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a b s t r a c t

This paper considers the recursive identification of errors-in-variables (EIV)Wiener systems composed of
a linear dynamic system followed by a static nonlinearity. Both the system input and output are observed
with additive noises being ARMA processes with unknown coefficients. By a stochastic approximation in-
corporatedwith the deconvolution kernel functions, the recursive algorithms are proposed for estimating
the coefficients of the linear subsystem and for the values of the nonlinear function. All the estimates are
proved to converge to the true values with probability one. A simulation example is given to verify the
theoretical analysis.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The Wiener system composed of a dynamic linear subsystem
followed by a static nonlinear function can be used to model
the majority of practical systems, for example, distillation column
(Zhu, 1999), pH process (Kalafatis, Arifin,Wang, & Cluett, 1995), bi-
ological cybernetics (Hunter & Korenberg, 1986), power amplifier
(Kang, Cho, & Youn, 1999) and others. It is shown that the Wiener
system can capture complex nonlinear phenomena in the sense
that almost any nonlinear system with fading memory can be ap-
proximated by a Wiener system with an arbitrarily high accuracy
(Boyd & Chua, 1985). Thus, identification of Wiener systems has
received considerable attention from both theoretical researchers
and engineers.

To identify the nonlinear function in a Wiener system there are
parametric (Bai, 2003; Hagenblad, Ljung, & Wills, 2008; Wigren,
1994) and nonparametric approaches (Greblicki & Pawlak, 2008;
Hu & Chen, 2006; Mu & Chen, 2012, 2013; Zhao & Chen, 2012a),
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according to the description of the nonlinear function. The parame-
tric approach is applied when the nonlinear function is expressed
as a linear combination of basis functions such as polynomials, cu-
bic splines functions, piecewise linear functions, neural networks
with unknown coefficients. In this case identification turns to be a
parametric estimation problem that can be solved by a standard
optimization method such as the gradient method, Newton–
Raphson method, the extended least squares and so on. The non-
parametric approach is used to estimate values of the nonlinear
function at any given points with the help of kernel functions. This
approach requires no structural information about nonlinearity.
We adopt the nonparametricmethod in the paper, but we consider
the case where the input and output of the system are not accu-
rately available. They may be observed but with additive noises,
i.e., we intend to identify the errors-in-variables (EIV) Wiener sys-
tems.

There exist many papers on identifiability and identification
of the linear EIV systems (Agüero & Goodwin, 2008; Söderström,
2007). Various estimation methods for identifying linear EIV sys-
tems, for example, instrumental variables based methods, bias-
compensation approaches, the Frisch scheme, frequency domain
methods, prediction error and ML methods, are well summarized
in the survey paper (Söderström, 2007), but the methods men-
tioned there are nonrecursive. Recursive identification for linear
EIV systems is considered in Chen (2007), Song and Chen (2008)
and Zhao andChen (2012b), but there is little attention paid to non-
linear EIV systems.
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Fig. 1. EIV Wiener system.

In this paperwe consider the SISOEIVWiener system (see Fig. 1)
described as follows:

C(z)vk = D(z)u0
k, y0k = f (vk) (1)

C(z) = 1 + c1z + · · · + cpzp, (2)

D(z) = z + d2z2 + · · · + dqzq, (3)

where z is the backward shift operator: zyk = yk�1, C(z) and D(z)
are polynomialswith unknown coefficients butwith known orders
p, q, respectively. The signal vk is not directly observed. The input
and output u0

k and y0k are observed with additive noises ⌘k and "k:

uk = u0
k + ⌘k, yk = y0k + "k. (4)

The paper is to recursively estimate {c1, . . . , cp, d2, . . . , dq} of the
linear part and the value of f (x) at any given x on the basis of the
observed data {uk, yk}.

The assumptions made on the system and the recursive algo-
rithms are given in Section 2. Some auxiliary results on ↵-mixing
are listed in Section 3. The strong consistency of the estimates for
the linear part and the nonlinearity is proved in Sections 4 and 5,
respectively. A numerical example is presented in Section 6, and a
brief conclusion is given in Section 7.

2. Assumptions and recursive algorithms

2.1. Assumptions

H1 The noise-free input {u0
k 2 N (0,#2)} is a sequence of indepen-

dent identically distributed (i.i.d.) Gaussian random variables
with unknown # > 0 and is independent of {⌘k} and {"k}.

H2 C(z) and D(z) are coprime and C(z) is stable: C(z) 6= 0 8|z|
 1.

By stability of C(z) we have

H(z) ,
D(z)
C(z)

=
1X

i=1

hizi, (5)

where |hi| = O(e�ri), r > 0, i � 2, and h1 = 1. The num-
bers {hi, i � 1} are called the impulse responses of the linear
subsystem.

H3 The noises ⌘k and "k both are ARMA processes:

P(z)⌘k = Q (z)⇣k, F(z)"k = G(z)&k, where (6)

P(z) = 1 + p1z + p2z2 + · · · + pnpz
np , (7)

Q (z) = 1 + q1z + q2z2 + · · · + qnqz
nq , (8)

F(z) = 1 + f1z + f2z2 + · · · + fnf z
nf , (9)

G(z) = 1 + g1z + g2z2 + · · · + gng z
ng . (10)

Thepolynomial P(z)has no common rootswithQ (z)Q (z�1)znq ,
and P(z) and F(z) are stable. The driven noises {⇣k} and {&k} are
mutually independent, and each of them is a sequence of i.i.d.
zero mean random variables with probability density. More-
over, E(|⇣k|�+2) < 1 and E(|&k|�) < 1 for some� > 2.

H4 The function f (·) is measurable and has the left and right lim-
its f (x�) and f (x+) at any x. As |x| ! 1, f (x) grows no faster
than a polynomial. Further, at least one of the constants ⌧ and
⇢ is nonzero, where

⌧ ,
1p

2⇡� 3#

Z

R
xf (x)e� x2

2�2#2 dx, (11)

⇢ ,
1p

2⇡� 5#

Z

R

�
x2 � � 2#2� f (x)e� x2

2�2#2 dx, (12)

where � 2 ,
P1

i=1 h
2
i .

Remark 1. H4 implies that there are a positive number ↵ > 0
and an integer � � 1 such that

|f (x)|  ↵(1 + |x|�) 8x 2 R. (13)

Therefore, under H4 the integrals (11)–(12) are finite.

H5 The variance #2 of the noise-free input u0
k is known.

H6 The driven noise {⇣k} in (6) is a sequence of zero mean i.i.d.
Gaussian random variables.

Let us first explain these assumptions. It is worth noting that for
identifying the linear subsystem we only need H1–H4, while for
estimating f (·) we have to additionally impose H5–H6. It is noted
that H2 is a standard condition, while H4 is satisfied by a large class
of nonlinear functions. The function f (·) is allowed to be discon-
tinuous, and the nonzero condition for ⌧ or ⇢ is not restrictive. For
example, all polynomials, no matter if they are even or odd, are
possible to meet the requirement. Let f (·) be a monic polynomial
with arbitrary coefficients.

If f (x) = x2 + ax + b, then ⌧ = a#2 and ⇢ = 2#4 > 0. If
f (x) = x3 + ax2 + bx+ c , then ⌧ = (3� 2#2 + b)#2 and ⇢ = 2a#4.
Both ⌧ and ⇢ equal zero only in the case where 3� 2#2 +b = 0 and
a = 0, which, however, can easily be violated by slightly changing
the variance #2.

If f (x) = x4 +ax3 +bx2 + cx+d, then ⌧ = (3� 2#2a+ c)#2 and
⇢ = 2#4(6� 2#2 � b). Similarly, both ⌧ and ⇢ are zero only in the
case where 3� 2#2a = �c and 6� 2#2 = b, which can be violated
by changing the variance #2. The higher order polynomials can
be discussed in a similar manner. Therefore, H4 is not a difficult
condition for practical systems.

Conditions H3 and H6 allow the measurement noises to be
correlated.

For practical systems in operating it may not be reasonable to
assume that their inputs are Gaussian. However, in the paper we
aim at identifying systems, assuming the system inputs are at the
user’s disposal. So, H1 can be met. The purpose of applying the
Gaussian input is to derive the simple relationships (15)–(17) con-
necting the impulse responses of the linear subsystem and the cor-
relation functions between the observed input and output. These
relationships are the basis of the algorithms for estimating the im-
pulse responses.

We now explain the necessity unavoidability of H5 in the
present approach to estimating f (·). As a matter of fact, f (·) is esti-
mated by using the Stochastic Approximation Algorithm With Ex-
panding Truncations (SAAWET) (Chen, 2002) with the help of the
deconvolution kernel function w(x). To define w(x) one needs H6
(see (47) and (48)), while to estimate w(x) one has to estimate
the variance of ek defined in (41). However, the observed input is
uk = u0

k + ⌘k, so the variance of ek can be estimated on the basis
of {uk} together with the estimate for the linear subsystem only if
the variance #2 of u0

k is available. When a practical system is iden-
tified, maybe, its input signal cannot be designed by the user, but
knowing its statistical properties may still be possible. This is the
reason to impose H5.
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2.2. Estimation of {c1, . . . , cp, d2, . . . , dq}

Assuming u0
k = 0 8k < 0, we have

vk =
kX

i=1

hiu0
k�i, (14)

and hence vk 2 N (0, � 2
k ) where � 2

k ,
Pk

i=1 h
2
i ���!

k!1
� 2.

Lemma 1. Assume H1–H4 hold. Then

Eykuk�i ���!
k!1

⌧hi, 8i � 1, (15)

E(yk � Eyk)u2
k�1 ���!

k!1
⇢, (16)

E(yk � Eyk)uk�1uk�i ���!
k!1

⇢hi, 8i � 2. (17)

Proof. Similar to Lemma 2 in Hu and Chen (2006) or Lemma 3.2 in
Mu and Chen (2012), we have

E(f (vk)u0
k�i) = ⌧khi ���!

k!1
⌧hi,

where ⌧k , 1
� 2
k
E (f (vk)vk).

Since u0
k is independent of ⌘k and "k, we have

Eykuk�i = E(f (vk)u0
k�i) ���!

k!1
⌧hi.

By Lemma 3.1 in Mu and Chen (2012), we obtain

E(f (vk)((u0
k�1)

2 � #2))

= 1
� 4
k
E(f (vk)(vk)

2) � #2

� 2
k
Ef (vk) , ⇢k, and (18)

E(f (vk)u0
k�1u

0
k�j) =

✓
1
� 4
k
E(f (vk)(vk)

2) � #2

� 2
k
Ef (vk)

◆
hj

= ⇢khj, j � 2. (19)

It is noticed that � 2
k ���!

k!1
� 2, by (12) we see that

E(yk � Eyk)u2
k�1

= E(y0k � Ey0k)((u
0
k�1)

2 + ⌘2k�1 + 2u0
k�1⌘k�1)

= E[(y0k � Ey0k)(u
0
k�1)

2] = Ey0k((u
0
k�1)

2 � #2)

= ⇢k ���!
k!1

⇢ and (20)

E(yk � Eyk)uk�1uk�i

= E(y0k + "k � Ey0k)(u
0
k�1 + ⌘k�1)(u0

k�i + ⌘k�i)

= E(y0k � Ey0k)(u
0
k�1u

0
k�i) = Ey0ku

0
k�1u

0
k�i

= ⇢khi ���!
k!1

⇢hi, i � 2. (21)

The proof of the lemma is completed. ⇤

The idea of estimating the coefficients of the linear subsystem con-
sists in that we first estimate the impulse responses {hi} and then
obtain the estimates for the coefficients {c1, . . . , cp, d2, . . . , dq} by
using the linear algebraic equations connecting them with {hi}.

Let us first use SAAWET to recursively estimate Eyk:

�k = [�k�1 � (1/k) (�k�1 � yk)] IAk , (22)

�
(�)
k =

k�1X

j=1

IAcj , (23)

where Ak , {|�k�1�(1/k)(�k�1�yk)|  M
�
(�)
k

} and Ac
k denotes the

complement of Ak, {Mk} is an arbitrarily chosen sequence of posi-
tive real numbers increasingly diverging to infinity, �0 is an arbi-
trary initial value, and IA denotes the indicator function of a set A.

In the following, the notation Ak will be repeatedly used but its
definition changes from place to place.

Before giving the estimates for hi, the constants ⌧ and ⇢ are
needed to be estimated on the basis of (15) and (16), respectively.
Their estimates are given as follows:

✓
(1,⌧ )
k =

h
✓

(1,⌧ )
k�1 � (1/k)

⇣
✓

(1,⌧ )
k�1 � ykuk�1

⌘i
IAk , (24)

�
(1,⌧ )
k =

k�1X

j=1

IAcj , (25)

✓
(1,⇢)
k =

h
✓

(1,⇢)
k�1 � (1/k)

⇣
✓

(1,⇢)
k�1 � (yk � �k)u2

k�1

⌘i
IAk , (26)

�
(1,⇢)
k =

k�1X

j=1

IAcj , (27)

where Ak in (24) is {|✓ (1,⌧ )
k�1 � (1/k)(✓ (1,⌧ )

k�1 � ykuk�1)|  M
�
(1,⌧ )
k

},
while in (26) is {|✓ (1,⇢)

k�1 � (1/k)✓ (1,⇢)
k�1 � (yk � �k)u2

k�1|  M
�
(1,⇢)
k

}.
If |✓ (1,⌧ )

k | � |✓ (1,⇢)
k |, then the following algorithm based on (15)

is used to estimate ⌧hi:

✓
(i,⌧ )
k =

h
✓

(i,⌧ )
k�1 � (1/k)

⇣
✓

(i,⌧ )
k�1 � ykuk�i

⌘i
IAk , (28)

�
(i,⌧ )
k =

k�1X

j=1

IAcj , i � 2, (29)

where Ak , {|✓ (i,⌧ )
k�1 � (1/k)(✓ (i,⌧ )

k�1 � ykuk�i)|  M
�
(i,⌧ )
k

}. Here ✓ (i,⌧ )
k�1

is obtained from the previous step of the recursion if |✓ (1,⌧ )
k�1 | �

|✓ (1,⇢)
k�1 |. Otherwise, ✓ (i,⌧ )

k�1 in (28) is set to equal ✓ (1,⌧ )
k�1 hi,k�1. After

having the estimates for ⌧ and ⌧hi, the estimates for the impulse
responses {hi, i � 2} at time k are given by

hi,k ,

8
><

>:

✓
(i,⌧ )
k

✓
(1,⌧ )
k

, if ✓ (1,⌧ )
k 6= 0,

0, if ✓ (1,⌧ )
k = 0.

(30)

Conversely, if |✓ (1,⇢)
k | > |✓ (1,⌧ )

k |, then based on (17), ⇢hi is esti-
mated by the following algorithm:

✓
(i,⇢)
k =

h
✓

(i,⇢)
k�1 � (1/k)

⇣
✓

(i,⇢)
k�1 � (yk � �k)uk�1uk�i

⌘i
IAk , (31)

�
(i,⇢)
k =

k�1X

j=1

IAcj , i � 2. (32)

where Ak , {|✓ (i,⇢)
k�1 � (1/k)✓ (i,⇢)

k�1 � (yk � �k)uk�1uk�i|  M
�
(i,⇢)
k

}.
Similar to the previous case, ✓ (i,⇢)

k�1 is derived from the previous step
of the recursion if |✓ (1,⌧ )

k�1 | < |✓ (1,⇢)
k�1 |. Otherwise, ✓ (i,⇢)

k�1 in (31) is set to
equal ✓ (1,⇢)

k�1 hi,k�1. After having the estimates for ⇢ and ⇢hi, the es-
timates for the impulse responses {hi, i � 2} at time k are given by

hi,k ,

8
><

>:

✓
(i,⇢)
k

✓
(1,⇢)
k

, if ✓ (1,⇢)
k 6= 0,

0, if ✓ (1,⇢)
k = 0.

(33)

It is important to note that after establishing strong consistency
of ✓ (1,⌧ )

k and ✓ (1,⇢)
k in Section 4, switching between the algorithms
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(28)–(30) and (31)–(33) ceases in a finite number of steps, because
by H4 at least one of ⌧ and ⇢ is nonzero and hence either ✓ (1,⌧ )

k �
✓

(1,⇢)
k or ✓ (1,⌧ )

k < ✓
(1,⇢)
k takes place for all sufficiently large k.

Once the estimates hi,k for the impulse responses hi are ob-
tained, the parameters {c1, . . . , cp, d2, . . . , dq} of the linear subsys-
tem can be derived by the convolution relationship between {hi}
and {c1, . . . , cp, d2, . . . , dq}.

In fact, from (5) it follows that

z + d2z2 · · · + dqzq = (1 + c1z + · · · + cpzp)

· (z + h2z2 + · · · + hizi + · · · ), (34)

which, by identifying coefficients for the same powers of z at both
sides, implies

di =
(i�1)^pX

j=0

cjhi�j, 8 2  i  q, (35)

hi = �
(i�1)^pX

j=1

cjhi�j, 8 i � q + 1, (36)

where c0 = 1 and a^bdenotesmin(a, b). Define theHankelmatrix

� ,

2

664

hq hq�1 · · · hq�p+1
hq+1 hq · · · hq�p+2

...
...

. . .
...

hq+p�1 hq+p�2 · · · hq

3

775 , (37)

where hi , 0 for i  0.
For hi, q+1  i  q+p, by (36) and (37)weobtain the following

linear algebraic equation:

� [c1, c2, . . . , cp]T = �[hq+1, hq+2, . . . , hq+p]T . (38)

Noticing that thematrix� is nonsingular underH2 (seeMu&Chen,
2013; Zhao&Chen, 2012a) and that hi,k ���!

k!1
hi a.s. as to be shown

by Theorem 1, we see that �k is nonsingular when k is sufficiently
large,where�k is obtained from� with hi replaced by its estimates
hi,k, andhi,k = 0 for i  0. The estimates for {c1, . . . , cp, d2, . . . , dq}
are naturally defined as:

[c1,k, c2,k, . . . , cp,k]T , �� �1
k [hq+1,k, hq+2,k, . . . , hq+p,k]T , (39)

di,k , hi,k +
(i�1)^pX

j=1

cj,khi�j,k, i = 2, . . . , q. (40)

2.3. Estimation of f (·)

We now recursively estimate f (x), where x is an arbitrary point
on the real axis. Since {vk} is not directly available, the conventional
kernel estimation method (Fan & Yao, 2003) cannot be used. We
apply the deconvolution kernel functions (Davis, 1975; Fan &
Truong, 1993; Stefanski & Carroll, 1990) to estimate f (x). Instead of
directly estimating vk let us estimate the signal  k defined below,
which, in fact, is a noisy vk.

Define

 k , C�1(z)D(z)uk, ek , C�1(z)D(z)⌘k. (41)

According to (1), (4) and (6), we have

 k = C�1(z)D(z)u0
k + [C(z)P(z)]�1D(z)Q (z)⇣k

= vk + ek. (42)

Define

C ,

2

6664

�c1 1
...

. . .
... 1

�cs 0 · · · 0

3

7775
,

D ,

2

664

1
d2
...
ds

3

775 , and H ,

2

664

1
0
...
0

3

775

where s , max(p, q), ci , 0 for i > p and dj , 0 for j > q. Then,
Eq. (41) connecting  k and uk can be written as

 k + c1 k�1 + · · · + cp k�p = uk�1 + d2uk�2 + · · · + dquk�q,

or in the state space form

xk+1 = Cxk + Duk,  k+1 = HTxk+1. (43)

Replacing ci and dj in C and D with ci,k and dj,k given by (39) and
(40), respectively, i = 1, . . . , s, j = 1, . . . , s, we obtain the esti-
mates Ck and Dk for C and D at time k, and hence, the estimate b k
for  k is given as follows:

bxk+1 = Ck+1bxk + Dk+1uk, b k+1 = HTbxk+1 (44)

with an arbitrary initial valuebx0.
In order to eliminate the influence of ek involved in  k, we will

use the Sinc kernel function (Davis, 1975; Stefanski & Carroll, 1990)
and its Fourier transformation

K(x) = sin(x)
⇡x

, (45)

�K (t) ,
Z

R
e◆txK(x)dx = I[|t|1] (46)

where ◆ stands for the imaginary unit ◆2 = �1.
Under H6 {ek} is a sequence of zero mean Gaussian random

variables, and its characteristic function is

�ek(t) ,
Z

R
e◆tx

1p
2⇡�k(e)

e
� x2

2�2k (e) dt = e� �2k (e)t2

2 ,

where � 2
k (e) , Ee2k . Denote by � 2(e) the limit of � 2

k (e). It is clear
that |� 2(e) � � 2

k (e)| = O(e�rek) for some re > 0.
Define

Kk(x) ,
1
2⇡

Z

R
e�◆tx �K (t)

�ek(t/bk)
dt

= 1
2⇡

Z 1

�1
e�◆txe

�2k (e)t2

2b2k dt, (47)

where bk =
�
b� 2

k (e)/ log k
�1/2 is the bandwidth with a chosen

b > 3. The deconvolution kernel function wk(x) is defined by

wk(x) , Kk(( k � x)/bk)/bk

= 1
2⇡bk

Z 1

�1
cos[( k � x)t/bk]e

�2k (e)t2

2b2k dt

= 1
⇡

Z 1
bk

0
cos[( k � x)t]e

�2k (e)t2

2 dt. (48)



2748 B.-Q. Mu, H.-F. Chen / Automatica 49 (2013) 2744–2753

We first estimate the spectral density of ⌘k and then the spectral
density of ek with the help of the estimates for the linear subsys-
tem. Finally, the estimateb� 2

k (e) for � 2
k (e) can be derived by the in-

verse Fourier transformation of the spectral density estimate for ek.
For simplicity, we assume that the orders np and nq in (7) and

(8) are known. When they are unknown, their strongly consistent
estimates can be derived by themethod provided in Chen and Zhao
(2010).

The autocovariances ai(⌘) , E(⌘k⌘k�i), i � 0 of ⌘k can be
recursively estimated by SAAWET:

a0,k(⌘) =
⇥
a0,k�1(⌘) � (1/k)(a0,k�1(⌘) + #2 � u2

k)
⇤
IAk , (49)

�
(0,⌘)
k =

k�1X

j=1

IAcj , (50)

ai,k(⌘) =
⇥
ai,k�1(⌘) � (1/k)(ai,k�1(⌘) � ukuk�i)

⇤
IAk , (51)

�
(i,⌘)
k =

k�1X

j=1

IAcj , i � 1. (52)

where Ak in (49) is {|a0,k�1(⌘) � (1/k)(a0,k�1(⌘) + #2 � u2
k)| 

M
�
(0,⌘)
k

} and in (51) is {|ai,k�1(⌘) � (1/k)(ai,k�1(⌘) � ukuk�i)| 
M
�
(i,⌘)
k

}.
Define the Hankel matrix

�k(⌘) ,

2

664

anq,k(⌘) anq�1,k(⌘) · · · anq�np+1,k(⌘)
anq+1,k(⌘) anq,k(⌘) · · · anq�np+2,k(⌘)

...
...

. . .
...

anq+np�1,k(⌘) anq+np�2,k(⌘) · · · anq,k(⌘)

3

775 ,

where ai,k(⌘) , a�i,k(⌘) for i < 0. Since ai,k(⌘) ���!
k!1

ai(⌘), i � 0
as to be shown in Lemma 10 and the limit of �k(⌘) is nonsingular
under H3 (Stoica, 1983), the matrix �k(⌘) is nonsingular for suffi-
ciently large k. Therefore, at time k, the parameters {p1, . . . , pnp}
can be estimated by the Yule–Walker equation

[p1,k, · · · , pnp,k]T = �� �1
k (⌘)

· [anq+1,k(⌘), anq+2,k(⌘), . . . , anq+np,k(⌘)]T . (53)

The spectral density S⌘k(z) of ⌘k is equal to

S⌘k(z) ,
1X

l=�1
al(⌘)zl =

Q (z)Q (z�1)� 2
⇣

P(z)P(z�1)
,

where � 2
⇣ denotes the variance of ⇣k.

Identifying coefficients of the same order of z at both sides of
the equation

P(z)P(z�1)
1X

l=�1
al(⌘)zl = Q (z)Q (z�1)� 2

⇣ ,

we derive

Q (z)Q (z�1)� 2
⇣ =

nqX

l=�nq

 npX

i=0

npX

j=0

al+j�i(⌘)pipj

!

zl,

where only a finite number of autocovariances al(⌘), �np � nq 
l  np + nq are involved.

As a consequence, the estimate for S⌘k(z) is obtained as follows:

bS⌘k(z) =

nqP
l=�nq

 
npP
i=0

npP
j=0

al+j�i,k(⌘)pi,kpj,k

!

zl

✓ npP
i=0

pi,kzi
◆ npP

j=0
pj,kz�j

! ,

and by (41) the spectral density Sek(z) of ek is estimated by

bSek(z) =

✓ qP
i=1

di,kzi
◆ qP

j=1
dj,kz�j

!

✓ pP
i=0

ci,kzi
◆ pP

j=0
cj,kz�j

!bS⌘k(z).

Finally, the variance� 2
k (e) of ek can be approximated by the inverse

Fourier transformation:

b� 2
k (e) = 1

2⇡

Z ⇡

�⇡
bSek(e

◆!)d!. (54)

Therefore, wk(x) is estimated at time k by

bwk(x) ,
1
⇡

Z 1
bbk

0
cos[(b k � x)t]e

b�2k (e)t2

2 dt, (55)

wherebbk =
�
bb� 2

k (e)/ log k
�1/2.

We now give the algorithms to estimate f (x):

µk(x) =

µk�1(x) � 1

k
(µk�1(x) � bwk(x))

�
IAk , (56)

�
(µ)
k (x) =

k�1X

j=1

IAcj , (57)

�k(x) =

�k�1(x) � 1

k
(�k�1(x) � bwk(x)yk)

�
IAk , (58)

�
(�)
k (x) =

k�1X

j=1

IAcj . (59)

whereAk in (56) is {|µk�1(x)�(1/k)(µk�1(x)�bwk(x))|  M
�
(µ)
k (x)},

while in (58) is {|�k�1(x) � (1/k)(�k�1(x) �bwk(x)yk)|  M
�
(�)
k (x)}.

As amatter of fact,µk(x) defined by (56)–(57) and �k(x) defined by
(58)–(59) are applied to estimate p(x) and p(x)ef (x) (see (87) and

(88)), respectively, where p(x) = 1p
2⇡�#

e� x2

2�2#2 is the limit of the
density function of vk. The estimate for f (x) is naturally defined as:

fk(x) ,

8
<

:

�k(x)
µk(x)

, if µk(x) 6= 0

0, if µk(x) = 0.
(60)

3. Auxiliary results on weak dependence

We now proceed to prove strong consistency of the estimates
given in Section 2.

Denote by F j
i the � -algebra generated by {Xs, 0  i  s  j}

for a process {Xk, k = 0, 1, . . .}, and define

↵k , sup
n,A2F n

0 ,B2F 1
n+k

|P(A)P(B) � P(AB)|.

The process {Xk} is called ↵-mixing if ↵k ���!
k!1

0, and the numbers
↵k are called the mixing coefficients of {Xk} (Doukhan, 1994; Fan &
Yao, 2003).

Lemma 2 (Zhao & Chen, 2012a). Under Conditions H1 and H2, {Vk}
is an ↵-mixing, and the mixing coefficient ↵k exponentially decays to
zero:

↵k  d�k 8k � 1 for some d > 0 and 0 < � < 1, (61)

where Vk+1 , [vk+1, . . . , vk+2�p, u0
k+1, . . . , u

0
k+2�q]T .
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Remark 2. It is worth noting that the mixing property is heredi-
tary (Fan & Yao, 2003) in the sense that the process {h(Vk)} for any
measurable function h(·) possesses the same mixing property as
{Vk} does. All the processes listed below are ↵-mixing with mixing
coefficients exponentially tending to zero:

(1) {f (vk)} and {f (vk�j)u0
k�i�1, 8j = 0, 1, . . . , i}, etc. under H1 and

H2;
(2) {⌘k}, {"k}, and {⌘k⌘k�i, i � 0} under H3;
(3) {uk}, { k}, {h(uk)}, {h( k)}, and {h( k)"k} with h(·) being any

measurable function under H1–H3, because u0
k, ⌘k, and "k are

mutually independent.

Lemma 3 (Mu & Chen, 2012). Let {$k} be a sequence of random
variables with supk E|$k|� < 1 for some � � 2, and let {li} with
|li| = O(e�rli) for some rl > 0 be a sequence of real numbers. Then,
the process Xk = Pk

i=1 li$k�i has the bounded �-th absolutemoment:
supk E|Xk|� < 1.

Lemma 4 (Mu & Chen, 2013; Zhao & Chen, 2012a). Let {Xk, Fk} be
a zero mean ↵-mixing sequence with the mixing coefficients (↵k)

exponentially decaying to zero. If
P1

k=1(E|Xk|2+✏)
2

2+✏ < 1 for some
✏ > 0, then

P1
k=1 Xk < 1 a.s.

4. Consistency of estimates for linear part

Lemma 5. Assume that H1–H4 hold. Then, for any 0  ⌫ < 1/2, the
following series converge:

1X

k=1

1
k1�⌫

(⌧hi � Eykuk�i) < 1 8i � 1, (62)

1X

k=1

1
k1�⌫

(⇢ � E(yk � Eyk)u2
k�1) < 1, (63)

1X

k=1

1
k1�⌫

(⇢hi � E(yk � Eyk)uk�1uk�i) < 1. 8i � 2. (64)

The proof is based on the fact |� 2 � � 2
k | = O(e�rk) for some r > 0.

For details we refer to Lemma 4.3 in Mu and Chen (2012).

Lemma 6. Assume H1–H4 hold. Then, �k defined by (22)–(23) has
the following convergence rate:

|�k � Eyk| = o
✓

1
k1/2�c

◆
8c > 0. (65)

Proof. By (4) and H3 we see

Eyk = Ey0k = Ef (vk)

���!
k!1

1p
2⇡�#

Z

R
f (x)e� x2

2�2#2 dx , �̄, (66)

where � 2 = P1
i=1 h

2
i .

The algorithm (22) can be written as

�k =
h
�k�1 � (1/k)(�k�1 � �̄) � (1/k)e(�)

k

i
IAk , (67)

where

e(�)
k = �̄� yk = (�̄� Ey0k) + (Ey0k � y0k) � "k. (68)

Since �̄ is the single root of the linear function�(y��̄), by Theorem
3.1.1 (Chen, 2002), for proving |�k � �̄| = o

⇣
1

k1/2�c

⌘
, it suffices to

show
1X

k=1

1
k1�⌫

e(�)
k < 1 a.s. 80 < ⌫ < 1/2. (69)

Since |� 2 � � 2
k | = O(e�rk) for some r > 0, we have |�̄ � Ey0k | =

O(e�r�k) for some r� > 0. Thus, (69) holds for the first term on the
right-hand side of (68).

By Lemma 2 and Remark 2, we see that both {Ey0k � y0k} and
{"k} are the zero mean ↵-mixing sequences with mixing coeffi-
cients decaying exponentially to zero. Further, by Lemma 3, we
have E|y0k |2+✏ < 1 and E|"k|2+✏ < 1 for some ✏ > 0. Thus, by
Lemma 4, (69) holds for the last two terms on the right-hand side
of (68).

Since |�k �Eyk|  |�k � �̄|+ |�̄�Eyk| and |�̄�Eyk| = O(e�r�k)
for some r� > 0, we have

|�k � Eyk| = o
✓

1
k1/2�c

◆
8c > 0. ⇤

Lemma 7. Assume that H1–H4 hold. Then, for any 0  ⌫ < 1/2, the
following series converge:

1X

k=1

1
k1�⌫

(Eykuk�i � ykuk�i) < 1 a.s. 8i � 1, (70)

1X

k=1

1
k1�⌫

(E(yk � Eyk)u2
k�1 � (yk � Eyk)u2

k�1) < 1 a.s., (71)

1X

k=1

1
k1�⌫

(E(yk � Eyk)uk�1uk�i

� (yk � Eyk)uk�1uk�i) < 1 a.s. 8i � 2, (72)
1X

k=1

1
k1�⌫

((�k � Eyk)u2
k�1) < 1 a.s., (73)

1X

k=1

1
k1�⌫

((�k � Eyk)uk�1uk�i) < 1 a.s. 8i � 2. (74)

Proof. It is noticed that u0
k, ⌘k and "k are mutually independent,

we have

E(yk � Eyk)u2
k�1 � (yk � Eyk)u2

k�1

=
⇥
E(y0k � Ey0k)(u

0
k�1)

2 � (y0k � Ey0k)(u
0
k�1)

2⇤� "ku2
k�1

� (y0k � Ey0k)⌘
2
k�1 � 2(y0k � Ey0k)u

0
k�1⌘k�1. (75)

It follows from (75) that
1X

k=1

1
k1�⌫

⇥
E(yk � Eyk)u2

k�1 � (yk � Eyk)u2
k�1
⇤

=
1X

k=1

1
k1�⌫

⇥
E(y0k � Ey0k)(u

0
k�1)

2 � (y0k � Ey0k)(u
0
k�1)

2⇤

�
1X

k=1

1
k1�⌫

⇥
(y0k � Ey0k)⌘

2
k�1
⇤
�

1X

k=1

1
k1�⌫

⇥
"ku2

k�1
⇤

� 2
1X

k=1

1
k1�⌫

⇥
(y0k � Ey0k)u

0
k�1⌘k�1

⇤
. (76)

Define z(1)
k , 1

k1�⌫ E(y
0
k � Ey0k)(u

0
k�1)

2 � (y0k � Ey0k)(u
0
k�1)

2. Thus,
by Lemma 2, z(1)

k is a zero mean ↵-mixing sequence with the
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mixing coefficient decaying exponentially to zero. By Lemma 3,
Cauchy–Schwarz and Cr inequalities, we have
1X

k=1

⇣
E|z(1)

k |2+✏
⌘ 2

2+✏ 
1X

k=1

4
k2(1�⌫)

�
E|(y0k � Ey0k)(u

0
k�1)

2|2+✏
� 2

2+✏  O

 1X

k=1

1
k2(1�⌫)

!

< 1.

Therefore, by Lemma 4, the first term on the right-hand side of
(76) converges a.s. The convergence of the remaining terms on the
right-hand side of (76) can be proved in a similar way, and hence
(71) holds. Similarly, the assertions (70) and (72) also hold.

According to (65), we have
�����

1X

k=1

1
k1�⌫

((�k � Eyk)u2
k�1)

�����


1X

k=1

1

k
3
2 �⌫�c

· (u2
k�1 � Eu2

k�1) +
1X

k=1

1

k
3
2 �⌫�c

Eu2
k�1. (77)

Since
P1

k=1
1

k
3
2 �⌫�c

Eu2
k�1 < 1, for proving

P1
k=1

1
k1�⌫ ((�k � Eyk)

u2
k�1) < 1 it suffices to show the first term on the right-hand side

of (77) converges a.s.
By Remark 2, z(2)

k , 1

k
3
2 �⌫�c

(u2
k�1 � Eu2

k�1) is a zero mean ↵-

mixing sequence with the mixing coefficient decaying exponen-
tially to zero. Noticing that E|u2

k�1|2+✏ < 1, by the Cr inequality
we have
1X

k=1

⇣
E|z(2)

k |2+✏
⌘ 2

2+✏ 
1X

k=1

4
k3�2⌫�2c

�
E|u2

k�1|2+✏
� 2

2+✏

= O

 1X

k=1

1
k3�2⌫�2c

!

< 1.

Therefore, by Lemma 4, the assertion (73) holds. Similarly, (74) is
also true. ⇤

Theorem 1. Assume that H1–H4 hold. Then, hi,k defined by (30) and
(33) converges to hi 8i � 2 with the rate of convergence

|hi,k � hi| = o(k�⌫) a.s. 8 ⌫ 2 (0, 1/2), i � 2. (78)

As consequences, from (39)–(40) the following convergence rates also
take place: 8 ⌫ 2 (0, 1/2),

|ci,k � ci| = o(k�⌫) a.s. 1  i  p, (79)

|dj,k � dj| = o(k�⌫) a.s. 2  j  q. (80)

Proof. As pointed out before, by H4 at least one of ⌧ and ⇢
is nonzero, so switching between (28)–(30) and (31)–(33) may
happen only a finite number of times. Therefore, for proving (78) it
suffices to show

|✓ (i,⌧ )
k � ⌧hi| = o(k�⌫) a.s. 8⌫ 2 (0, 1/2) i � 1, (81)

|✓ (1,⇢)
k � ⇢| = o(k�⌫) a.s. 8⌫ 2 (0, 1/2), (82)

|✓ (i,⇢)
k � ⇢hi| = o(k�⌫) a.s. 8⌫ 2 (0, 1/2) i � 2. (83)

We rewrite (26) as

✓
(1,⇢)
k =

h
✓

(1,⇢)
k�1 � (1/k)(✓ (1,⇢)

k�1 � ⇢) � (1/k)e(1,⇢)
k

i
· IAk ,

where

e(1,⇢)
k = ⇢ � ⇢k + (E(yk � Eyk)u2

k�1 � (yk � Eyk)u2
k�1)

+ (�k � Eyk)u2
k�1. (84)

For (82), similar to (67), it suffices to prove

1X

k=1

1
k1�⌫

e(1,⇢)
k < 1 a.s. 8⌫ 2 (0, 1/2). (85)

By (63), (71) and (73) we find that (85) is true for (84), and hence
(82) holds. Similarly, (81) and (83) can be proved by Lemmas 5
and7,while the assertions (79)–(80) straightforwardly follow from
(78). ⇤

5. Strong consistency of estimates for f (·)

Lemma 8 (Hu&Chen, 2006;Mu&Chen, 2012). Assume that H1–H4
and H6 hold. Then the following limits take place

uk

kc
a.s.���!

k!1
0,

f (vk)

kc
a.s.���!

k!1
0 8c > 0. (86)

The lemma can be proved by the same treatment as that used in
Lemma 4 of Hu and Chen (2006) or Lemma 4.8 of Mu and Chen
(2012).

Lemma 9. Under Conditions H1–H6, the following limits and asser-
tions for wk(x) defined by (48) take place

E[wk(x)] ���!
k!1

p(x), (87)

E[wk(x)f (vk)] ���!
k!1

p(x)ef (x), (88)

|wk(x)|� = O
⇣
k
�
2b (log k)

�
2

⌘
8� � 1, (89)

|wk(x)f (vk)|� = O
⇣
k
�
2b +c(log k)

�
2

⌘
8� � 1 c > 0, (90)

where p(x) = 1p
2⇡�#

e� x2

2�2#2 , � 2 = P1
i=1 h

2
i , and

ef (x) = f (x�)

Z x

�1
K(t)dt + f (x+)

Z 1

x
K(t)dt,

which equals f (x) for any x where f (·) is continuous.
Proof. By the Fubini theorem, and noticing that the density func-
tion of ek is even, we have

E[wk(x)f (vk)]

= 1
2⇡bk

Z

R
E
�
e[�◆t( k�x)/bk]f (vk)

� �K (t)
�ek(t/bk)

dt

= 1
2⇡bk

Z

R
E
�
e[�◆t(vk�x)/bk]f (vk)

�
�K (t)dt

= 1
bk

Z

R

✓
1
2⇡

Z

R
e[�◆t(y�x)/bk]�K (t)dt

◆

· f (y) 1p
2⇡�k#

e
� y2

2�2k #
2 dy

= 1p
2⇡�k#

e
� x2

2�2k #
2
Z x

�1
K(t)f (x + bkt)e

� 2xbkt+b2k t
2

2�2k #
2 dt
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+ 1p
2⇡�k#

e
� x2

2�2k #
2
Z 1

x
K(t)f (x + bkt)e

� 2xbkt+b2k t
2

2�2k #
2 dt

���!
k!1

p(x)
✓
f (x�)

Z x

�1
K(t)dt + f (x+)

Z 1

x
K(t)dt

◆
,

while the limit (87) can be proved in a similar treatment.
By (48), we have

|wk(x)|�  1
⇡�

�����

Z 1
bk

0
e
�2k (e)t2

2 dt

�����

�

 1
⇡�

2

41
2

0

@1 + e
�2k (e)

2
log k

b�2k (e)

1

A
✓

log k
b� 2

k (e)

◆ 1
2

3

5
�

 (log k)
�
2

(2⇡�k(e))�b�/2
k
�
2b = O

⇣
k
�
2b (log k)

�
2

⌘
. (91)

Similarly, the assertion (90) can be proved by noticing the second
limit of (86). ⇤

Lemma 10. Assume that H1, H3, H5 andH6 hold. Then both a0,k(⌘)
defined by (49) and (50) and ai,k(⌘), i � 1 defined by (51) and
(52) have the convergence rate

|ai,k(⌘) � ai(⌘)| = o
✓

1
k1/2�c

◆
8c > 0, i � 0. (92)

The proof of the lemma is similar to that for Lemma 6.

Corollary 1. AssumeH1–H6 hold. Thenb� 2
k (e) defined by (54) has the

following convergence rate:

|b� 2
k (e) � � 2

k (e)| = o
✓

1
k1/2�c

◆
8c > 0, (93)

Lemma 11. AssumeH1–H6 hold. Then there is a constant c > 0with
1
2 � 1

2b � 2c > 0 such that

| k � b k| = o
✓

1

k
1
2 �2c

◆
, (94)

|wk(x) � bwk(x)| = o

 
(log k)

3
2

k
1
2

⇣
1� 1

b

⌘
�2c

!

. (95)

Proof. For (94) we refer to Theorem 2 in Hu and Chen (2006) or
Lemma 4.10 in Mu and Chen (2012).

According to (48) and (55), we have

wk(x) � bwk(x) = I1 + I2 + I3,

where

I1 = 1
⇡

Z 1
bk

1
bbk

cos[( k � x)t]e
�2k (e)t2

2 dt, (96)

I2 = 1
⇡

Z 1
bbk

0
cos[( k � x)t]

✓
e
�2k (e)t2

2 � e
b�2k (e)t2

2

◆
dt, (97)

I3 = 1
⇡

Z 1
bbk

0
(cos[( k � x)t] � cos[(b k � x)t])e

b�2k (e)t2

2 dt. (98)

Since |b� 2
k (e) � � 2

k (e)| = o
⇣

1
k1/2�c

⌘
and k�

2
k (e)/(2bb� 2

k (e)) = o(k
1
2b +c)

for any c > 0, we have

|I1|  1
2⇡

0

@e
�2k (e)

2
1
b2k + e

�2k (e)
2

1
bb2k

1

A
����
1
bk

� 1
bbk

����

 1
2⇡

0

@e
�2k (e)

2
log k

b�2k (e) + e
�2k (e)

2
log k

bb�2k (e)

1

A
✓
log k
b

◆ 1
2

· |b� 2
k (e) � � 2

k (e)|
b�k(e)�k(e)(b�k(e) + �k(e))

 1
2⇡

0

@k
1
2b + k

�2k (e)

2bb�2k (e)

1

A o

 
(log k)

1
2

k
1
2 �c

!

= o

 
(log k)

1
2

k
1
2

⇣
1� 1

b

⌘
�2c

!

. (99)

By the mean value theorem, there is an s̄ 2 (b� 2
k (e), � 2

k (e)) or s̄ 2
(� 2

k (e),b� 2
k (e)) such that

����e
�2k (e)t2

2 � e
b�2k (e)t2

2

���� = t2

2
e

s̄t2
2 |� 2

k (e) �b� 2
k (e)|.

Again by |b� 2
k (e) � � 2

k (e)| = o
⇣

1
k1/2�c

⌘
and ks̄/(2bb�

2
k (e)) = o(k

1
2b +c)

for any c > 0, we have

|I2| = 1
⇡

Z 1
bbk

0

t2

2
e

s̄t2
2 dt|� 2

k (e) �b� 2
k (e)|

 1
2⇡

 
log k

2bb� 2
k (e)

e
s̄
2

log k
bb�2k (e)

!✓
log k
bb� 2

k (e)

◆ 1
2
|� 2

k (e) �b� 2
k (e)|

= 1
4⇡

✓
log k
bb� 2

k (e)

◆ 3
2
k

s̄
2bb�2k (e) |� 2

k (e) �b� 2
k (e)|

= o

 
(log k)

3
2

k
1
2

⇣
1� 1

b

⌘
�2c

!

. (100)

From (94) it follows that

|I3|  1
⇡

Z 1
bbk

0

�����2 sin
✓

( k + b k)t � 2xt
2

◆

· sin
✓

( k � b k)t
2

◆����e
b�2k (e)t2

2 dt

 1
⇡

Z 1
bbk

0
te
b�2k (e)t2

2 dt
�� k � b k

��

= 1
⇡b� 2

k (e)
(k

1
2b � 1)

�� k � b k
�� = o

✓
1

k
1
2 � 1

2b �2c

◆
. (101)

By (99)–(101), we have

|wk(x) � bwk(x)| = o

 
(log k)

3
2

k
1
2

⇣
1� 1

b

⌘
�2c

!

. ⇤
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Lemma 12. Assume H1–H6 hold. The following series converge a.s.

1X

k=1

1
k
(Ewk(x) � wk(x)) < 1, (102)

1X

k=1

1
k
(Ewk(x)f (vk) � wk(x)f (vk)) < 1, (103)

1X

k=1

1
k
(wk(x) � bwk(x))"k < 1,

1X

k=1

1
k
wk(x)"k < 1. (104)

Proof. By Remark 2, z(3)
k , 1

k (Ewk(x) � wk(x)) is a zero mean ↵-
mixing sequence with mixing coefficients decaying exponentially
to zero. Noticing E|wk(x)|2+✏ = O

⇣
k

2+✏
2b (log k)

2+✏
2

⌘
by (89), and by

the Cr inequality we have
1X

k=1

⇣
E|z(3)

k |2+✏
⌘ 2

2+✏ = O

 1X

k=1

log k

k2�
1
b

!

< 1.

Therefore, by Lemma 4 we have proved (102), while (103) can be
verified in a similar way.

The convergence of the first series in (104) can be proved by the
treatment similar to that used for proving (73).

By Remark 2, z(4)
k , 1

kwk(x)"k is a zeromean↵-mixing sequence
with mixing coefficients decaying exponentially to zero. Noticing
E|wk(x)|2+✏ = O

⇣
k

2+✏
2b (log k)

2+✏
2

⌘
by (89), and E|"k|2+✏ < 1 by

Lemma 3, we have
1X

k=1

⇣
E|z(4)

k |2+✏
⌘ 2

2+✏ 
1X

k=1

1
k2
�
E|wk(x)|2+✏

� 2
2+✏ ·

�
E|"k|2+✏

� 2
2+✏

= O

 1X

k=1

log k

k2�
1
b

!

< 1.

Therefore, by Lemma 4we have proved the convergence of the last
series of (104). ⇤

Theorem 2. Assume H1–H6 hold. Then

µk(x) ���!
k!1

p(x) a.s., (105)

�k(x) ���!
k!1

p(x)ef (x) a.s., (106)

fk(x) ���!
k!1

ef (x) a.s., (107)

where µk(x),�k(x), and fk(x) are defined by (56)–(60), respectively.

Proof. The algorithm (56) can be rewritten as

µk(x) =

µk�1(x) � 1

k
(µk�1(x) � p(x)) � 1

k
ēk(x)

�
IAk ,

where

ēk(x) = p(x) � bwk(x) = [p(x) � Ewk(x)]
+ [Ewk(x) � wk(x)] + [wk(x) � bwk(x)] . (108)

Noticing that
P1

k=1
1
k ((Ewk(x) � wk(x)) + (wk(x) � bwk(x))) <

1 a.s. by (102) and (95), and Ewk(x) ���!
k!1

p(x) by (87), we
conclude µk(x) ���!

k!1
p(x) a.s. by Theorem 2.1.1 in Chen (2002).

The proof of (106) can similarly be carried out, if we rewrite the
algorithm (58) as follows:

�k(x) =

�k�1(x) � 1

k
(�k�1(x) � p(x)ef (x)) � 1

k
ẽk(x)

�
IAk ,

Fig. 2. Estimates for c1, c2, d2, d3.

where

ẽk(x) =
�
p(x)ef (x) � Ewk(x)f (vk)

�

+ (Ewk(x)f (vk) � wk(x)f (vk))

� (bwk(x) � wk(x))(f (vk) + "k) � wk(x)"k. (109)

Each term on the right-hand side of (109) satisfies the convergence
condition of SAAWET by noticing (88), (103), (95) and (104). So, the
estimate (60) is strongly consistent. ⇤

6. Example

Let the nonlinear function and the linear subsystembe such that

f (x) = x2 � 0.5x � 1
vk + c1vk�1 + c2vk�2 = u0

k�1 + d2u0
k�2 + d3u0

k�3,

where c1 = 0.2, c2 = 0.6, d2 = �0.3 and d3 = 1.2.
Let the input {u0

k}, the driven noises {⇣k} and {&k} be mutually
independent and Gaussian: u0

k 2 N (0, 1), ⇣k 2 N (0, 0.32), and
&k 2 N (0, 0.32). The measurement noises ⌘k and "k are ARMA
processes:

⌘k � 0.7⌘k�1 = ⇣k + 0.5⇣k�1,

"k + 0.4"k�1 = &k � 0.6&k�1.

The parameters used in the algorithms are as follows: b = 4 and
Mk = 2k + 10.

For parameter estimation, the solid lines are the true values,
while the dashed lines denote the corresponding estimates. Fig. 2
demonstrates the estimates for coefficients of the linear subsys-
tem,while Fig. 3 gives the performance of the estimate for � 2

k (e). In
Fig. 4 the true nonlinear function is denoted by the solid curve, and
its estimates at 31 points equally chosen from the interval [�3, 3]
are shown by symbols +. The behavior of the estimates at points
{�2.4, �2, �0.2, 1.8} versus time is shown by Fig. 5.

7. Conclusion

The recursive estimation for identifying EIV Wiener systems is
proposed in the paper. The estimation is carried out by the SAAWET
incorporated with the deconvolution kernel. The estimates for the
linear subsystem as well as for the nonlinearity are shown to be
convergent to the true values with probability one.

For further research it is of interest to consider identification of
other EIV nonlinear systems, for example, the MIMO EIV Wiener
systems or more complicated EIV Wiener–Hammerstein systems.
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Fig. 3. Estimates for � 2
k (e).

Fig. 4. Estimates for f (x) = x2 � 0.5x � 1.

Fig. 5. Estimates for f (x) at some fixed points.
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