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Stabilization of Nonlinear Systems via Designed
Center Manifold
Daizhan Cheng and Clyde Martin

Abstract—This paper addresses the problem of the local
state feedback stabilization of a class of nonlinear systems with
nonminimum phase zero dynamics. A new technique, namely,
the Lyapunov function with homogeneous derivative along solution
curveshas been developed to test the approximate stability of the
dynamics on the center manifold. A set of convenient sufficient
conditions are provided to test the negativity of the homogeneous
derivatives. Using these conditions and assuming the zero dy-
namics has stable and center linear parts, a method is proposed
to design controls such that the dynamics on the designed center
manifold of the closed-loop system is approximately stable. It is
proved that using this method, the first variables in each of the
integral chains of the linearized part of the system do not affect
the approximation order of the dynamics on the center manifold.
Based on this fact, the concept of injection degree is proposed.
According to different kinds of injection degrees certain sufficient
conditions are obtained for the stabilizability of the nonminimum
phase zero dynamics. Corresponding formulas are presented for
the design of controls.

Index Terms—Approximate stability, center manifold, injection
degree, Lyapunov function with homogeneous derivative, zero dy-
namics.

I. INTRODUCTION

STABILIZATION is one of the basic tasks in control design.
The asymptotic stability and stabilization of nonlinear sys-

tems have received significant attention [18]–[24]. The center
manifold approach has been developed to solve the problem [1],
[2], [12], [18], [24]. In [1], [2], some special nonlinear controls
are designed to stabilize some particular control systems. The
method used there is basically a case-by-case study. For con-
trol systems in normal form, assume the center manifold has
minimum phase, then aquasi-linearfeedback can be used to
stabilize linearly controllable variables. We refer to [3]–[6] for
minimum phase method and its applications.

Based on these pioneer works, this paper proposes a proce-
dure to produce a state feedback to stabilize nonminimum phase
zero dynamics. The designed state feedback control ensures that
the dynamics on the designed center manifold of the closed-loop
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system is approximately stable. To obtain the desirable proper-
ties, we combine the center manifold method with Lyapunov
function method.

Motivated by the works on stabilization of homogeneous
vector field [13]–[17], we propose a new method, namely, that
of a Lyapunov function with homogeneous derivatives along
solution curves. This Lyapunov function is used to test the
approximate stability of a dynamics with odd degree approxi-
mating systems, where degree means the polynomial degree. It
is particularly suitable for testing the dynamics on a designed
center manifold of a closed-loop system, because the degrees of
the approximate system of the dynamics on the center manifold
may be converted by certain state feedback controls to have odd
degree. In this way, the method is applicable to a large class of
nonlinear systems with stable and center zero dynamics.

To avoid counting the order of smoothness, through this paper
the systems and all other objects involved are assumed to be

, or as smooth as required, on a neighborhood of the origin.
We motivate this work by means of a practical problem: con-

sider the stabilization of an airplane via a designed center man-
ifold. We may find some useful observations from this example
for design of both the center manifold and the stabilizing con-
trols. The following example is basically taken from [7], with a
modification that the speed is assumed to be dependent on al-
titude when the atmospheric resistance is taken into considera-
tion.

Example 1.1 [7]: Denote an airplane’s altitude in meters by
. Assume that the body of the plane is slantedradians with

respect to the horizontal and that the ground speed is. Also,
assume the flight path forms an angle ofradians with the hor-
izontal and is small. The system is described as

(1.1)

where is a constant representing a natural oscillation
frequency and and are positive constants. The problem we
address is altitude tracking: i.e., a target altitude, where

.
Set , , and assume

. We have with
. Then the system (1.1) is transformed into a standard

form as

(1.2)
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We assume that and denote
, . Then system (1.2) is in a normal

form for affine nonlinear systems [4]. The zero dynamics (with
) becomes , which is not asymptotically stable.

Therefore, a quasi-linear control can not make the origin asymp-
totically stable, and a nonlinear state feedback control should be
considered.

Motivated by the early works [1], [2], we may try the fol-
lowing control:

(1.3)

To get a stabilizing control, we can first choose, , to
stabilize the linearly controllable variables, , , and then
choose to stabilize the central variable. To determine a pos-
sible value of , let

be used to approximate the center manifold. We refer to [9] for
the notation and the following operator . Then we
have

Choose

Then . According to the approximation the-
orem [9], the center manifold can be expressed as

(1.4)

The dynamics on the center manifold is

(1.5)
Choose such that the linear part is Hurwitz and

, say , , .
The feedback control becomes

It follows that (1.5) is asymptotically stable at origin, and then
so is the closed-loop system.

Some observations from this example follow.

1) The higher degree state feedback doesn’t affect
the local stability of the linearly controllable variables but
it may affect the center part variables by changing the
structure of the center manifold.

2) Higher order feedback can be “injected” into the dy-
namics on center manifold through the first variable,

, of the integral chain. The variable doesn’t affect
the order of approximation of the center manifold. This
component of the linear part can be employed to modify
the nonlinear dynamics.

3) Since the center manifold is approximated up to a certain
degree the approximated dynamics on the center mani-
fold should be asymptotically stable up to certain degree
uncertainties to assure the stability of the original system.

The paper is organized as follows. Section II defines the
concept ofLyapunov function with homogeneous derivative
along solution curves and gives some fundamental properties.
Section III provides several sufficient conditions for testing the
approximate stability of vector fields. Sections IV–VII discuss
design methods for affine nonlinear systems with zero center.
The general result is in Section IV. Then according to the
injection degrees, the classified testing conditions and formulas
for odd, even and mixed injection degrees are presented in
Sections V–VII, respectively. Section VIII contains some
concluding remarks.

II. L YAPUNOV FUNCTION WITH HOMOGENEOUSDERIVATIVE

Since in general we can only obtain an approximation of the
center manifold, it is necessary to have some convenient tools to
verify the stability of the dynamics on center manifold through
its approximated dynamics. For this purpose a new concept,
Lyapunov function with homogeneous derivative, is proposed
in this section.

Consider a dynamical system

(2.1)

with .
We use for the set of nonnegative integers. For a multi-

index and , we
denote

Note that , so . For a smooth function , we
denote

Then we can give the following definition.
Definition 2.1:

1) Let be the lowest degree of nonvanishing terms of the
Taylor expansion of , . A system con-
sisted of only the lowest degrees’ terms of (2.1) is said
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to be the (lowest degrees’) approximate system of (2.1). It
can be expressed formally as

(2.2)
2) System (2.2) is said to be an odd approximation of (2.1) if

all are odd.
3) System (2.1) is said to be approximately stable if

is locally asymptotically stable at origin.
Remark 1:

1) In (2.2) is a homogeneous polynomial of degree. So
is a component-wise homogeneous

vector field.
2) When , the approximate stability de-

fined above coincides with the conventional one [24]. Other-
wise, it is coordinate-depending. It is clear that approximate
stability implies asymptotic stability, but the inverse is not
true.

Definition 2.2: Given a component-wise homogeneous poly-
nomial vector field , a positive definite poly-
nomial is said to be a Lyapunov function with homoge-
neous derivative (LFHD) along, if the Lie derivative is
homogeneous with

The following example provides two typical LFHD, which
will be used later.

Example 2.3:Let be a component-wise
homogeneous vector field with odd degrees, ,

, and be a given integer satisfying

1) Set , , then

(2.3)

is a LFHD along if .
2) Assume ;

;
, where are odd and .

Denote , with and set
, , then

(2.4)

is a LFHD along if are positive–defi-
nite matrices with dimensions .

Note that the derivative of in either (2.3) or (2.4) along
is then a homogeneous polynomial of degree.

The following example shows that LFHD is a new concept
because both and are not homogeneous but the derivative
is. Since the approximate system of a smooth system is always
component-wise homogeneous, method of LFHD can be used
for testing the stability of the odd-degree approximated systems.
It is particularly useful in testing the stability of the dynamics on
center manifold of the closed-loop systems, because the leading
degree of the dynamics may be converted to odd by suitable state
feedback.

Example 2.4:Consider the following system:

(2.5)

Using Taylor expansion, the approximate system of (2.5) is ob-
tained as

(2.6)

First of all, we show that the vector fieldin (2.6) is not ho-
mogeneous with respect to any group of dilations of the form

[12]. Assume (2.6) is -th ho-
mogeneous with dilation , that is

(2.7)

From the first equations of (2.6) and (2.7) we have
and and from the second equations of (2.6) and (2.7)
we have and . It follows that .
So (2.6) is not homogeneous with any dilation. However, we can
construct a LFHD as , which is not homogeneous.
Then the derivative of along (2.6) is

(The last inequality can be shown by using the inequality (3.1)
in the next section.) So the derivative is homogeneous and neg-
ative definite. The following proposition will show that (2.5) is
asymptotically stable at origin.

The following proposition is fundamental for LFHD.
Proposition 2.5: System (2.1) is approximately stable at

origin if there exists a LFHD of its approximate system (2.2)
such that its derivative along (2.2) is negative–definite.

Proof: Assume is negative definite, then it should be
of even degree, say . We claim that there exists
a real number such that

(2.8)

Since is negative definite, on the compact “sphere”

attains its maximum value . That is
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Now any can be expressed as for some .
Then

which proves the claim.
Using (2.8), the derivative of the LFHD becomes

(2.9)

where is a shorthand for

.
For the homogeneous vector fields [11] gives (with slightly

different statement) the following.
Theorem 2.6 [11]: Assume (2.1) has

and its approximate system (2.2) is asymptotically stable. then
(2.1) is asymptotically stable.

The Proposition 2.5 and Theorem 2.6 will be our major tools
for testing approximate stability.

III. SOME SUFFICIENT CONDITIONS FORNEGATIVITY

This section investigates some sufficient conditions for
testing approximate stability of systems with odd approximate
systems.

We need the following inequality, which is based on the fact
that the algebraic average is greater than or equal to the geo-
metric average.

Lemma 3.1:Let and . The following in-
equality holds:

(3.1)

Given a component-wise homogeneous polynomial vector
field with .
We express as

(3.2)

where the index , which indicates
thediagonal term. Then we have

Theorem 3.2: Cross Row Diagonal Dominating Principle
(CRDDP): The vector field , given in above, is asymp-
totically stable at origin, if there exists an integer with

, such that

(3.3)

where .

Proof: Choose a LFHD as

Then we have

(3.4)

This is a homogeneous polynomial of degree. Now using
(3.1) to split each term in (3.4) and collecting terms, (3.3) yields
that

for some

The conclusion follows immediately.
One obvious improvement for this estimation can be done as

the following: Negative semidefinite nondiagonal terms can be
eliminated from the estimation. Formally, for eachdefine a
set of its terms by their exponents as

are even and

Terms with exponents in are negative–semidefinite in
. Moving such terms from (3.3) yields

(3.5)

Later on we will simply use (3.5) as CRDDP.
Next, we give a simpler form, which deals with each row

independently.
Corollary 3.3 Diagonal Dominating Principle (DDP)::

Given a polynomial vector field as in Theorem 3.2. It is
asymptotically stable at origin if

(3.6)

Proof: Since in (3.5) can be arbitrary large, let ,
the right-hand side of (3.5) becomes right-hand side of (3.6).
Hence the strict inequality (3.6) implies (3.5) for large enough

.
In fact, DDP is an analog of Gersgorin’s theorem [25].

Considering linear systems, they provide same stability results.
However, CRDDP does not have its linear analog.

Using inequality (3.1), we can reduce the homogeneous poly-
nomial of into a “dominating” quadratic form with
variables .

Algorithm 3.4: Quadratic Form Reducing Algorithm
(QFRA): Let and

with odd .
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Step 1) Choose smallest even number such that
. Construct a homoge-

neous polynomial as

Step 2) Find all terms in , for which the index of
has component less than . Split it into two equal
exponent groups in the alphabetical order of.

e.g., for we have ,
and . It is split as .
For we have , and it is split as

.
Step 3) Using (3.1) to convert them into severalexponent

terms, e.g.,

Replace the original terms in by their splitting
terms.

The algorithm produces a quadratic form of
. Then the following can be proved by constructing a

suitable LFHD.
Proposition 3.5: If the resulting quadratic form produced by

the above algorithm is negative definite, then is negative
definite. Consequently, is asymptotically stable at zero.

The following example is used to describe the notations and
results in the above Theorem 3.2 through Proposition 3.5.

Example 3.6:Find a region for parameter, such that the
following system is asymptotically stable at origin:

(3.7)

Using Taylor expansion on (3.7), its approximate system is

(3.8)

We figure out all the parameters in Theorem 3.2 and Corollary
3.3 as follows: For , . Denote by

, then

Note that , , , ,
( , and ). It is easy to check that there is no term in

, so .
For , . Hence, . Then ,

, , , ( , and ). We also
have .

For , . Hence,
. Then

, , , . For
the other , . Since the last term is in , so

.
Now we are ready to test the negativity of the derivative. We

first check DDP. For second and third equations, the dominating
condition (3.6) is satisfied. For first equation, (3.6) yields

. So

Next we check CRDDP. Let . Then (3.5) yields

The solution is

Finally, let us use QFRA. The smallest evenshould be 4.
Then

The algorithm produces a quadratic form as

To make it negative–definite we have

In fact, we can prove that in general QFRA is stronger than
CRDDP and CRDDP is stronger than DDP. However, DDP is
the easiest one in use, while QFRA is the most difficult one.
Later on, according to the problems one or more of these three
methods are used for testing the negative–definiteness of the
derivatives of LFHD.

IV. STABILIZATION OF SYSTEMS WITH ZEROCENTER

Consider an affine nonlinear system with the following
Byrnes-Isidori canonical form [4]:

(4.1)

where
, ;

, ;
and vanish at origin with their first derivatives.

Since the first variables in each integral chain play a particular
role, we adopt the following notations:

where
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System (4.1) is said to havezero centerif . Only this
case is considered in this paper.

Let , , , be a set of polyno-
mials of with degree . Define

with

with

with

where , and are
uncertain functions, and they will be specified later. We denote

etc.
The following theorem shows a general design idea. Polyno-

mials of degrees 2 to are used for the nonlinear control design.
Theorem 4.1:Assume and there exists a set of poly-

nomials , ; ,
, and an integer , such that the following conditions

C1)–C4) hold:

C1) ;
C2) ;
C3) if , and , then

and (4.2)

have same approximate system;
C4) is approximately stable.

Then system (4.1) is (locally) asymptotically stabiliz-
able (at origin). Moreover, if C1–C4 are satisfied, a suit-
able feedback control, which stabilizes system (4.1) is

(4.3)

where is Hurwitz.
Proof: Choose

to approximate the center manifold of the closed-loop system
with control (4.3). Using C1), C2), and control (4.3), we have

(4.4)

The dynamics on the center manifold is

(4.5)

According to the approximation Theorem [9], (4.4) ensures than
in (4.5) the functions and have the following forms:

Now (4.5) is of the type of the first equation of (4.2). So con-
ditions C3) and C4) ensure the approximate stability of (4.5).
Hence, the closed-loop form of system (4.1) is asymptotically
stable.

It is clear from above proof that is the order of the
approximation error.

In Section I, it has been pointed out that the higher order feed-
back can be injected into the dynamics on the center manifold
through . To distinct different injection types we define the
injection degrees as

Definition 4.2: For system (4.1) the injection-degree,, is
defined as

In fact, the are the lowest degrees of the nonvanishing terms
in the dynamics on center manifold which contains .

Given system (4.1) the approximation ordercan be esti-
mated from (4.4). Let be the lowest degree of the nonvan-
ishing terms in . Then we have

(4.6)

It can be seen intuitively that, (e.g., refer to some examples in
[1], [2]) an even-degree leading system can hardly be homoge-
neously stable. Our design idea is: When the injection-degree,

, is odd, use it as lowest degree of the resulting system, i.e., for
the dynamics on the center manifold, let . Otherwise,
choose control to eliminate degree terms and turn the lowest
degree of the resulting system to odd, i.e., . In such
a way, we finally make the dynamics on the center manifold to
have an odd approximate system. will be calledleading de-
gree.

Remark: Even in Theorem 4.1 is not claimed, it
is required implicitly. Otherwise some terms of in the
designed approximation of the center manifold will be mean-
ingless.

Using , , and , conditions C1)–C3) in Theorem 4.1 is
computable.

Proposition 4.3: In Theorem 4.1, for arbitrary chosen ,

i) condition C1) holds, iff

(4.7)

ii) condition C2) holds, if

(4.8)
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iii) condition C3) holds, iff (4.8) holds and when

(4.9)

Proof: In set and , then use Taylor
expansion on and . Note that . Then (4.7)
means all terms in of degree less than or equal toare
zero. Since , (4.7) holds for , which
means all terms in of degree less thanare zero. As for
C3), note that and .
Then it is easily seen that (4.9) holds, iff, both and don’t
appear in the approximate system of the dynamics on the center
manifold. Hence the two equations in (4.2) have same approxi-
mate system.

Equation (4.8) is sufficient for C2). But it is necessary for
the required leading degrees. So we call (4.7)–(4.9) thedegree
matching conditions. They are always assumed in the following
sections for center manifold design.

We use an example to give a detailed description for all the
objects in this section.

Example 4.4:Consider the following system:

(4.10)

For this system , , , ,
, , and
. Consequently, we have

(4.11)

and

(4.12)
where , will be chosen to design control,

, , and are some uncertain terms of .
According to Definition 4.2, the injection degrees are

and . Hence we choose and . From
we have . Then

It is ready to check that (4.7) holds.
Consider (4.8). For , when and ,

. However

So (4.8) holds for iff . It is easy to check that (4.8) is
true for .

For (4.9), only has a term involving and/or , which
is . For this term , , , and

. So

equation (4.9) is, therefore, satisfied.
We conclude that the degree matching conditions are satisfied

iff .
Next, from (4.11) and (4.12) it is clear that the two equations

in (4.2) have same approximate system.

V. STABILIZATION FOR ODD INJECTION-DEGREECENTER

This section considers the case when all the injection degrees
equal to a same odd number. Then, we have the following.

Theorem 5.1:Assume system (4.1) with has an odd
universal injection degree, say . The system
is state feedback stabilizable, if it satisfies the degree matching
conditions (4.7)–(4.9) with , and ,

and there exists a quadratic homogeneous vector
, such that

(5.1)

is asymptotically stable at origin. Moreover, if the above condi-
tions are satisfied, (4.3) with is a suitable feedback
control, which stabilizes system (4.1).

Proof: Using control (4.3), conditions (4.8) and (4.9) as-
sure the lowest degree of the dynamics of the closed-loop system
on the center manifold is . Note that in this case ,

. Conditions (4.7) and (4.8) assure the center mani-
fold is described as

where

Using (4.8) and (4.9), , , and will not appear into the
degree terms. Hence the degreeterms of the dynamics are
exactly the right side of (5.1). That is, (5.1) is the approximate
system of the dynamics on the center manifold. Since (5.1) is
homogeneous and asymptotically stable at origin, Theorem 2.4
assures the approximate stability of the dynamics on the center
manifold of the closed-loop system. Then the asymptotical sta-
bility of the closed-loop system follows from Theorem 4.1.

When , it is an interesting case [1]. Now
set , and . The previous result leads to the following
simpler one.

Corollary 5.2: System (4.1) with is state feedback
stabilizable if

C1) ; ; ;
; ; ;

C2) ; ; ;
C3) there exists quadratic homogeneous vector field

, such that

(5.2)
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is asymptotically stable. Where and are
and matrices with entries as

respectively. Moreover, (4.3) with is a suitable feed-
back control, which stabilizes system (4.1).

The following example shows that when the injection-degree
is 3 we have only to solve a set of algebraic inequalities to obtain
the required control.

Example 5.3:Consider the following system:

(5.3)

where , satisfies the condition C2 in Corol-
lary 5.2, . Our goal is to find a sufficient condition for
system (5.3) to be feedback stabilizable. Denote by

Then (5.2) leads to the following:

(5.4)

Thus the sufficient conditions developed in Section III may
be used to design a stabilizing control.

To specify the above general form, we consider the following
system as a special case of (5.3):

(5.5)

Then the coefficients are computed as

(5.4) becomes

(5.6)

Using CRDDP with , we have

(5.7)
One particular solution of (5.7) is ; ; ;

; ; . Then

To stabilize linear part, one may choose ; ;
. Then (4.3) yields:

VI. STABILIZATION FOR EVEN INJECTIONDEGREECENTER

In this section we consider the even injection degree case.
Assume there exists a positive even numbersuch that the in-
jection degrees are eitheror . Then we design a suitable
control to turn the leading degree of the dynamics on the center
manifold to for all .

For system (4.1) with . Assume there exists a positive
even number such that the injection degrees are either
or . Set . Let if it satisfies the
degree matching conditions (4.7)–(4.9) with , .
(4.3) be used to form the closed-loop system. Then

Lemma 6.1:A necessary condition for to be the
leading degree of the dynamics on the center manifold of the
closed-loop system is: there exists a quadratic homogeneous
vector , such that

(6.1)

Proof: According to condition (4.8), when we calculate
the approximate system of the systems in (4.1), only the
quadratic terms, in , are chosen to form
the degree terms. This turns out to be the left side of (6.1).
To make the leading degree , the control should be
chosen to eliminate degreeterms, which leads to the (6.1).

Then we have the following sufficient condition:
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Theorem 6.2:Given system (4.1) as described in the above,
and (6.1) is assumed for certain . If there exists a cubic
homogeneous vector , such that

(6.2)

is asymptotically stable at origin, then (4.1) is stabilizable.
Moreover, if the above conditions are satisfied, a suitable

feedback control, which stabilizes system (4.1) is (4.3) with
and .

Proof: Conditions (4.7), (4.8) and (6.1) assure that the
center manifold is defined by

where

According to Theorem 4.1, we have only to construct the ap-
proximate system of the dynamics on the center manifold of
the closed-loop system and show that it is approximately stable.
Conditions (4.8) and (4.9) assure that, , and will not ap-
pear in the degree terms. Hence the degreeterms can only
from terms of and . Consider the product

To raise the power by 1, there should be exactly oneand one of
the factors, which is chosen to provide a cubic term, and
from all other factors and the factors the quadratic
terms should be chosen. A careful calculation shows that (6.2) is
the required approximate system. Now Theorem 2.4 assures the
asymptotically stability of the dynamics on the center manifold
and thus the stability of the closed-loop system.

Example 6.2:Consider the following system:

(6.3)

Since the injection degrees are 4, 4, we choose leading degree
. Now, since we use quadratic and cubic feedback, so
. There is no , we check (4.7) first. Since

, so . It is obvious that (4.7) is satisfied. To check
(4.8), only contains , so we have only to check it.
Since in the degree of is 2, it is easy to see that when

, we have . So (4.8)
holds, (4.9) is obviously true.

Now denote

Then (6.1) becomes

Set , , . Equation (6.1) is satisfied.
Equation (6.2) yields a fifth degree homogeneous vector field

as

Simply choose , , , and . It is ready
to check that CRDDP is satisfied with . Chosen ,

, then (4.3) provides a stabilizing control as

VII. STABILIZATION FOR MIXED INJECTIONDEGREECENTER

This section considers a general case when the injection de-
grees differ. By reorderingwe may, without loss of generality,
assume that the injection degrees are and

is odd for , even for . Then, we have the following.
Theorem 7.1:System (4.1) with is feedback stabi-

lizable if it satisfies the degree matching conditions (4.7)–(4.9)
with and the following conditions.

C1) There exists a quadratic homogeneous vector
, such that

(7.1)

C2) There exists a cubic homogeneous vector
, such that

(7.2)
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is approximately stable at origin.
Moreover, if above conditions are satisfied, the control (4.3)

with and stabilizes (4.1).
Proof: The proof is basically the combination of the

proofs of Theorem 5.1 and Theorem 6.2, therefore, we will just
sketch it.

1) Equation (7.1) implies that the lowest degree terms in
even injection degree subsystems are eliminated by suit-
able feedback .

2) Equation (7.2) is the approximate system of the dynamics
on center manifold.

Using Theorems 4.1 and 4.2, the degree matching conditions
and the approximate stability of (7.2) ensure the stability of the
closed-loop system.

Remark: Unlike Theorem 5.1 and Theorem 6.2, since in
Theorem 7.1 the approximate system of the dynamics on the
center manifold of the closed-loop system is not homogenous
and so approximate stability is required to assure the asymptoti-
cally stable of the dynamics on the center manifold. Meanwhile,
the results in Theorem 5.1 and Theorem 6.2 are topologically
invariant. The result in Theorem 7.1 is coordinate-dependent
and so it is not topologically invariant.

Example 7.2:Consider the following system:

(7.3)

where
;
;

parameter.
The injection degrees are , , so we choose the

designed lowest degrees as and . Let , and
, .

Since the approximation order . We
don’t need to consider (4.7) because there is no. Consider
(4.8), it is obviously true. As for (4.9), only contains .
Since as the lowest term involving

is . Hence (4.9) holds for
. However, , so (4.9) is true.

Next, we check that (7.1) renders , , .
Moreover, (7.2) turns out to be

(7.4)

To find a possible solution, we may simply set
, then test (7.4) by DDP, CRDDP, and QFRA, respectively.
DDP yields: , .
Set , CRDDP yields , .
Choosing , QFRA yields a quadratic form as

. To make it negative–definite we need
, .

It is clear that the last method provides the best estimation.
Using (4.3) and choosing linear feedback with ,

, we conclude that when system (7.3) is stabilized
by the following control

In fact, Theorem 4.1 and Proposition 4.2 allow us to use any
nonlinear polynomial state feedback. The formulas in Theorem
5.1, Corollary 5.2, Theorem 6.2, and Theorem 7.1 use only
quadratic and cubic polynomials. The next example shows that
sometimes even higher degree terms are necessary.

Example 7.3:Consider the system

(7.5)

where and are parameters.
It is easily checked that the degree matching conditions

(4.7)–(4.9) are trivially satisfied because ,
and doesn’t contain either or , . So if only we
can find the approximate system of the dynamics on the center
manifold, which is approximately stable, we are done.

Case 1) Consider a subsystem of (7.5) where the differential
equations about and are removed.

Now . So we choose . Using
Theorem 6.1, (6.1) implies either or

. An obvious solution for (6.2) is

which leads to a set of controls

(7.6)

where , , are coefficients
of Hurwitz polynomials. If , this is
a system discussed in Brockett [8] and the solution
(7.6) is in Aeyels [1].

Case 2) Consider subsystem of (7.5), where the differential
equation about is removed.

Now and . We set and
. Using Theorem 7.1, (7.1) leads to the same

conclusion as in Case 1: i.e., one ofor should
be . To avoid notational mess, we simply
choose and . Then (7.2)
turns out to be

We use CRDDP and choose . Then .
For finding a particular set of solutions we assume:
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, , . By some algebraic com-
putations, we finally obtain the following condition:

(7.7)

Then the control becomes

where , and they satisfy (7.7).
Case 3) Consider overall system. Since , and

, trying Theorem 7.1, we set and
. But it doesn’t work because either

or should be . Then means for
the injection terms don’t affect the approximate

system of the dynamics on the center manifold. So,
we have to raise to at least 5. That is, we have to
assume

Now a new problem occurs. Since the fourth degree
terms, , are used, to keep it as a meaningful
term in the real dynamics on the center manifold the
order of the approximation error should be .
(It was mentioned in Section IV). Choose then

will violate the approximation error. So we
are forced to choose, at least, . Motivated by
the previous results, we choose the designed center
manifold as

(7.8)

Then the approximate system of becomes

To make it approximately stable we may choose
, , , and

. Since , then a feasible choice
is: , , . It follows that the
following control, as a particular case of (4.3), stabi-
lizes the system (7.5).

VIII. C ONCLUSION

The stabilization problem for affine nonlinear systems
with nonminimum phase zero dynamics was considered in
the paper. The major results of the paper are the followings:

First, a new tool, the Lyapunov function with homogeneous
derivative along solution curves was proposed. Based on this,
three independent sufficient conditions (Cross Row Diag-
onal Dominating Principle, Diagonal Dominating Principal,
Quadratic Form Reducing Algorithm) were developed to test
the negative definiteness of the homogeneous polynomials. It
was shown that this new tool is particularly suitable for testing
the approximate stability of the dynamics with odd lowest
nonvanishing terms.

Secondly, it was shown that under certain designed state feed-
back controls, the first variables of each integral chains of the
linearized part of the system could be used as the ”controls”
of the dynamics on the center manifold of the closed-loop sys-
tems. This followed because the choice of the approximation
functions for them does not affect the approximation accuracy
of the dynamics on the center manifold.

In the light of the above two results, a systematic design tech-
nique was developed to provide a set of sufficient conditions for
designing controls which stabilize the dynamics on the designed
center manifold, and then stabilize the overall system.

Only the systems with zero center were discussed in this
paper. However, the method can also be used for affine non-
linear systems with oscillatory center [26] or the case of a
center with multiple zero eigenvalues [27].
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