent estimator: Corrected least squares

According to the two-step estimator and Theorem 2 introduced
in Section 3, to obtain the NLS estimatorb✓NLSN of (4) it is sufficient
to find a

p
N-consistent estimator for ✓⇤. This section will develop

a
p
N-consistent estimator for the unknown parameters of the

nonlinear rational system (1) in the global sense that involves
model transformation, bias analysis, noise variance estimation, and
bias compensation. This is also the major goal and contribution of
the paper.

4.1. Model transformation and bias analysis

Multiplying a(k) on both sides (1) leads to

g0(k)y(k) = �
pX

j=1

↵jgj(k)y(k) +
qX

i=1

�ifi(k) + a(k)"(k)

=  (k)T ✓⇤ + a(k)"(k), (7)

where the regressor vector  (k) , [�g1(k)y(k),
. . . ,�gp(k)y(k), f1(k), . . . , fq(k)]T . The resulting vector form is
given by

ZN =  N✓
⇤ + CN , (8)

where ZN , [g0(1)y(1), . . . , g0(N)y(N)]T , CN , [a(1)"(1),
. . . , a(N)"(N)]T , N , [ (1), . . . , (N)]T . Clearly, Eq. (7) is linear
in all the parameters ✓⇤ and all of the elements of (k) are available

at time k. Thus, the ordinary least squares (OLS) estimator of (8)
assumes the form of
✓

1
N
 T

N N

◆�1 ✓ 1
N
 T

N ZN
◆

. (9)

However, the estimator (9) is a biased estimate for ✓⇤ since the
regressor  (k) involves y(k), which is correlated with the noise
term a(k)"(k).

This problem is also encountered for identification of linear
systemswhen the regressor vector is correlatedwith the noise, and
the bias-eliminated least squares method (BELS) is the commonly
adopted and effective method (Stoica & Söderström, 1982; Zheng,
1998; Zheng & Feng, 1995) to obtain a consistent estimate. In order
to compare with linear cases, allow a little abuse of repeated usage
of the notation. Consider the following linear case

y(k) =  (k)T ✓⇤ + "(k), (10)

where the regressor vector  (k) includes the delayed output and
inputs, i.e., (k) = [y(k)Tu(k)T ]T = [y(k�1), . . . , y(k�ny), u(k�
1), . . . , u(k�nu)]T , ✓⇤ is the unknown parameter that needs to be
estimated, and y(k) is correlated with the noise "(k) but u(k) is
uncorrelated with "(k). Under this setting, the BELS estimator of
✓⇤ can be obtained via

✓BELS = ✓LS � �
E (k) (k)T

��1

Ey(k)"(k)

0

�
, (11)

where ✓LS = �
E (k) (k)T

��1E (k)y(k). So the key to the BELS
method is to obtain a consistent estimate for the bias vector
Ey(k)"(k), which is done usually by selecting some appropriate
auxiliary vector ⇣ (k) satisfying E⇣ (k)"(k) = 0 and E ̄(k) ̄(k)T >
0 with  ̄(k) = [ (k)T ⇣ (k)T ]T . The delayed inputs are selected
to produce the consistent estimate for the bias in Zheng (1998)
and the known regulator in closed-loop systems plays a similar
role in obtaining the consistent bias in Zheng and Feng (1995). A
unified framework for the BELS estimator can be referred to Jia,
Tao, Kanae, Yang, andWada (2011). It is seen that this kind of BELS
estimators depends on the selection of the auxiliary vector ⇣ (k),
which has a direct impact on the consistency and the accuracy of
the estimator. Clearly, the regressor vector  (k) defined in (7) is
more complicated than its counterpart defined in (10) for the linear
case, in which each element of  (k) depends on all the delayed
inputs and outputs and the noise term a(k)"(k) in (7) may depend
on all the past inputs due to the existence of a(k). This makes the
selection of the auxiliary vector ⇣ (k) become nontrivial.

In order to avoid the indetermination for the selection of
the auxiliary vector ⇣ (k) introduced above, the idea of the BELS
estimator used in Stoica and Söderström (1982) is adopted here. In
comparison with the BELS estimator having the form of (11), the
advantages of the BELS estimator in Stoica and Söderström (1982)
include: (1) there is no need to select an appropriate auxiliary
vector; (2) the only thing to be done for this BELS estimator is to
develop a consistent estimate for a scalar quantity (the variance of
the noise) instead of a multi-dimensional bias vector.

In the following, the idea for estimating the unknown
parameter ✓⇤ of the nonlinear rational model (1) is stated by
referring to Stoica and Söderström (1982).

It follows from (1) and (7) that

g0(k)y(k) = �
pX

j=1

↵jgj(k)y(k) +
qX

i=1

�ifi(k) + a(k)"(k)

= �
pX

j=1

↵jgj(k)v(k, ✓⇤) +
qX

i=1

�ifi(k) + g0(k)"(k),

= �(k)T ✓⇤ + g0(k)"(k), (12)
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where

�(k) ,
⇥�g1(k)v(k, ✓⇤), . . . ,�gp(k)v(k, ✓⇤),

f1(k), . . . , fq(k)
⇤T

. (13)

The corresponding vector form is given by

ZN = �N✓
⇤ + DN , (14)

where ZN , [g0(1)y(1), . . . , g0(N)y(N)]T , DN , [g0(1)"(1),
. . . , g0(N)"(N)]T ,�N , [�(1), . . . ,�(N)]T . Clearly, the least
squares estimator of (14) is obtained as
✓

1
N
�T

N�N

◆�1 ✓ 1
N
�T

NZN
◆

. (15)

It is obvious that under the persistent excitation conditions on�(k)
that will be given in Assumption 4, the least squares estimator
(15) is a consistent estimate for ✓⇤ since E�(k)g0(k)"(k) = 0. The
problem is that �(k) is unavailable. Let us define the persistent
excitation condition.

Assumption 4. There exists an integer N0 > 0 such that
1
N�

T
N�N > 0 for all N > N0.

Weprovide a remark on the condition. Let us consider thenoise-
free case, that is,

y(k) =

qP
i=1
�ifi(k)

g0(k) +
pP

j=1
↵jgj(k)

.

An equivalent form of the above model is

g0(k)y(k) = �
pX

j=1

↵jgj(k)v(k, ✓⇤) +
qX

i=1

�ifi(k)

= �(k)T ✓⇤.

In this simple case, Assumption 4 is exactly the persistent
excitation condition for identifying nonlinear rational systems.
Note that any linear system is just a special case. Thus,
Assumption 4 can be explained as the persistent excitation
condition for the system (1).

Note that Assumption 4 is a condition guaranteeing the global
identifiability of the nonlinear rational system (1), while Assump-
tion 3(i) is the counterpart that ensures the local identifiability.We
have the following lemma describing their connection.

Lemma 1. Under Assumptions 1 and 2, Assumption 4 implies As-
sumption 3 (i).

Let us proceed again to illustrate that a consistent estimate for
✓⇤ can be obtained from (9) if the variance of the noise is a priori
known. This beginswith analyzing the difference between the least
squares estimators (9) and (15). First, the matrices  N and �N
satisfy the relationship

 N = �N + HN , (16)

where HN , [h(1), . . . , h(N)]T and h(k) , [�g1(k)"(k), . . . ,
�gp(k)"(k), 0, . . . , 0]T . It follows from the definition of CN and DN
that

CN = DN � HN✓
⇤. (17)

Similarly, by defining GN , [g0(1), . . . , g0(N)]T , AN ,
[a(1), . . . , a(N)]T , and MN , [m(1), . . . ,m(N)]T with m(k) ,
[�g1(k), . . . ,�gp(k), 0, . . . , 0]T , we have

AN = GN � MN✓
⇤. (18)

Then it follows from (16) that
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where 1
N H

T
N�N = Op(1/

p
N) and 1

N

�
HT

NHN � � 2MT
NMN

� =
Op(1/

p
N) by Theorem A.1 in Appendix since each element of

h(k)�(k)T and h(k)h(k)T �� 2m(k)m(k)T is a martingale difference
sequence and hence is an ↵-mixing with mixing coefficients
exponentially decaying to zero. Similarly, by (16) and (14), we have
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Thus, it follows from (19) and (20) that
✓
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✓
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=
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1
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�T
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⇤ + Op
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����!
N�!1 ✓⇤.

Since  N ,MN , ZN , and GN are available by the input u(k), the
output y(k), and the known nonlinear functions gi(k), fj(k) for 0 
i  p, 1  j  q, a consistent estimate for the parameter vector ✓⇤
is obtained if a consistent estimate for the variance � 2 is produced
in some way. This means that the key point of estimating ✓⇤ is to
independently derive a consistent estimate for � 2.

A difference between the BELS estimator in Stoica and
Söderström (1982) and its counterpart developed in this paper
should now be pointed out. Because of nonlinearity presented in
rational systems, both the denominator and the numerator of the
least square estimator defined in (9) for the nonlinear rational
model should be compensated, while only the denominator needs
to be compensated for the linear case in Stoica and Söderström
(1982). Further, estimation of noise variance becomes more
involved, which will be discussed below.
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4.2. Noise variance estimation

The results in Stoica and Söderström (1982) for linear systems
imply that a consistent estimate for the variance of the noise can
be obtained by solving some generalized eigenvalue problem. This
motivates us to consider whether the idea given in Stoica and
Söderström (1982) is applicable to the nonlinear rational system
(1). The answer is positive, but the related procedure is much
complicated and needs somenecessarymodifications. The detailed
estimation procedure for the variance � 2 of the noise is stated as
follows. Define twomatrices by the available data and information

JN ,
1
N


 T

N
ZT
N

� ⇥
 N , ZN

⇤ = 1
N

"
 T

N N  T
N ZN

 NZT
N ZT

NZN

#

, (21)

�N ,
1
N

"
MT

NMN MT
NGN

GT
NMN GT

NGN

#

. (22)

Based on JN and �N , define a function BN(·) over the variable
�N as BN(�N) , JN � �N�N . Clearly, the function ⌘(�N) defined
as ⌘(�N) , det(BN(�N)) is a polynomial of power p + 1 over �N .
As a result, ⌘(�N) = 0 has p + 1 roots and denote all the roots
by {�N(1), . . . , �N(p + 1)}. Thus, it will be shown below that the
smallest root gives a consistent estimateb�N of the noise variance
� 2, i.e., the estimate for � 2 can be defined by

b�N = min{�N(j), j = 1, . . . , p + 1}. (23)

Note that the definition of �N used here is different from its
counterpart in Stoica and Söderström (1982) for linear systems.We
have the following convergence conclusion on the estimate (23).

Lemma 2. Under Assumptions 1, 2 and 4, the noise variance
estimate (23) has an explicit solution

b�N =
NX

k=1

a(k)2"(k)2
� NX

k=1

a(k)2, (24)

which converges to the noise variance � 2 with probability one and is
asymptotically normal:
p
N(b�N � � 2) ����!

N�!1 N (0, Ea(k)4Var("(k)2)/(Ea(k)2)2).

It follows from the proof of Lemma 2 given in Appendix that all
of the roots of ⌘(�N) = 0 are greater than or equal to zero and
the estimate (23) for the noise variance � 2 is the smallest positive
root of ⌘(�N) = 0. Thus, the solution to (23) can be conveniently
obtained by a root-seeking algorithm, for example, the function
fzero in Matlab.

4.3. Corrected least squares estimator and asymptotical normality

Based on the explanation and analysis in Section 4.1, a
consistent estimate for the unknown parameter vector ✓⇤ can be
obtained if a consistent estimateb�N for the noise variance � 2 is
provided. Thus, after deriving the consistent estimate (23) for the
variance � 2, the corrected least squares (CLS) estimator for ✓⇤ can
be defined by

b✓CLSN =
✓

1
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 T
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MT

NMN

⌘◆�1

⇥
✓
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N ZN �b�N
⇣ 1
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MT

NGN

⌘◆
, (25)

whereb�N is given in (23). The CLS estimator defined by (25) has
the following convergence and asymptotic normality.

Theorem 3. Under Assumptions 1, 2 and 4, the CLS estimate
b✓CLSN given in (25) converges to ✓⇤ with probability one and is
asymptotically normal:
p
N(b✓CLSN � ✓⇤) ����!

N�!1 N (0,⌥ �1W⌥ �1),

where ⌥ , E�(k)�(k)T and W , Ew(k)w(k)T with

w(k) , �(k)a(k)"(k)

+
⇣
m(k)a(k) � a(k)2

Em(k)a(k)
Ea(k)2

⌘�
"(k)2 � � 2�.

Theorem 3 indicates that the CLS estimate b✓CLSN given in (25)
is a

p
N-consistent estimator of ✓⇤. So, according to the two-step

estimator introduced in Section 3, the NLS estimatorb✓NLSN of the
objective function (4) is obtained.

4.4. Recursive implementation of CLS

In this subsection, we present two recursive forms related to
the CLS estimator defined in (25), which are useful for practical
applications.

The First Form: Clearly, the CLS estimator can be rewritten as

b✓CLSN = �
 T

N N �b�NMT
NMN

��1�
 T

N ZN �b�NMT
NGN

�
.

For notational simplicity, define
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where the inverse of a sum of matrices (Henderson & Searle, 1981)
is used. Similarly, one derives
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It follows that
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Thus, we obtain the following recursive algorithm for the CLS
estimator:
b✓CLSN+1 =b✓CLSN + RN+1

�
WN+1 � SN+1b✓CLSN

�
(26a)

RN+1 = RN � RN(I + SN+1RN)�1SN+1RN (26b)
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SN+1 =  (N + 1) (N + 1)T � �b�N+1 �b�N
�
MN

� b�N+1m(N + 1)m(N + 1)T (26c)

MN = MN�1 + m(N)m(N)T (26d)
WN+1 =  (N + 1)g0(N + 1)y(N + 1)

� �b�N+1 �b�N
�
GN �b�N+1m(N + 1)g0(N + 1) (26e)

GN = GN�1 + m(N)g0(N), (26f)

where the initial values areb✓0 = 0, R0 = � I > 0, M0 = 0, and
G0 = 0. This algorithm is an exactly recursive implementation of
the CLS estimator defined in (25).

The Second Form: To obtain another recursive form of the CLS,
let us start with the following estimator:

b✓N = �
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 T
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NGN

�
,

where the noise variance estimate in (25) is replaced by its true
value. To allow an abuse of notation, define
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where the inverse of a sum of matrices (Henderson & Searle, 1981)
is used. In a similar way, we obtain
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Thus, we get another recursive algorithm:
b✓N+1 =b✓N + RN+1

⇥
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where the initial values are b✓0 = 0 and R0 = � I > 0. In
addition to online updating the estimate at current time based on
its immediate past estimate and the currently received data, an
attractive merit of the recursive algorithm (27a) is that it avoids
the explicit matrix inverse calculation in (26a), even though it is
not an exactly recursive implementation of the CLS (25).

Since it is difficult to derive a recursive scheme for the noise
variance estimateb�N in (23), the needed valueb�N in (26a) and (27a)
is directly calculated by (23). Actually, this will not greatly increase
the computational complexity since the noise variance estimation
(23) is achieved by a root-seeking algorithm for a one-dimensional
polynomial of power p + 1.

5. Numerical examples

Example 1. This example is used to illustrate that the objective
function (4) has many local minima. Thus, the Newton-based
optimization algorithms may converge to a local minimum if the
initial value is outside the attraction region of the true value.
Consider a nonlinear rational system

y(k) = 3u(k � 1)y(k � 1)
1 � 0.8y(k � 1)

+ "(k), (28)

where u(k), y(k) are the input and output, respectively, g0(k) =
1, g1(k) = y(k � 1), f1(k) = u(k � 1)y(k � 1), and the true
parameter vector is ✓⇤ = [�0.8, 3]T . The input {uk} is a sequence
of i.i.d. random variables uniformly generated from the interval
[0, 0.6]. The noise {"k} is a sequence of i.i.d. uniform random
variables in the interval [�1, 1]. The sample size is N = 1000.
For ease of presentation, the opposite �QN(✓) of the objective
function (4) is plotted on its two parameters in a large region
{(↵,�) 2 [�5, 5] ⇥ [�5, 5]}. Fig. 1 shows that the objective
function corresponding to the system (28) has many local minima.
This phenomenon still exists even if the region of the parameters is
narrowed down to {(↵,�) 2 [�0.9, �0.7] ⇥ [2.9, 3.1]} including
the true value (�0.8, 3) (see Fig. 2). This means that the gradient-
based optimization algorithms for solving (4) may not work well.

To compare the performance of the two-step estimator
proposed in the paper with other estimators for identifying the
unknown parameters in (28), we first introduce all the estimators
involved here. They are the corrected least squares estimator (CLS)
defined by (25) in Section 4, the two-step estimator proposed in
Section 3, i.e., the Gauss–Newton algorithmwith the CLS estimator
serving as its initial value (CLS+GN) defined by (6), the ordinary
least squares (OLS) estimator defined by (9), the Gauss–Newton
algorithm with the OLS estimator serving as its initial value
(OLS+GN) defined by (6), the simulated annealing algorithm (SA)
for minimizing the objective function (4) which is implemented
by the function simulannealbnd in Matlab and the initial value
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Fig. 1. The three-dimensional plot of�QN (↵,�) corresponding to the system (28).

Fig. 2. The three-dimensional plot of �QN (↵,�) in a narrower region.

is set as the OLS estimator, and the genetic algorithm (GA) for
minimizing the objective function (4) which is implemented by
the function ga in Matlab and does not require to provide an
initial value, respectively. To evaluate the performance of all the
estimators given above, the fitness measure (FM) (Ljung, 2012)

FM = 100
✓
1 � kb✓N � ✓⇤k2

k✓⇤ � ✓̄⇤k2

◆

is used, where b✓N represents the resulting estimate for ✓⇤ and
✓̄⇤ is the arithmetic average of the elements of ✓⇤. The following
results are based on 100Monte-Carlo simulations, where themean
and the standard deviation of the signal-to-noises ratios (SNRs)
calculated by the 100 runs are 14.17 dB and 0.74 dB.

To investigate the performance of all the estimators introduced
above for this example, the distribution of the FM for these
estimators is listed, where Table 1 gives the resulting quantiles
at 10%, 25%, 50%, 75%, and 90%, respectively, and Fig. 3 shows
the box plot. One can first conclude from these distributions
that the commonly used global optimization algorithms including
the SA and GA estimators do not perform well since the true
value can hardly be found by them. On the other hand, the
consistent CLS estimator is superior to the biased OLS estimator.
More importantly, the CLS estimator is significantly improved
by the Gauss–Newton algorithm, while the OLS estimator is
greatly deteriorated by the Gauss–Newton algorithm since the
10% quantile of the FM for the CLS+GN estimator is 98.10
but the 90% quantile of the FM for the OLS+GN estimator is
�0.53. This also shows that the CLS estimator almost lies in the

Fig. 3. The box plot of the FM for the CLS, CLS+GN, OLS, OLS+GN, SA, and GA
estimators. In order to show the complete distributions of these estimators, they
are displayed by some proper but different scales, respectively.

Table 1

The quantiles of all the estimators.

Methods 10% 25% 50% 75% 90%

CLS 79.05 85.19 89.46 94.74 97.51
CLS+GN 98.10 98.94 99.41 99.68 99.83
OLS 68.19 72.77 81.69 89.90 93.46
OLS+GN �15.89 �12.63 �10.89 �5.51 �0.53
SA �62102 �36899 �18534 �7647 �3741
GA �3899 �3097 �1799 �613.95 �13.86

attraction neighborhood of the Gauss–Newton algorithm, but the
OLS estimator does not enjoy this advantage.

Finally, a comparison of the computational complexity between
the CLS estimator and the resulting two kinds of recursive CLS
estimators given in Section 4.4 is also provided by considering the
time spent by these estimators. For convenience, let us denote
the exact recursive implementation of the CLS estimator (the
first form) by RCLS and the modified recursive implementation
of the CLS estimator (the second form) by MRCLS, respectively.
The hardware used for this comparison includes a 3.5 GHz Intel
Core i5 CPU and an 8 GB RAM while the software platform is
Matlab 2014b running under OS X 10.10 operation system. Note
that both the RCLS, MRCLS, and CLS estimators involve the same
root-seeking step (23). Thus, it is fair to exclude the time spent
by the root-seeking process for comparing the computational
complexity of the CLS estimator and its recursive forms. Fig. 4 plots
the distributions of the three kinds of estimators. It is observed
that the RCLS and MRCLS estimators can save about 37% and
45% computational time, respectively, in comparison with the CLS
estimator based on their medians. Also, the standard deviation of
the spent time of the MRCLS is smaller than that of the RCLS and
CLS estimators.

Example 2. Consider a nonlinear rational system

y(k) = 2y(k � 1)y(k � 2) + 3u(k � 1)
1 + 0.5y(k � 1)2 + u(k � 1)2

+ "(k), (29)

where u(k), y(k) are the input and output, respectively, g0(k) =
1, g1(k) = y(k � 1)2, g2(k) = u(k � 1)2, f1(k) = y(k � 1)y(k �
2), f2(k) = u(k � 1), and the true parameter vector is ✓⇤ =
[0.5, 1, 2, 3]T . The input {uk} is a sequence of i.i.d. randomvariables
uniformly generated from the interval [�1, 1]. The noise {"k} is a
sequence of i.i.d. Gaussian random variables: N (0, � 2).

In order to reflect the impact of the noise intensity to the
estimation accuracy of ✓⇤, we conduct estimation under different
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Fig. 4. The box plot of the computational complexity of the RCLS, MRCLS, and CLS
estimators.

Fig. 5. Box plots of the fitness measure based on 100 random runs at SNR = 16.28.
The horizontal axis represents the adopted estimation method and the sample size
while the vertical axis is the resulting fitness measure, e.g.,‘‘CLS+500’’ means the
estimate is obtained by the CLS when N = 500.

noise levels, where the variance � 2 of the noise is selected
as 0.42 and 0.82, respectively, and the corresponding SNRs are
16.28 dB and 11.85 dB, respectively. Tables 2– 3 list the estimate
of the CLS and CLS+GN estimators for the sample sizes N =
500, 2000, 5000, 10000 under the SNRs introduced above and
averaging over 100 random runs. The values in the parentheses are
the resulting standard deviations. Figs. 5–6 plot the distribution of
the resulting fitness measures of the parameter estimation shown
by box plots for the different cases described above. It is seen from
these figures that the Gauss–Newton algorithm greatly improves
the estimation accuracy if it starts with an estimate given by the
CLS estimator.

Example 3 (A Practical Example). The book by Bates and Watts
(2007) contains quite a few real-world rational system examples.
We consider the Michaelis–Menten model because of published
experimental data. The model is for enzyme kinetics that relate
the initial ‘‘velocity’’ y of an enzymatic reaction to the substrate
concentration u through the equation

y(k) = f (k, u, ✓) = �

1 + ↵/u(k)
,

Table 2

Parameter estimation at SNR = 16.28.
True values 500 2000 5000 10000

CLS

0.5000 0.5137 0.5021 0.5007 0.4975
(0.0736) (0.0414) (0.0264) (0.0189)

1.0000 1.0153 1.0071 1.0072 0.9977
(0.1745) (0.0802) (0.0494) (0.0348)

2.0000 2.0320 2.0081 2.0043 1.9948
(0.1692) (0.0946) (0.0615) (0.0441)

3.0000 3.0363 3.0147 3.0136 2.9948
(0.3757) (0.2088) (0.1153) (0.0766)

FM 79.6555 89.1149 93.5884 95.6284
(12.1309) (6.7713) (3.7371) (2.5173)

CLS+GN

0.5000 0.5001 0.5005 0.4998 0.4994
(0.0178) (0.0077) (0.0050) (0.0038)

1.0000 0.9990 1.0041 1.0014 0.9998
(0.0814) (0.0321) (0.0218) (0.0150)

2.0000 1.9977 2.0023 2.0004 1.9991
(0.0440) (0.0170) (0.0108) (0.0085)

3.0000 2.9969 3.0024 3.0005 2.9993
(0.1021) (0.0474) (0.0302) (0.0211)

FM 93.9975 97.3350 98.2250 98.7448
(3.9983) (1.6554) (0.9830) (0.6804)

Table 3

Parameter estimation at SNR = 11.85.
True values 500 2000 5000 10000

CLS

0.5000 0.6365 0.5770 0.5339 0.5278
(0.2431) (0.1719) (0.1271) (0.0892)

1.0000 1.0837 1.0392 1.0115 1.0102
(0.4363) (0.2570) (0.1605) (0.1097)

2.0000 2.3607 2.2059 2.0977 2.0832
(0.5882) (0.4064) (0.2925) (0.2102)

3.0000 3.2944 3.1321 3.0925 3.0458
(1.0744) (0.6637) (0.4861) (0.3138)

FM 37.6706 62.0914 74.8470 81.6704
(38.5321) (25.1922) (20.0134) (11.3487)

CLS+GN

0.5000 0.5052 0.5007 0.5008 0.5001
(0.0283) (0.0145) (0.0091) (0.0063)

1.0000 1.0003 0.9989 1.0016 1.0022
(0.1243) (0.0626) (0.0416) (0.0274)

2.0000 2.0072 2.0004 2.0022 2.0004
(0.0706) (0.0335) (0.0218) (0.0150)

3.0000 2.9728 2.9780 2.9939 2.9945
(0.2001) (0.0895) (0.0578) (0.0429)

FM 89.0443 94.6207 96.5450 97.5779
(6.8676) (2.8375) (1.8260) (1.3805)

where � is the ultimate velocity parameter and ↵ is the half-
velocity parameter (Bates & Watts, 2007, page 33), g0(k) =
1, g1(k) = 1/u(k), and f1(k) = 1. The experiment was conducted
once with enzyme treated with Puromycin and the number of the
observations was 12, {y(k), u(k)}121 . The experimental data were
obtained by Treloar (1974) and were reprinted on the page 269
of Bates and Watts (2007). It is important to note that because it
is a real-world model, there is no ‘‘true value’’ or nobody knows
the ‘‘true value’’ of (↵,�). Let (↵̂, �̂) be an estimate of the ‘‘true
value’’ (↵,�) and ŷ(k) = �̂

1+↵̂/u(k) be the predicted output based
on the estimates. The quality of estimates can be measured by the

averaged output errors
q

1
12

P12
k=1(y(k) � ŷ(k))2. The estimates for

the unknown parameters (↵,�) by the OLS, CLS, and CLS+GN
estimators as well as the corresponding average output errors are
calculated for this example, as illustrated in Table 4 and Fig. 7. It
is easily seen that the CLS estimator performs better than the OLS
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Fig. 6. Box plots of the fitness measure based on 100 random runs at SNR = 11.85.
The meanings of the horizontal and vertical axes are the same as those in Fig. 5.

Fig. 7. Actual output (solid) y(k) and the predicted outputs ŷ(k)’s by OLS (dashed),
CLS (dash-dotted) and CLS+GN (dotted) estimators.

Table 4

Parameter estimation and prediction error of the relevant estimators for the
practical example.

Methods (↵̂, �̂) Ave. prediction error

OLS (0.0435,193.8677) 13.59
CLS (0.0498,201.4230) 11.56
CLS+GN (0.0641,212.6837) 9.98

estimator and moreover the CLS+GN estimator further improves
the CLS. Note there are only 12 observations.

6. Conclusion

The nonlinear least squares estimator for the unknown
parameters of nonlinear rational systems has been developed via
a standard two-step estimator in the paper. The developed NLS
estimator consists of two successive steps: (1) one provides a
good initial estimator for the unknown parameter; (2) one obtains
the NLS estimator for the unknown parameters by using the
Gauss–Newton algorithm with the estimate obtained in Step 1
serving as the initial value. In Step 1, the CLS estimator has been

proposed by model transformation, bias analysis, noise variance
estimation, and bias compensation and has been proved to be
a

p
N-consistent estimator of the unknown parameters in the

global sense under some conditions. To the best of our knowledge,
this is the first time that a globally consistent estimate has been
provided for nonlinear rational systems. Therefore, in theory it can
be guaranteed that the NLS estimator can be obtained by one-
stepGauss–Newton iterationwith the

p
N-consistent CLS estimate

serving as the initial value. There exist several directions that need
to be explored for future research, for example, colored noises,
multi-input multi-output systems and so on.
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Appendix

A.1. Auxiliary results on random sequences

For the process {Xk, k = 1, 2, . . .}, denote the � -algebra
generated by {Xs, 1  i  s  j} by F

j
i . Define

↵(k) , sup
n,A2Fn

1 ,B2F1
n+k

|P(A)P(B) � P(AB)|.

The process {Xk} is called ↵-mixing if ↵(k) ���!
k!1 0, and the

numbers ↵(k) are called the mixing coefficients of the random
process {Xk}. For analyzing the convergence of the CLS estimator
proposed in the paper, we need the results on the central limit
theorem of ↵-mixing process.

Theorem A.1 (Davidson, 1994). Let {Xk} be a stationary sequence
with EXk = 0 and E|Xk|� < 1 for some � > 2. Suppose {Xk} is an
↵-mixing with exponentially decaying mixing coefficients ↵(k). Then

E
� NP
k=1

Xk
�2

N
�! EX2

1 + 2
1X

k=2

E(X1Xk) , �2.

Further, if �2 > 0, then 1p
N

PN
k=1 Xk �! N (0,�2). Also, there holds

PN
k=1 Xk/

p
N = Op(1).

The following result is also useful for proving the asymptotic
normality of the CLS estimator.

Theorem A.2 (Söderström & Stoica, 1989, Lemma B.4). Let {xk} be
a sequence of random vectors that converges in distribution to a
Gaussian vector N (0, P). Let {Ak} be a sequence of random square
matrices that converges in probability to nonsingular matrix A. Define
zk = Akxk. Then zk converges in distribution to N (0, APAT ).

A.2. Main proofs

Proof of Theorem 2. Sinceb✓NLSN is the minimum of (4) and is also
a stationary point of (4) under Assumption 3,b✓NLSN satisfies the first
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order condition
1
N
JT (b✓NLSN )(Y � v(b✓NLSN ))

= 1
N

NX

k=1

@v(k,b✓NLSN )

@✓
(y(k) � v(k,b✓NLSN )) = 0.

Applying the Taylor expansion aroundb✓N derives

� 1
N
JT (b✓N)(Y � v(b✓N))

= �B(b✓NLSN �b✓N) + op(1/
p
N) = Op(1/

p
N), (30)

where the assertionb✓NLSN �b✓N = Op(1/
p
N) is used since bothb✓NLSN

andb✓N are
p
N-consistent estimators and

B = 1
N
JT (b✓N)J(b✓N) � 1

N

NX

k=1

@2v(k,b✓N)

@✓@✓ T
(y(k) � v(k,b✓N)).

Since "(k) is uncorrelated with v(k, ✓⇤) andb✓N is
p
N-consistent, B

can be simplified as B = 1
N J

T (b✓N)J(b✓N)+op(1). It follows from (30)
that

b✓NLSN �b✓N =
⇣ 1
N
JT (b✓N)J(b✓N)

⌘�1⇣ 1
N
JT (b✓N)(Y � v(b✓N))

⌘

+
⇣ 1
N
JT (b✓N)J(b✓N)

⌘�1
op(1/

p
N).

This means thatb✓NLSN �b✓GNN = op(1/
p
N). ⌅

Proof of Lemma 1. Suppose that Assumption 3(i) does not hold.
Then there exists another parametere✓ 6= ✓⇤ ande✓ 2 ⇥ such that
Q (✓) arrives at its minimum at ✓ = e✓ . Obviously, the minimum
of Q (✓) is zero. This means that E

�
v(k,e✓) � v(k, ✓⇤)

�2 = 0
and further we have v(k,e✓) = v(k, ✓⇤) almost surely (a.s.). For
simplicity of derivation, one assume that g0(k) = 1. It follows from
(12) that

y(k) = �(k, ✓⇤)T ✓⇤ + "(k),

which is a pseudo-linear regression type of (2). This implies that
�(k, ✓⇤)T ✓⇤ = �(k,e✓)Te✓ a.s. based on the fact v(k,e✓) = v(k, ✓⇤).
On the other hand, the expression of �(k, ✓) defined in (13)
shows that �(k, ✓) depends on the parameter ✓ by the way of
v(k, ✓), so we also have �(k, ✓⇤) = �(k,e✓) a.s. This derives that
�(k, ✓⇤)T ✓⇤ = �(k, ✓⇤)Te✓ a.s. Multiplying �(k, ✓⇤) on both sides
from left and taking expectation give

E
�
�(k, ✓⇤)�(k, ✓⇤)T

�
✓⇤ = E

�
�(k, ✓⇤)�(k, ✓⇤)T

�e✓ .

This yields that E
�
�(k, ✓⇤)�(k, ✓⇤)T

�
is singular sincee✓ 6= ✓⇤ and

hence Assumption 4 is violated since we have

1
N
�T

N�N �! E
�
�(k, ✓⇤)�(k, ✓⇤)T

�
as N �! 1

by applying the stationarity of �(k, ✓⇤). This completes the
proof. ⌅

Proof of Lemma 2. Now, one plans to prove (24) by two steps.

Step 1: To show that sN ,
PN

k=1 a(k)
2"(k)2

�PN
k=1 a(k)

2 is a

root of the polynomial ⌘(�N) = 0. Applying the identities CN =
ZN �  N✓

⇤ and AN = GN � MN✓
⇤ leads to

L(�N) ,
⇥
✓⇤T � 1

⇤
BN(�N)


✓⇤
�1

�

= 1
N
⇥
✓⇤T � 1

⇤  T
N N  T

N ZN
 NZT

N ZT
NZN

� 
✓⇤
�1

�

� �N
1
N
⇥
✓⇤T � 1

⇤ MT
NMN MT

NGN
GT
NMN GT

NGN

� 
✓⇤
�1

�

= 1
N
⇥
✓⇤T � 1

⇤  T
N N✓

⇤ �  T
N ZN

 NZT
N✓

⇤ � ZT
NZN

�

� �N
1
N
⇥
✓⇤T � 1

⇤ MT
NMN✓

⇤ � MT
NGN

GT
NMN✓

⇤ � GT
NGN

�

= 1
N
⇥
✓⇤T � 1

⇤ � T
N CN

�ZT
NCN

�
+ �N

1
N
⇥
✓⇤T � 1

⇤ MT
NAN

GT
NAN

�

= � 1
N
�
✓⇤T T

N � ZT
N
�
CN + �N

1
N
�
✓⇤TMT

N � GT
N
�
AN

= 1
N
CT
NCN � �N

1
N
AT
NAN .

Clearly, L(sN) = 0 and L(�N) > 0 if �N < sN . Since [✓⇤T � 1]T is
nonzero, we must have det(BN(b�N)) = 0. This implies that sN is a
root of ⌘(�N) = 0.

Step 2: To show that sN is the smallest root of ⌘(�N) = 0. To this
end, note that BN(�N) is symmetric and JN is semi-positive definite.
Let w = [wT

1 , w2]T with w1 2 Rp+q and w2 2 R be any nonzero
column vector linearly independent of [✓⇤T �1]T . In order to reach
the desired conclusion, it remains to show that wT BN(�N)w > 0
for �N  sN sincewe have shown that L(�N) > 0 if �N < sN in Step
1. Note that
1
N


�T

N�N �T
N�N✓

⇤
✓⇤T�T

N�N ✓⇤T�T
N�N✓

⇤
� 

✓⇤
�1

�
= 0

and Assumption 4, then we obtain

rank
⇢
1
N


�T

N�N �T
N�N✓

⇤
✓⇤T�T

N�N ✓⇤T�T
N�N✓

⇤
��

= p + q.

This means that

wT 1
N


�T

N�N �T
N�N✓

⇤
✓⇤T�T

N�N ✓⇤T�T
N�N✓

⇤
�

w > 0

since w is linearly independent of [✓⇤T � 1]T . Note that

JN = 1
N


�T

N�N �T
N�N✓

⇤
✓⇤T�T

N�N ✓⇤T�T
N�N✓

⇤
�

+ 1
N


HT

NHN HT
NDN

DT
NHN DT

NDN

�

+ 1
N


�T

NHN + HT
N�N �T

NDN + HT
N�N✓

⇤
DT
N�N + ✓⇤T�T

NHN ✓⇤T�T
NDN + DT

N�N✓
⇤
�

.

Clearly, we have

BN(�N) = 1
N


�T

N�N �T
N�N✓

⇤
✓⇤T�T

N�N ✓⇤T�T
N�N✓

⇤
�

+ 1
N

✓
HT

NHN HT
NDN

DT
NHN DT

NDN

�
� � 2


MT

NMN MT
NGN

GT
NMN GT

NGN

�◆

+ �
(� 2 � sN) + (sN � �N)

� 1
N


MT

NMN MT
NGN

GT
NMN GT

NGN

�

+ 1
N


�T

NHN + HT
N�N �T

NDN + HT
N�N✓

⇤
DT
N�N + ✓⇤T�T

NHN ✓⇤T�T
NDN + DT

N�N✓
⇤
�

.

In view of Theorem A.1, we arrive at
1
N

✓
HT

NHN HT
NDN

DT
NHN DT

NDN

�
� � 2


MT

NMN MT
NGN

GT
NMN GT

NGN

�◆
= Op

⇣ 1p
N

⌘
,

1
N


�T

NHN + HT
N�N �T

NDN + HT
N�N✓

⇤
DT
N�N + ✓⇤T�T

NHN ✓⇤T�T
NDN + DT

N�N✓
⇤
�

= Op

⇣ 1p
N

⌘
,

1
N


MT

NMN MT
NGN

GT
NMN GT

NGN

�
= Op(1),
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sN � � 2 = Op

⇣ 1p
N

⌘
.

It follows that

BN(�N) = 1
N


�T

N�N �T
N�N✓

⇤
✓⇤T�T

N�N ✓⇤T�T
N�N✓

⇤
�

+ (sN � �N)
1
N


MT

NMN MT
NGN

GT
NMN GT

NGN

�
+ Op

⇣ 1p
N

⌘

and hence

wT BN(�N)w � wT 1
N


�T

N�N �T
N�N✓

⇤
✓⇤T�T

N�N ✓⇤T�T
N�N✓

⇤
�

w

+ Op

⇣ 1p
N

⌘
> 0

if �N  sN .
Up to now, we have proved that sN is the smallest root of

⌘(�N) = 0. So, according to the definition of (23),we haveb�N = sN ,

i.e.,b�N = PN
k=1 a(k)

2"(k)2
�PN

k=1 a(k)
2. This means

b�N � � 2 =
1
N

NP
k=1

a(k)2
�
"(k)2 � � 2

�

1
N

NP
k=1

a(k)2
.

Define the � -algebra Fk , � {"i, 1  i  k}. Thus, the
denominator a(k) is measurable with respect to Fk�1 and then we
have

E
⇣
a(k)2

�
"(k)2 � � 2� | Fk�1

⌘
= a(k)2E("(k)2 � � 2|Fk�1) = 0.

This means that {a(k)2�"(k)2 � � 2
�
, Fk} is a martingale difference

sequence and hence is an ↵-mixing with mixing coefficients
exponentially decaying to zero and

Ea(1)4
�
"(1)2 � � 2�2 + 2

1X

k=2

Ea(1)2
�
"(1)2 � � 2�

⇥ a(k)2
�
"(k)2 � � 2� = Ea(1)4

�
"(1)2 � � 2�2.

Under Assumption 2, {a(k)2} is an ↵-mixing with mixing
coefficients exponentially decaying to zero. By Theorem A.1, we
have

1
N

NX

k=1

a(k)2
�
"(k)2 � � 2� �! N

�
0, Ea(k)4Var("(k)2)

�
,

1
N

NX

k=1

a(k)2 = Ea(k)2 + Op

⇣ 1p
N

⌘
.

Finally, applying Theorem A.2 yields
p
N(b�N � � 2) ����!

N�!1 N (0, Ea(k)4Var("(k)2)/(Ea(k)2)2),

thereby completing the proof. ⌅

Proof of Theorem 3. Note that ZN =  N✓
⇤ + CN . Thus, we have

1
N
 T

N ZN �b�N
⇣ 1
N
MT

NGN

⌘

= 1
N
 T

N N✓
⇤ + 1

N
 T

N CN �b�N
⇣ 1
N
MT

NGN

⌘

=
⇣ 1
N
 T

N N �b�N
⇣ 1
N
MT

NMN

⌘⌘
✓⇤ + 1

N
 T

N CN

+ b�N
⇣ 1
N
MT

NMN

⌘
✓⇤ �b�N

⇣ 1
N
MT

NGN

⌘
.

Further, using the identities  N = �N + HN and AN = GN � MN✓
⇤

derives

p
N(b✓N � ✓⇤) =

✓
1
N
 T

N N �b�N
⇣ 1
N
MT

NMN

⌘◆�1

⇥
✓

1p
N
 T

N CN +b�N
⇣ 1p

N
MT

NMN

⌘
✓⇤ �b�N

⇣ 1p
N
MT

NGN

⌘◆

=
✓

1
N
 T

N N �b�N
⇣ 1
N
MT

NMN

⌘◆�1 ✓ 1p
N
�T

NCN + 1p
N
HT

NCN

�b�N
⇣ 1p

N
MT

NAN

⌘◆
.

Clearly, we have

1
N
 T

N N �b�N
⇣ 1
N
MT

NMN

⌘

= 1
N
�T

N�N + 1
N
HT

NHN + 1
N
�T

NHN + 1
N
HT

N�N �b�N
⇣ 1
N
MT

NMN

⌘

= 1
N
�T

N�N + 1
N

⇣
HT

NHN � � 2MT
NMN

⌘

+ (� 2 �b�N)
⇣ 1
N
MT

NMN

⌘
+ 1

N
�T

NHN + 1
N
HT

N�N .

From Theorem A.1 it follows that

1
N

⇣
HT

NHN � � 2MT
NMN

⌘
= Op

⇣ 1p
N

⌘
,

(� 2 �b�N)
⇣ 1
N
MT

NMN

⌘
= Op

⇣ 1p
N

⌘
,

1
N
�T

NHN = Op

⇣ 1p
N

⌘
,

1
N
HT

N�N = Op

⇣ 1p
N

⌘
,

1
N
�T

N�N = E�(k)�(k)T + Op

⇣ 1p
N

⌘
.

This implies that

1
N
 T

N N �b�N
⇣ 1
N
MT

NMN

⌘
= E�(k)�(k)T + Op

⇣ 1p
N

⌘
. (31)

By a straightforward calculation, we have

1p
N
�T

NCN + 1p
N
HT

NCN �b�N
⇣ 1p

N
MT

NAN

⌘

= 1p
N
�T

NCN + 1p
N

⇣
HT

NCN � � 2MT
NAN

⌘

+ (� 2 �b�N)
1p
N

⇣
MT

NAN � EMT
NAN

⌘

+ (� 2 �b�N)
1p
N
EMT

NAN .

Theorem A.1 derives

b�N � � 2 = Op

⇣ 1p
N

⌘
,

1p
N

⇣
MT

NAN � EMT
NAN

⌘
= Op(1).

This means that

(� 2 �b�N)
1p
N

⇣
MT

NAN � EMT
NAN

⌘
= Op

⇣ 1p
N

⌘
.
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It follows that

1p
N
�T

NCN + 1p
N
HT

NCN �b�N
⇣ 1p

N
MT

NAN

⌘

= 1p
N
�T

NCN + 1p
N

⇣
HT

NCN � � 2MT
NAN

⌘

+ (� 2 �b�N)
1p
N
EMT

NAN + Op

⇣ 1p
N

⌘

= 1p
N

⇣
�T

NCN + �
HT

NCN � � 2MT
NAN

�

+ �EMT
NAN

��
� 2AT

NAN � CT
NCN

�
/AT

NAN

⌘
+ Op

⇣ 1p
N

⌘
.

Note that

1p
N

✓⇣EMT
NAN

AT
NAN

� EMT
NAN

EAT
NAN

⌘�
� 2AT

NAN � CT
NCN

�◆

=
⇣EMT

NAN

AT
NAN

� EMT
NAN

EAT
NAN

⌘✓ 1p
N

�
� 2AT

NAN � CT
NCN

�◆

=
 � 1

N (EAT
NAN � AT

NAN)
�
EMT

NAN� 1
N A

T
NAN

�
EAT

NAN

!✓
1p
N

�
� 2AT

NAN � CT
NCN

�◆
.

By Theorem A.1, we get

1
N
�
EAT

NAN � AT
NAN

� = Op

⇣ 1p
N

⌘
,

1
N
AT
NAN = Ea(k)a(k)T + Op

⇣ 1p
N

⌘
= Op(1),

EMT
NAN

EAT
NAN

=
1
N EM

T
NAN

1
N EA

T
NAN

= Op(1),

1p
N

�
� 2AT

NAN � CT
NCN

� = Op(1).

This entails that
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N

✓
EMT
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� 2AT
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�◆

= 1p
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✓
EMT
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⌘
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Thus, we have

1p
N
�T
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N
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N
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NAN
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⇣
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�
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⌘
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⌘

= 1p
N

⇣ NX
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NX

k=1

m(k)a(k)
�
"(k)2 � � 2�

+ Em(k)a(k)
Ea(k)2

NX

k=1

a(k)2
�
� 2 � "(k)2

�⌘+ Op

⇣ 1p
N

⌘

= 1p
N

⇣ NX

k=1

�(k)a(k)"(k) +
⇣
m(k)a(k) � a(k)2

Em(k)a(k)
Ea(k)2

⌘

⇥ �
"(k)2 � � 2�

⌘
+ Op

⇣ 1p
N

⌘
.

Define the random vector

w(k) , �(k)a(k)"(k)

+
⇣
m(k)a(k) � a(k)2

Em(k)a(k)
Ea(k)2

⌘�
"(k)2 � � 2�

=

2

66666664

�g1(k)v(k, ✓⇤)a(k)"(k)
...

�gp(k)v(k, ✓⇤)a(k)"(k)
f1(k)a(k)"(k)

...
fq(k)a(k)"(k)

3

77777775

+$ (k)

=

2

66666664

�g1(k)b(k)"(k)
...

�gp(k)b(k)"(k)
f1(k)a(k)"(k)

...
fq(k)a(k)"(k)

3

77777775

+$ (k)

where

$ (k) =

2

666666666664

✓
a(k)2

Eg1(k)a(k)
Ea(k)2

� g1(k)a(k)
◆ �
"(k)2 � � 2�

...✓
a(k)2

Egp(k)a(k)
Ea(k)2

� gp(k)a(k)
◆ �
"(k)2 � � 2�

0
...
0

3

777777777775

,

and the � -algebra Fk , � {"i, 1  i  k}. Thus, the functions
gi(k), fj(k), 0  i  p, 1  j  q are measurable with respect to
Fk�1 and then we have

E(w(k)|Fk�1) = E
⇣
�(k)a(k)"(k)

+
⇣
m(k)a(k) � a(k)2

Em(k)a(k)
Ea(k)2

⌘�
"(k)2 � � 2�

���Fk�1

⌘

= �(k)a(k)E("(k)|Fk�1)

+
⇣
m(k)a(k) � a(k)2

Em(k)a(k)
Ea(k)2

⌘
E
�
"(k)2 � � 2

��Fk�1
�

= 0.

Thismeans that {w(k), Fk} is amartingale difference sequence.
Definitely, {w(k), Fk} is also an ↵-mixing with mixing coefficients
exponentially decaying to zero and

Ew(1)w(1)T + 2
1X

k=2

Ew(1)w(k)T = Ew(1)w(1)T .

Applying Theorem A.1 gives rise to

1p
N
�T

NCN + 1p
N
HT

NCN �b�N
⇣ 1p

N
MT

NAN

⌘
�! N (0,W ).

Combining it with (31) and applying Theorem A.2 complete the
proof. ⌅
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