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H I G H L I G H T S

• Battery knee point recognition new method using quantile regression is proposed.

• The dynamic boundary determination method for the whole lifetime is developed.

• Recognition result is effective even if the input is disturbed.

• The proposed method has strong reliability and stability at different conditions.
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A B S T R A C T

The requirement for energy density of lithium-ion batteries becomes more urgent due to the rising demand for
driving range of electric vehicles in recent years. Meanwhile, the performance stability of batteries with high
energy densities tends to deteriorate, leading to accelerating degradation and safety issues. As a result, it is
critical to explore the reasons that yield the sudden degradation and to recognize the degradation knee point of
Nickel-Cobalt-Manganese batteries commonly used for electric vehicles. Existing results have disclosed that the
lithium deposition of negative electrode dominates the sudden degradation of battery capacity. This paper ex-
tracts key parameters that characterize the aging status to facilitate knee point recognition in engineering
practice. Furthermore, a novel method that integrates quantile regression and Monte Carlo simulation method to
identify the accelerated fading knee point is introduced. The dynamic safety boundary determination method for
the whole battery lifetime is proposed to update and monitor the safety zone. It is verified by experiments that
the recognition results of capacity degradation knee point appear within 90–95% capacity range at 25 °C, 35 °C
and 45 °C conditions, which can provide an early warning before the battery fails. Using the proposed method for
recognizing the sudden degradation of capacity, recognition result is effective even if the input is disturbed and
has strong reliability and stability under different conditions. It is helpful to promote the sustainable and stable
development of the electric vehicles and improve advanced applied energy technologies.

1. Introduction

To conserve national energy and reduce emission, developing
electric vehicles (EVs) has become a clear trend to deal with energy
crisis and increasingly prominent environmental problems [1]. The
most concerned quantities for EVs manufacturers and customers are the
driving range and service life, which mainly depends on the energy
density and remaining life of power batteries. Therefore, the require-
ment for the energy density of the lithium-ion battery is more rigorous,

and its improvement has become the key to promoting the development
of EVs [2].

Nickel-Cobalt-Manganese (NCM) lithium-ion batteries [3] are
widely used in EVs due to the higher specific energy and longer cycle
life [4] compared with other types of battery. However, NCM batteries
with high energy density encounter sudden degradation [5] of battery
capacities during usage, which not only greatly reduces the service life
and durability of EVs, but also brings serious troubles for users when
the EVs is running [6]. In 2017, General Motors Corporation (GM)
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suffered a remarkable economy loss from the recall of some Bolt EVs
due to the failure of NCM lithium-ion batteries and the reason is that
one of the batteries in the battery pack accelerated attenuation, which
is also called the capacity “diving”. The voltage of suddenly decaying
battery drops rapidly compared with other batteries. Once the battery
management system detects that the voltage of any battery in the bat-
tery pack is under the limit, it will switch off the power system to avoid
over-discharging the battery.

Numerous studies have confirmed that as the lithium-ion battery
ages under normal operating conditions, the solid electrolyte interface
(SEI) on the anode becomes thicker [7], and the available lithium ions
are consumed [8], resulting in the linear degradation of the battery
capacity with the number of cycles [9,10]. Meanwhile, there are some
literatures report that the sudden degradation of battery capacity oc-
curs, when the battery suffers from the abuse such as low temperature
[11] and high charging cut-off voltage [12], even operates at the
normal condition [13,14]. The capacity sudden degradation mechanism
of the NCM lithium-ion battery under various operating conditions has
been analyzed [15,16]. Zabala et al. [15] evaluated the aging me-
chanism by in-situ electrochemical measurements and ex-situ destruc-
tive physicochemical analysis, confirming that the abrupt decline of
capacity is primarily affected by the growth of the SEI layer, resulting in
localized lithium plating on the surface of the negative electrode (NE)
during extended cycling. Ma et al. [16] systematically explored the
effects of electrode material coating, electrolyte additive, upper cutoff
voltage, electrolyte concentration, electrode thickness, and graphite
type on the sudden degradation of battery capacity, and found that
impedance growth is the main cause. It can be concluded that the es-
sential cause of sudden degradation is mainly the lithium deposition of
NE, which make the porosity of the electrode to decrease and the SEI
layer to grow rapidly. The battery system consists of hundreds or even
thousands of lithium-ion batteries connected in series and parallel.
Once the sudden degradation occurs, the performance of the battery
drops sharply in a short period of time. Furthermore, it is also observed
that the batteries begin to expand noticeably since side reactions occur
inside the battery, which results in electrolyte decomposition to gen-
erate a large amount of gas. This may lead to battery failure and affect
the normal operation of the system. In severe cases, the deposited li-
thium pierces the separator to cause the internal short circuit, and the
battery system fires and explodes. This not only causes huge economic
losses, but also jeopardizes life safety, greatly restricting the develop-
ment of energy conversion and conservation technologies.

Real cases of the battery sudden degradation and related mechanism
research work have forced us to pay attention to the knee point re-
cognition of sudden degradation for battery capacity. Recognizing the
sudden degradation of capacity, it is not only possible to judge the
fading trajectory of the battery to play an early warning role, but also to
provide guide for replacing the sudden decay battery in time, thereby
effectively reducing the safety hazard and improving the performance
of the battery pack. It is helpful to promote the sustainable and stable
development of the EVs and improve advanced applied energy tech-
nologies.

There are few researches on methods for identifying capacity ac-
celerated fading knee point of NCM lithium-ion batteries, but most
studies focus on remaining useful life (RUL) prediction and state of
health (SOH) estimation. The termination condition of the battery life is
generally considered as when the battery capacity declines to 70%-80%
of the initial rated capacity or the internal resistance increases to 160%-
200% of the initial value. The remaining life can be defined as the
length of time from now to the moment when the battery termination
condition is reached [17]. The remaining life prediction methods are
divided into two categories: model-driven methods and data-driven
methods. The fundamental difference between model-based and data-
driven methods is whether there is prior knowledge. This prior
knowledge may be an empirical model or a physical model that con-
siders the aging mechanism. Model-driven methods have clarified

mathematical expression of the battery capacity or internal resistance
with respect to the number of cycles before the prediction. Data-driven
methods have no well-defined mathematical expression, using a large
amount of data to construct an approximate relationship to imitate the
real situation.

Implementing the model-driven method has two fold. One relies on
the laboratory data under some specific conditions to summarize the
evolution law of battery aging, and further establishes empirical
models. Another implementation considers the aging mechanism.
Ramadesigan et al. [18] and Safari et al. [19] observed chemical re-
actions and structural changes inside the battery and constructed
physicochemical models of battery decay through thermodynamic and
kinetic equations. This approach provides a deeper understanding of
the decay mechanism of battery capacity, and yields the model having
higher prediction accuracy under specific operating conditions than
other empirical models. The key of the method is to determine para-
meters in the model in terms of the measured data when the model
structure is determined. A large number of parameter estimation
methods such as particle filtering (PF), Kalman filtering (KF), and un-
scented particle filtering (UPF) have been proposed. Zhang et al. [20]
found that the lithium-ion battery capacity declines exponentially and
developed a prediction method based on exponential model and PF.
Guha et al. [21] combined the double exponential capacity decay model
with the fourth-order polynomial internal resistance growth model for
the remaining life prediction. Zhang et al. [22] proposed an improved
PF algorithm using linear optimization integrated resampling UPF to
improve prediction accuracy. In Ref. [23], Markov Chain Monte Carlo
(MCMC) methods were used to improve the UPF and establish an em-
pirical capacity decay mode. In Ref. [24], Bayesian network theory
based model was explored, model parameters were inferred from sta-
tistical methods through prior distribution [25,26]. Yang et al. [27]
extracted four feature parameters that can well reflect the aging status
of batteries as inputs to Gaussian Process Regression (GPR) models. In
Ref. [28], the proposed life prediction methods based on multi-hidden
nonlinear drift Brownian motion were verified to be more accurate than
the PF and Bayesian methods. Although the model-driven methods have
a clear expression, it brings unavoidable model prediction error due to
uncertainty of model parameters.

Data-driven methods rely on a large amount of existing data rather
than a preset model to fit the data with many simple models, finding
one or a combination of a set of models that extremely approximate to
the real situation. Although the obtained model may have a certain
deviation from the real model, in terms of the prediction result, it is
sufficiently close to the accurate model within the error tolerance. Data-
driven methods can either directly deal with the original data or con-
vert the original data into some features having a certain relationship
with predicted values by means of mathematical or signal processing
method for machine learning. Li et al. [29] proposed a deep convolu-
tional neural network (DCNN) that uses measured values for learning
prediction without known prior distribution. Patil et al. [30] extracted
the key feature to construct database from the aging data of lithium-ion
battery under different working conditions. Further, an initial estima-
tion was performed to narrow the range of prediction results by using
support vector machine (SVM) based classification technique, laying
the foundation for accurate life prediction by regression. Wei et al. [31]
extracted the time and capacity of the constant voltage (CV) charging
process as feature parameters, and established the state space formula
based on support vector regression (SVR) that simulates the battery
capacity degradation. In Ref. [32], it was found that the capacity of Li
(NiCoAl)O2 or LiCoO2 battery showed a downward convex trend with
the cycle numbers. In this case, the feature converted from battery
capacity via Box-Cox transformation had a clear linear relationship
with cycle numbers. Cai et al. [33] processed the row data based on
wavelet transform to build the cross D-Markov machine learning model.
In Ref. [34], the charging curve was translated, rotated and scaled
based on dynamic space time warping (DSTW), recognizing the
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relationship between the judgement curve and reference curve to pre-
dict the degradation state. Data-driven methods yield a slightly dif-
ferent model from the real world, but it is sufficient to guide practice.
More importantly, data-driven methods can be implemented more ea-
sily with the development of computer technology.

All of the aforementioned methods aimed to RUL prediction and
SOH estimation, which indicates the remaining life and health status of
the battery at the current moment. However, the operating environ-
ment of batteries is rather complicated in practical application sce-
narios. And capacity fading process of batteries is affected by many
factors, such as temperature, current, and depth of discharge, which
make the accurate prediction of the RUL difficult. Moreover, when a
battery starts the accelerated attenuation, the remaining life is less than
20% of the entire life and the consistency difference of the battery pack
is great. Under these circumstances, RUL prediction and SOH estima-
tion have estimation errors and uncertainty in the prediction results, it
has difficulty in determining whether appearing sudden degradation at
current state. In order to avoid the troubles and safety risks mentioned
earlier, a method that can quickly and accurately identify the capacity
accelerated fading knee point is particularly indispensable.

Based on the investigation of battery degradation mechanisms, this
paper extracts the parameters that characterize the state of aging and
develops a method integrating quantile regression and Monte Carlo
simulation to identify the capacity accelerated fading knee point. The
rest of the article will be presented in the following. Section 2 in-
troduces the battery cycle life test matrix. Section 3 depicts the battery
degradation mechanism and corresponding characterization parameter
extraction. Section 4 presents the principle and implementation of the
accelerated fading knee point recognition algorithm. Section 5 de-
monstrates the identification results and effectiveness analysis of the
developed method. Finally, main findings are summarized in Section 6.

2. Battery cycle life test matrix

Cycle life tests under different operating conditions are carried out
to study the accelerated fading mechanism and identification method of
NCM lithium-ion batteries. The selected battery is a commercial 36Ah
NCM lithium-ion battery with the graphite anode. The working voltage
ranges from 2.8 V to 4.2 V. Experiments are performed on the platform
consisting of a Maccor Battery Testing System, a PC host computer and
a thermostat. The test scheme is the constant current-constant voltage
(CC-CV) charge and constant current (CC) discharge. According to the
ambient temperature and current rate, the experimental matrix is
compartmentalized into four groups, which is recorded in Table 1.

The capacity fading curves under different temperatures are illu-
strated in Fig. 1. It can be seen that battery capacities under all kinds of
cyclic conditions show the accelerated decline stage. The capacities
decay slowly and exhibit approximately linear characteristics as the
cycle numbers increase at the initial stage. Unexpectedly, the capacity
deterioration suddenly accelerates at the end of cycling experiments.
When accelerating recession occurs, the sample batteries under the
same operating condition have almost identical cycle numbers. For
batteries under different temperatures, the cycle numbers show a tre-
mendous difference at the accelerated knee point, which are around
500 cycles at the condition of 25 °C and 1 C charge-1 C discharge

(25 °C@1 C–1 C) and 45 °C and 1 C charge-1 C discharge (45 °C@1 C–1
C), 800 cycles at the condition of 35 °C and 1 C charge-1 C discharge
(35 °C@1 C–1 C). Furthermore, as the aging accelerates, it is also ob-
served from the experiment that the batteries begin to expand notice-
ably since side reactions occur inside the battery, which results in
electrolyte decomposition to generate gas. The accelerated capacity
degradation and drastic appearance change undoubtedly bring great
troubles and safety risks to the use of NCM lithium ion batteries, which
makes the recession knee point identification extremely urgent.

3. Capacity fading mechanism and characteristic parameter
extraction

In the interest of identifying the moment when the sudden battery
degradation occurs, acquiring the available capacity of the battery is
necessary. However, since the battery can hardly be discharged con-
tinuously to 0% State-of-Charge (SOC) under practical applications, the
true value of the capacity is difficult to obtain and can only be esti-
mated in real time. There is an error in using the real-time capacity
estimation method, resulting in inaccurate knee point recognition re-
sults. Therefore, finding some characteristic parameters that change
drastically after battery sudden degradation to replace the capacity for
knee point identification is indispensable. Meanwhile, existing results
have disclosed that the lithium deposition of NE dominates the sudden
degradation of battery capacity. For the lithium deposition on the NE,
the battery exhibits the abrupt loss of negative active material and
available lithium ions. In Ref. [35], a multi-index characterization
system revealing the aging state of lithium-ion battery was established
by extracting key features from the Increment Capacity (IC) curve at the
current rate of 0.05 C. IC curve is derived from the charging curve (Q-V
curve). Key features of the IC curve are able to respectively reflect the
loss of positive and negative active materials, and available lithium
ions, in particular some key features can even be obtained through a
partial charging curve, which is more convenient to be implemented in
engineering practice. Combined with the capacity sudden degradation
mechanism and indicator system of the IC curve, characteristic para-
meters for the knee point identification are inferred.

For the battery that cycles at 35 °C@1 C–1 C condition, the IC curve
at the current rate of 0.05 C is shown in Fig. 2a. The IC curve is ob-
viously composed of three regions shaped like mountains, which are
labeled as NEpeak I, NEpeak II and NEpeak III. The voltage points that
distinguish different regions are determined by deriving the IC curve.
The minimum voltage point that the second derivative of the IC curve is
zero is taken as the starting point of NEpeak I. The first local minimum
voltage value of the IC curve is regarded as the separation point be-
tween NEpeak I and NEpeak II, and the second local minimum voltage
value of the IC curve is considered as the separation point between
NEpeak II and NEpeak III. The charging cutoff voltage is used as the end
point of NEpeak III. Each region has two key features: the area and height
of the region. Thus, a total of six features exist: the area and height of
the NEpeak I, NEpeak II, and NEpeak III. In our previous papers [35,36], the
relationship between IC curve characteristics and battery capacity de-
gradation has been studied and verified by experimental data. It can be
roughly maintained that the attenuation of the NEpeak I and NEpeak III

region represent the loss of the negative active material and available
lithium ions, respectively. And the attenuation of the NEpeak II region
simultaneously involves the loss of the two materials. In specific, the
area of NEpeak III and the height of NEpeak II reflect the loss of available
lithium ions, and the area of NEpeak I and NEpeak II can be used to
characterize the loss of the negative active material. Since the amount
of available lithium ions and negative active material are suddenly
reduced when the battery deterioration is accelerated, the attenuation
rate of these four parameters sharply increases. The above IC char-
acteristic parameters are extracted from the charging data at the cur-
rent of 0.05 C. However, the charging current rate of EVs is much
higher than 0.05 C, and the obtained IC curve is somewhat different

Table 1
Cycle life experimental matrix of NCM lithium-ion batteries under different
temperature and rate conditions.

Battery number Temperature (°C) Rate (charge-discharge)

1#, 2# 25 1 C–1 C
3#, 4# 35 1 C–1 C
5#, 6# 45 1 C –1 C
7#, 8# 25 0.5 C–1 C
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from the IC curve at the current of 0.05 C, so that partial IC char-
acteristics become quite inconspicuous. Therefore, it is necessary to
expand the charging current to a relatively large rate based on the
original IC curve indexing system, so as to determine the specific
characteristic parameters for identifying the accelerated knee point.

When the current rate is increased to 1 C, the evolution of the IC
curve of the battery that cycles at 35 °C@1 C–1 C condition is reported
in Fig. 2b. Compared with the IC curve at the current of 0.05 C, the
distinct disparity is that the valley point between the NEpeak II and the
NEpeak III disappears after the current rate is raised, resulting in the
overlap of the two regions. Only by finding a way to separate the two
regions, the relevant parameters can be extracted. The IC curve drops
sharply after passing the peak of NEpeak II and then enters a platform
area gently (NEpeak III). The corresponding entry voltage hardly varies
with battery aging, for the sake of simplicity, the IC curve at a high
current rate is divided into two regions of NEpeak II and NEpeak III at a
fixed voltage point. There is still a distinct minimum point between
NEpeak I and NEpeak II after battery aging, which is used to separate
NEpeak I from NEpeak II. During the actual use of the battery, the starting
SOC of each charge process is not exactly same. The area of the IC curve
is so trivial that it can be ignored at the initial charging stage, so the
voltage at which the IC curve rises rapidly is selected as the starting
point when calculating the area of NEpeak I. In addition, due to the
presence of ohmic and polarization voltages, charging to the cut-off
voltage at a high rate does not fill the battery and the NEpeak III region
no longer retains physical properties, so the area of NEpeak III is not
suitable as a characteristic parameter. In general, during the large rate
charging process, three IC features are extracted to characterize the
aging status, namely, the areas of NEpeak I and NEpeak II, and the height
of NEpeak II. As seen from Fig. 2b that the three features of the IC curve

show a significant difference before and after capacity sudden de-
gradation. At the normal capacity degradation stage, the battery has
experienced 800 cycles, but the features of the IC curve hardly at-
tenuate. After that, the battery has only experienced 170 cycles, and the
IC curve shows a very significant change. This phenomenon under the
35 °C@1 C–1 C condition is very promising for the knee point identi-
fication of the battery sudden degradation. Nevertheless, the ambient
temperature and current rate experienced by batteries in real applica-
tions are complex and variable. Under other conditions, whether there
is such a promising phenomenon needs further verification.

Fig. 3 shows the evolution of three IC parameters with cycle num-
bers under different conditions, which displays a similar behavior of
capacity decay. Moreover, before the sudden degradation, the area of
NEpeak I hardly attenuates but the height of NEpeak II presents the slight
attenuation. It can be seen that the attenuation mechanism of the bat-
tery at this stage is slight lithium ion loss, because the area of NEpeak I is
affected by the loss of the negative active material, and the height of
NEpeak II is affected by the loss of lithium ions. The demarcation point
between the NEpeak II and NEpeak III regions will shift as the battery ages.
Affected by the fixed voltage division method, the area of the NEpeak II is
inevitably interfered by the NEpeak III, and the latter also reflects the loss
of lithium ions, so the area of the NEpeak II slightly attenuates. The ca-
pacity and three parameters simultaneously began to accelerate the
decline, which verifies that the three parameters have the ability to
identify the knee point of the battery sudden degradation under dif-
ferent operating conditions. In addition, it can be seen from Fig. 3 that
the knee point appears in the 90%-95% capacity range. This is because
the experimental data is obtained from the laboratory and only the
25 °C, 35 °C and 45 °C conditions of a type of battery are introduced,
and the sample batteries are fully charged and discharged. However,
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Fig. 1. Capacity retention rate decay curves of NCM lithium-ion batteries under 25 °C@1 C–1 C, 35 °C@1 C–1 C and 45 °C@1 C–1 C conditions (a) Capacity retention
rate decay curve at 25 °C@1 C–1 C (b) Capacity retention rate decay curve at 35 °C@1 C–1 C (c) Capacity retention rate decay curve at 45 °C@1 C–1 C.
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the temperature, charge/discharge rate and depth of discharge are
varying under application operating conditions. The reasons of battery
sudden degradation are quite complicated resulted from the electrode
material, the electrolyte additive, the manufacturing process, and so on.
The lab test results can not represent that of the real condition.
Therefore, the law of the knee point appears within 90–95% capacity
range cannot be directly applied to other conditions. Our approach is
designed to provide a general method for identifying the knee point of
capacity decline, it is therefore necessary to identify it in real-time. In
order to facilitate online capacity acceleration degradation identifica-
tion, it is not desirable to store a large amount of charging data and
perform complicated calculations. The height of NEpeak II is an in-
stantaneous variable and can be obtained by finding the maximum
value on the IC curve, which is easier to implement than the other two
parameters. Ultimately, the height of NEpeak II is applied in the paper to
the accelerated degradation identification.

4. Accelerated degradation recognition algorithm

The linear regression model estimates the conditional mean of the
response variable given certain values of the predictor variables and the
ordinary least squares estimation (OLSE) is the standard estimation
method. If the residuals satisfy independence, normality, and homo-
scedasticity, the OLSE is the unbiased least variance estimate. In prac-
tical application scenarios, the measured data is difficult to meet such
restricted assumptions. Instead, quantile regression does not require
strong assumptions on the error term and can accurately model the
effect of the explanatory variables on the range and conditional dis-
tribution of the interpreted variable [37]. Regression with various
quantiles can get different expressions, which is more comprehensive in
portraying the interpreted variables than OLSE [38]. Therefore, for the
accelerated fading knee point identification of battery capacity, quan-
tile regression has the potential to perform more reasonably and ef-
fectively than the OLSE.

4.1. Quantile regression principle

Suppose the distribution function of the random variable X is:

= ≤F x P X x( ) ( ) (1)

The τ quantile can be defined as:

= ∈ ≥ < <Q X inf x R F x τ τ( ) { : ( ) }(0 1)τ (2)

A random vector X Y( , ), where the distribution function of Y given
=X x is:

=F y x( )Y X x (3)

The τ conditional quantile of the conditional random variable
=Y X x is defined as:

= = ∈ ≥ < <Q Y X x inf y R F y x τ τ( ) { : ( ) }(0 1)τ (4)

Regression analysis is to minimize the distance between the sample
value and the fitted value. Suppose we have a sample sequence:

= ⋯X Y i n{( , ), ( 1, , )}i i
Then the quantile regression is to minimize the sum of the absolute

values of the weighted errors, namely:

∑ −
⊂ =

ρ y ξmin ( )
ξ R i

n

τ i
1 (5)

where = − <ρ u u τ u( ) ( I( 0))τ is the loss function and I Z( ) is the in-
dicator function on the set Z .

When the quantile is 0.5, it is the median regression. Both the loss
functions of least squares regression and median regression are sym-
metric, while the loss function of quantile regression is asymmetric.
Actually, it consists of two rays from the origin that are located in the
first and second quadrants respectively. Quantile regression is an ex-
tension of the least squares method based on the classical conditional
mean model. The global model is estimated by multiple quantile
functions, and the absolute value of the residual is minimized over
asymmetric weights.

If ̂y τ i( ) is used to represent the quantile estimator of yi, then
∑ −= ρ y α| |i

n
τ i1 has a minimum value for any value α only when
̂=α y τ i( ) , where:

∑ ∑ ∑− = − − − + −
= < ≥

ρ y α τ y α τ y α| | (1 )( ) ( )
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n
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i y α

n

i
i y α

n

i
1 : :i i (6)

Assume that the response variable Y is linearly represented by the
matrix X consisting of k explanatory variables and the coefficient β as a
linear regression model:

= +Xβ uyi i (7)

Then the estimated value of the coefficient of the τ quantile re-
gression equation is given by:

 ̂ ̂
̂ ̂
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( )
:
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(9)

where yi is the actual data, ̂u τ i( ) represents the residual corresponding to
the τ quantile regression equation. The expression of the τ quantile
regression equation is:

̂ =y Xβτ i τ( ) ( ) (10)

Once the estimated quantile regression equation is obtained, the linear
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relationship between battery capacity and cycling number can be es-
tablished. More quantile regression equations obtained, more compre-
hensive understanding of the conditional distribution for explanatory
variables. The distribution of explanatory variables is asymmetric when
the median regression line is significantly different from the mean re-
gression line. The distribution of response variable is left-biased while
the upper quantile regression line is close to the lower quantile re-
gression line, and right-biased otherwise. The coefficient disparity of
the regression function is evident and the effect of explanatory variables
on the response variable is notably distinct in multiple quantiles.

4.2. Implementation

Lithium-ion batteries experience many kinds of failure modes such
as the pole breakage, internal short circuit, battery perforation, de-
formation, and bulging. Nevertheless, it is difficult to detect the
aforementioned failure modes directly since only external parameters
including battery terminal voltage, current and temperature can be
monitored in real time by employing battery management system
(BMS), which does not have a consistent correspondence reflecting the
internal failure properties of batteries. Battery failures are usually ac-
companied by anomalies and reflected in recorded data. This provides a
potential for exploring battery safety and fault warning based on the
external parameters information of batteries. For example, the battery
begins to exhibit bulging when the height of NEpeak II shows a sig-
nificant knee point. Theoretically, the knee point is the intersection of
two straight lines with different slopes, which can be identified ac-
cording to the sudden change of the slope. Due to the interference of
data acquisition and processing error, the slope of the line connected by
adjacent cycles is inevitably abrupt, making the method of finding the
slope change point difficult to apply. To this end, the paper learns a
straight line as the baseline from experimental data and determines the
boundary on both sides of the baseline to establish a strip-shaped safety
zone. Thus the point beyond the safety zone is considered to be the knee
point of the curve. Taking the accelerated fading knee point as the
demarcation point, the full life cycle of batteries can be divided into two
stages, which are defined as the safe operation stage and the fault op-
eration stage respectively. Battery safety zone and operation stage di-
vision diagram is shown in Fig. 4, where “○” represents the knee point
in the process of fading. The cycle before the knee point is the safe
operation stage, and the subsequent cycle is the fault operation stage.
The region within the two boundaries of the baseline is defined as the
safety zone, which is determined by the baseline, the distance du from
the baseline to the upper boundary, and the distance dl from the
baseline to the lower boundary. The battery capacity starts accelerating
decline when the height of NEpeak II exceeds the safety zone.

After clarifying the definition of the safety zone, the difficulty in

identifying the knee point is how to fit the baseline and confirm the
boundaries of the strip-shaped safety zone. To resolve the above issue,
first of all, the quantile regression algorithm is used to fit the height of
the NEpeak II from the decile of 0.5–0.9, and five regression lines are
obtained. The regression algorithm should grant higher weight to the
previous data since the data of the safe operation stage is linearly de-
graded. The regression lines with the decile greater than 0.5 quantiles
are therefore selected. Therein, a line that minimizes the dispersion of
the residual between the estimated value and the true value is chosen as
the baseline of the strip-shaped safety zone. Followed by, the values of
du and dl are determined by performing the Monte Carlo simulation on
the residual so that the probability of the height of the NEpeak II being
within the safety zone is 95%. Thus the boundaries of the safety zone
can be confirmed. Note that the residuals used for the Monte Carlo si-
mulation are determined by their quartile and interquartile range be-
cause the height of the NEpeak II is easily interfered by the outliers
during the acquisition process. Thus only the data that satisfies the
following conditions:

− ∗ ≤ ≤ + ∗Q IQR x Q IQR1.5 1.51 3 (11)

is chosen for the Monte Carlo simulation, where x is the residual be-
tween the estimated value and the true value, Q1 and Q3 are the quarter
quantile and third-quarter quantile of the residual, respectively, and
IQR is the interquartile range of the residual. Residuals outside this
range are regarded as outliers based on quartile and interquartile range.
It follows that the quartile is more resistant to disturbances since up to
25% of the data can be distributed as far as possible without greatly
disturbing the quartile [39]. Therefore, the outliers will not affect the
criterion and the corresponding results on identifying outliers are more
robust.

Based on the safety boundaries determination, we can find that the
probability of the height of NEpeak II exceeding the safety zone is 5%. It
is inferred that the probability for four consecutive cycles exceeding the
safety zone is less than 0.01%, which can be considered as an event
with a very low probability. The last cycle can then be determined as
the knee point in the process of capacity fading. In addition, the cycle
numbers in the safe operation stage of the battery are difficult to
identify due to effects of battery temperature, charge/discharge rate
and depth of discharge. It is necessary to continuously update the safety
zone with increasing cycle numbers during the whole life of the battery,
enhancing the adaptability of the algorithm to different conditions.

The flow chart of the capacity accelerated fading knee point iden-
tification of NCM lithium-ion batteries is shown in Fig. 5, which is di-
vided into four steps: (1) feature parameter extraction, (2) safety zone
establishment, (3) safety zone update, and (4) accelerated knee point
identification. By extending the multi-index aging characterization
system to the large-rate charging field and combining with the me-
chanism of sudden capacity decline, the characteristic parameters for
the accelerated knee point identification are extracted. The ribbon
safety zone consisting of baseline and bandwidth are finally determined
by integrating quantile regression with Monte Carlo simulation. The
real-time update of the safety zone can improve the adaptability of the
proposed method under various conditions. In a word, the identifica-
tion of the accelerated recession knee point under different working
conditions is implemented.

5. Results and discussion

Fig. 1 shows that the capacity attenuation of the two batteries is
consistent at the same temperature. Therefore, one of batteries is se-
lected to perform battery capacity accelerated decay knee point iden-
tification under each operating condition based on the proposed
method. First of all, the IC curve is derived from the charging curve (Q-
V curve) of the selected battery. The height of NEpeak II is extracted from
the IC curve to obtain a straight line as the baseline using quantile re-
gression method, and the bandwidths are determined by performing the
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Monte Carlo simulation so that the probability of the data being within
the safety zone is 95%. After that, if there are four consecutive cycles
beyond the safety zone, the last cycle can then be determined as the
knee point in the process of capacity fading. In addition, the safety zone
is continuously updated with increasing cycle numbers during the
whole life of the battery.

The safety zone and the capacity accelerated fading knee point at
25 °C@1 C–1 C, 35 °C@1 C–1 C and 45 °C@1 C–1 C conditions are
shown in Fig. 6, and the cycle numbers corresponding to accelerated
knee points are 487, 774 and 504, respectively. At present, there is no
clear mathematical definition of the knee point. The calculation of the
knee point is only by judging whether the change of the slope connected
by each adjacent cycles exceeds the threshold, and the threshold is an
empirical value and is not fixed. Therefore, there is no reference value
for the knee point. It is verified by experiments that the recognition
results of capacity degradation knee point using proposed method ap-
pear within 90%-95% capacity range, which can provide an early
warning before the battery fails. Although the distribution of the height
of NEpeak II under the considered three conditions has different char-
acteristics, which is concentrated in Fig. 6a and b, and is seriously

disturbed by outliers in Fig. 6a, and while is more scattered in Fig. 6c.
From the perspective of results, the proposed method is effective to
different data distribution conditions by adaptively adjusting the
baseline and computing bandwidth. In more detail, the key procedures
of the proposed method are the establishment and update of the safety
zone, which determines the effectiveness of the method and require
further discussion.

As seen from the establishment of the safety zone in terms of the
identification results above, the baseline selection and calculation of
the bandwidths du and dl are critical factors. Apart from the proposed
method, there are two traditional methods that can be adopted as
candidates. One method applied the same selection criteria as the
proposed method to determine the baseline, as discussed in Section 4.
The extreme values of regression residuals were employed to calculate
the du and dl by Monte Carlo simulation. The height of NEpeak II is not
processed and original information is utilized. The other method is to
perform a normality test on the residuals between the quantile regres-
sion value and true value. The regression line that the residuals pass the
normality test is chosen as the baseline and the “u ± 3σ” distance of
the residuals is applied to calculate the du and dl. Once the safety

Fig. 5. The flow chart for the capacity accelerated fading knee point identification of NCM lithium-ion batteries.

Fig. 6. The safety zone and the recognition results of capacity accelerated decay knee point using proposed method for NCM lithium-ion batteries under 25 °C@1 C–1
C, 35 °C@1 C–1 C and 45 °C@1 C–1 C conditions (a) The safety zone and the recognition result at 25 °C@1 C–1 C (b) The safety zone and the recognition result at
35 °C@1 C–1 C (c) The safety zone and the recognition result at 45 °C@1 C–1 C.
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boundary is successfully established using the three methods, the
probability that the height of NEpeak II exceeds the safety zone can be
clearly defined to facilitate the identification of the acceleration knee
point. Their safety zone bandwidths and identification results at 25 °C@
1 C–1 C, 35 °C@1 C–1 C and 45 °C@1 C–1 C conditions are

comparatively shown in Figs. 7 and 8. For the method of establishing
the safe boundary with extreme values, the cycle numbers of ac-
celerated decay knee points are 503, 783 and 510, respectively. Com-
pared with the proposed method, the identification result of the ac-
celerated recession point is delayed, especially for the data distribution
with severe interference from outliers, resulting in a broader safety
zone. It is highly sensitive to anomalous data for bandwidth calcula-
tions, increasing the risk of security incidents. With regard to the
method in virtue of the “u ± 3σ” principle, the cycle numbers of ac-
celerated recession points at 25 °C@1 C–1 C and 35 °C@1 C–1 C con-
ditions are 494 and 783 respectively, slightly behind the proposed
method. Unfortunately, under the condition of 45 °C@1 C–1 C, the data
distribution is relatively dispersed, the accelerated decay point could
not be identified. Although the “3σ” principle of normal distribution
has the theoretical basis of hypothesis testing, the requirements for real
data are too strict to satisfy. Once the residual of the regression line
cannot pass the normal test, the “3σ” standard cannot be used to es-
tablish the safety zone for accelerated decay knee point recognition,
leading to the failure of method and tremendous safety risk. To sum up,
the proposed method can prominently improve the robustness and re-
liability of the safety zone establishment in comparison with the two
traditional methods above.

In addition to the safety zone establishment, another key process
affecting the recognition effect is the update of the safety zone. Despite
cycle numbers in the safe operation stage are unequal under different
operating conditions, the height of NEpeak II for all batteries exhibit
linearly decaying characteristics, making it unnecessary to continuously
update the safety zone after it is initialed. Incipient safety zone can be
created with distinct amounts of training data. Fig. 9 shows the results
of recognizing the battery capacity accelerated decay knee point with
incipient safety zone at 35 °C@1 C–1 C condition. As the amount of
training data increases, the knee point cycles identified by the incipient
safety zone are postponed, presenting a linear ascending relationship.
Under different working conditions, the influence of the training data
volume on recognizing result of the accelerated recession knee point is
reported in Fig. 10. It can be seen that the accelerated attenuation point
fluctuates greatly at 25 °C@1 C–1 C and 35 °C@1 C–1 C conditions, and
becomes relatively stable at 45 °C@1 C–1 C condition. This may be-
cause the linearity of the height of NEpeak II is discrepant during the safe
operation stage. It is concluded that the recognition result of the ac-
celerated recession point may be in advance or delayed when the in-
cipient safety zone is established with various percentages of the total
data. They have remarkable influence on the battery usage. The relia-
bility of the battery is improved when the recognition result is in ad-
vance, and the battery will not get into the accelerated recession stage,
but the economic cost of the battery is inevitably reduced. The battery
will be fully utilized if the recognition result is lagging, nevertheless,
the safety hazard increases, which may cause serious safety accidents.
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Hence, in order to eliminate the impact of training data volume on the
recognition results and enhance the stability, it is momentous to update
the safety boundary for the proposed method.

In this study, it is verified by experiments that the recognition re-
sults of capacity degradation knee point using proposed method appear
within 90%-95% capacity range at 25 °C@1 C–1 C, 35 °C@1 C–1 C and
45 °C@1 C–1 C conditions, which can provide an early warning before
the battery fails. Furthermore, using the proposed method for re-
cognizing the sudden degradation of capacity, recognition result is ef-
fective even if the input is disturbed and has strong reliability and
stability under different conditions. It is to be regretted that the pro-
posed method is limited to the case where the attenuation of battery
capacity at the safe operation stage is approximately linear. For the
situation of non-linear attenuation of battery capacity at the safe op-
eration stage, it still needs to be further research.

6. Conclusion

Nickel-Cobalt-Manganese lithium-ion batteries show an accelerated
knee point in the capacity degradation process under different condi-
tions. Based on the capacity plummeting mechanism, the paper extends
the multi-index aging characterization system to the large-rate charging
field and extracts effective characteristic parameters. Furthermore, a
novel method for identifying the knee point of capacity decay is ex-
plored and the robustness and stability are analyzed. The main con-
tributions are summarized as follows:

(1) The essence of capacity plummeting of Nickel-Cobalt-Manganese
lithium-ion batteries is the lithium deposition of the negative electrode.
The height of NEpeak II reflecting the loss of available lithium ions is
strongly correlated characteristic parameter and is also suitable for
higher current rate condition which is validated at the current of 1 C.

(2) The developed method integrating quantile regression method
and Mont Carlo simulation is used to recognize the knee point of the
battery capacity decay. It is verified by experiments that the capacity
degradation knee point appears within 90–95% capacity range at 25 °C,
35 °C and 45 °C conditions, which can provide an early warning before
the battery fails. Recognition result is effective at different degree of the
data dispersion and has adaptability to various conditions of the bat-
tery.

(3) The establishment and update of the safety zone have significant
effect on the recognition results of the proposed method. It is concluded
that the bandwidth calculation with the quartile and interquartile range
can markedly improve the robustness and reliability of the safety zone
establishment compared with two traditional methods. The incipient
safety zone is established with various percentages of total data may
cause the premature or hysteretic recognition result due to the change

of battery degradation speed. The dynamic safety boundary determi-
nation method for the whole battery lifetime is therefore proposed to
update and monitor the safety zone, making the recognition results
exhibit better stability.
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