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Stabilization of Nonlinear Systems via Designed
Center Manifold

Daizhan Cheng and Clyde Martin

Abstract—This paper addresses the problem of the local system is approximately stable. To obtain the desirable proper-
state feedback stabilization of a class of nonlinear systems with ties, we combine the center manifold method with Lyapunov
nonminimum phase zero dynamics. A new technique, namely, function method.

the Lyapunov function with homogeneous derivative along solution . S
curveshas been developed to test the approximate stability of the Motivated by the works on stabilization of homogeneous

dynamics on the center manifold. A set of convenient sufficient vVector field [13]-[17], we propose a new method, namely, that
conditions are provided to test the negativity of the homogeneous of a Lyapunov function with homogeneous derivatives along
derivatives. Using these conditions and assuming the zero dy-solution curves This Lyapunov function is used to test the

namics has stable and center linear parts, a method is proposed approximate stability of a dynamics with odd degree approxi-

to design controls such that the dynamics on the designed center ti t h d th | ial d It
manifold of the closed-loop system is approximately stable. It is mating systems, where degree means the polynomial degree.

proved that using this method, the first variables in each of the IS particularly suitable for testing the dynamics on a designed
integral chains of the linearized part of the system do not affect center manifold of a closed-loop system, because the degrees of

the approximation order of the dynamics on the center manifold. the approximate system of the dynamics on the center manifold
Based on this fact, the concept of injection degree is proposed. 5y pe converted by certain state feedback controls to have odd

According to different kinds of injection degrees certain sufficient d In thi th thod i licable t | | f
conditions are obtained for the stabilizability of the nonminimum egree. In this way, the method IS applicable 1o a large class o

phase zero dynamics. Corresponding formulas are presented for nonlinear systems with stable and center zero dynamics.
the design of controls. To avoid counting the order of smoothness, through this paper

Index Terms—Approximate stability, center manifold, injection the systems and all other' objects qulved are assumed 'Fo.be
degree, Lyapunov function with homogeneous derivative, zero dy- C°°, Or as smooth as required, on a neighborhood of the origin.
namics. We motivate this work by means of a practical problem: con-
sider the stabilization of an airplane via a designed center man-
ifold. We may find some useful observations from this example
for design of both the center manifold and the stabilizing con-

TABILIZATION is one of the basic tasks in control design trols. The following example is basically taken from [7], with a

he asymptotic stability and stabilization of nonlinear sysnodification that the speed is assumed to be dependent on al-

tems have received significant attention [18]-[24]. The centgtude when the atmospheric resistance is taken into considera-
manifold approach has been developed to solve the problem fidn.
[2], [12], [18], [24]. In [1], [2], some special nonlinear controls Example 1.1 [7]: Denote an airplane’s altitude in meters by
are designed to stabilize some particular control systems. TheAssume that the body of the plane is slantedhdians with
method used there is basically a case-by-case study. For a@spect to the horizontal and that the ground speegis Also,
trol systems in normal form, assume the center manifold hassume the flight path forms an angleofadians with the hor-
minimum phase, then quasi-linearfeedback can be used toizontal andw is small. The system is described as
stabilize linearly controllable variables. We refer to [3]-[6] for

. INTRODUCTION

minimum phase method and its applications. a=a(d—a)
Based on these pioneer works, this paper proposes a proce- ¢=-w(p—a—1buy (1.1)
dure to produce a state feedback to stabilize nonminimum phase h = c(h)a

zero dynamics. The designed state feedback control ensures \%aé

the dynamics on the designed center manifold of the closed—lo]g?gq rew > 0 is a constant representing a natural oscillation

uency and: andb are positive constants. The problem we
address is altitude tracking: i.e., a target altitydevhere{ =
e(ho)a.
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We assume that (0) := (d/d>)q(0) # 0and denotg (z, 2) = Some observations from this example follow.
—wrg — arg, g(r,z) = awb. Then system (1.2) isinanormal 1) The higher degrefeleg > 2) state feedback doesn't affect
form for affine nonlinear systems [4]. The zero dynamics (with  the local stability of the linearly controllable variables but

y = x1) becomes: = 0, which is not asymptotically stable. it may affect the center part variables by changing the
Therefore, a quasi-linear control can not make the origin asymp-  structure of the center manifold.

totically stable, and a nonlinear state feedback control should bep) Higher order feedback can be “injected” into the dy-

considered. namics on center manifold through the first variable,
Motivated by the early works [1], [2], we may try the fol- z1, of the integral chain. The variable doesn't affect
lowing control: the order of approximation of the center manifold. This
1 component of the linear part can be employed to modify
w=— flz,2) + (ar21 + a2s + azzs + b2%). (1.3) the nonlinear dynamics.
9(z,z)  g(z,z) 3) Since the center manifold is approximated up to a certain

degree the approximated dynamics on the center mani-
fold should be asymptotically stable up to certain degree
uncertainties to assure the stability of the original system.

To get a stabilizing control, we can first choosg as, az to
stabilize the linearly controllable variables, x2, x3, and then
choosé to stabilize the central variable To determine a pos-

sible value off, let The paper is organized as follows. Section Il defines the
concept ofLyapunov function with homogeneous derivative

$1(2) along solution curves and gives some fundamental properties.

P(2) = | ¢2(2) | =0(]|2|]%) Section 1l provides several sufficient conditions for testing the

¢3(%) approximate stability of vector fields. Sections IV-VII discuss
_ _ design methods for affine nonlinear systems with zero center.
be used to approximate the center manifold. We refer to [9] fghe general result is in Section IV. Then according to the

the notatiord (||z||*) and the following operatal/. Then we injection degrees, the classified testing conditions and formulas

N

have for odd, even and mixed injection degrees are presented in
Sections V-VII, respectively. Section VIII contains some
M@(z) =D¢(z) (a(z)1(2)) concluding remarks.
P2(7)
- P3(2) Il. LYAPUNOV FUNCTION WITH HOMOGENEOUSDERIVATIVE
a191(2) 4 ag2(2) + azds(z) + bz o . o
i Since in general we can only obtain an approximation of the
=0 ( § ) center manifold, it is necessary to have some convenient tools to
$2(2) verify the stability of the dynamics on center manifold through
- $3(%) . its approximated dynamics. For this purpose a new concept,
a161(2) + a2d2(2) + asps(z) + bz? Lyapunov function with homogeneous derivative, is proposed
in this section.
Choose Consider a dynamical system
¢ = —%752 ;
ThenM¢(z) = 0 (||z||*). According to the approximation the-With f(0) = 0.
orem [9], the center manifold can be expressed as We useZ for the set of nonnegative integers. For a multi-
indexS = (s1,...,s,) € Z} andz = (x1,...,2,) € R", we
{a:l =hi(2)=-22"40 (.HZH4) (1.4) denote
z; =hi(z) =0(||2l|*), i=23. n " "
. S _ )i — .
The dynamics on the center manifold is |51 = ; Show = E(x”) » 9= E(SZ)L

2= (q:(0)2 +0(||2]]%)) h(2) = _ﬁqz(o)ziﬂ +0(||z||*). Note that0! = 1, s0.5! # 0. For a smooth functiod'(z), we
1 (15) denote

Choose{ay, as, az, b} such that the linear part is Hurwitz and 8|5|F(a:) 8|5|F(a:)

_(b/al)qz(o) <0,saya; = —-l,a2 =az =-3,0= _QZ(O)' S = S1 9,52 ., gpin

The feedback control becomes Ox dxy' Oy Ay
f(z,2) 1 Then we can give the following definition.

v=—ea Y s (=1 — 322 — 323 — ¢:(0)27) . Definition 2.1:
1) Let %; be the lowest degree of nonvanishing terms of the
It follows that (1.5) is asymptotically stable at origin, and then Taylor expansion off;(z), ¢ = 1,...,n. A system con-
so is the closed-loop system. O sisted of only the lowest degredd’;) terms of (2.1) is said
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to be the (lowest degrees’) approximate system of (2.1). It Note that the derivative of in either (2.3) or (2.4) along
can be expressed formally as is then a homogeneous polynomial of degzee
S| The following example shows that LFHD is a new concept
& = gi(x) = L fis(x) 0)z%, because botl” andg are not homogeneous but the derivative
Sk, St Oz is. Since the approximate system of a smooth system is always
(2.2) component-wise homogeneous, method of LFHD can be used

2) System (2.2) is said to be an odd approximation of (2.1)fir testing the stability of the odd-degree approximated systems.

t=1,...,n.

all k; are odd. Itis particularly useful in testing the stability of the dynamics on
3) System (2.1) is said to be approximately stable if center manifold of the closed-loop systems, because the leading
degree of the dynamics may be converted to odd by suitable state

@i = filx) + 0 (|Jz[* ), i=1,...,n feedback.

Example 2.4: Consider the following system:

is locally asymptotically stable at origin.

Remark 1: &= fi(x,y) = —wsin(z? — y?) 25
| - )= fale) =yt -2y +2). @O
1) In (2.2) g; is a homogeneous polynomial of degrge So y=]n&y =y mn yra)
g = (91, ,9n)* is @ component-wise homogeneougysing Taylor expansion, the approximate system of (2.5) is ob-
vector field. tained as
2) Whenk; = --- = k, := k, the approximate stability de- ] 5 )
fined above coincides with the conventional one [24]. Other- { i=g(r,y) = -2ty (2.6)
wise, it is coordinate-depending. It is clear that approximate Y= g2(w,y) = —20° + ay”.

stability implies asymptotic stability, but the inverse is not st of all, we show that the vector fielgin (2.6) is not ho-

true. mogeneous with respect to any group of dilations of the form
Definition 2.2: Givenacomponent-wise homogeneous polya , . (z1,%2) — (" x1,t7232) [12]. Assume (2.6) ig-th ho-
nomial vector fieldg = (g1, ...,9,)", a positive definite poly- mogeneous with dilatiofr;, 3), that is
nomial V' > 0 is said to be a Lyapunov function with homoge-
neous derivative (LFHD) along, if the Lie derivativeL,V is {gl(t”laﬁ, t2y) = Mg (z, ) 2.7)
homogeneous with ga(t"w, t7y) = T2 gy (). '

) From the first equations of (2.6) and (2.7) we haye= ro

) +deg(gi), i=1,...,n. andk = 2 and from the second equations of (2.6) and (2.7)
we haver; = v, andk = 4r;. It follows thatk =7, = r2 = 0.

The following example provides two typical LFHD, whichsg (2.6) is not homogeneous with any dilation. However, we can

deg(L,V) =deg <§V

Ly

will be used later. ~ construct a LFHD a¥ = z* + %2, which is not homogeneous.
Example 2.3:Letg = (g1,---,9,)" be a component-wise Then the derivative of” along (2.6) is
homogeneous vector field with odd degredss(g;) = k;, i = ] }
1,...,n, andm be a given integer satisfying V = —42% + da*y® — 498 + 2295 < —2b —¢C.
2m > max{ky,..., k,} + 1. (The last inequality can be shown by using the inequality (3.1)
in the next section.) So the derivative is homogeneous and neg-
1) Set2m; =2m —k; + 1,7 =,...,n, then ative definite. The following proposition will show that (2.5) is
N asymptotically stable at origin. O
V= Zpixfw (2.3) The foll'o.wmg proposition is fungjamental for LFHD.
p Proposition 2.5: System (2.1) is approximately stable at
. ' . origin if there exists a LFHD of its approximate system (2.2)
is a LFHD alongy if p; > 0, V <. such that its derivative along (2.2) is negative—definite.
2) Assumek; = -+ = kn, = kS kg = o0 = Proof: AssumeL,V is negative definite, then it should be
Bnygn, = k2 Ky, 141 = = of even degree, saleg(L,V) = 2m. We claim that there exists
Ky 4-tn, = k", wherek® are odd and_;_, n; = n.  a real numbeb > 0 such that
Denotex = (z',...,2"), with dim(z") = n; and set N
2m'=2m -k +1,i=1,...,r, then LQV(.I) < _bZ(-Ti)Qm- (2.8)
s A =1
v=> <($§) s (2h)) ) SinceL,V is negative definite, on the compact “sphere”
=1
i i i AT n
P <(a:§) (@) ) 2.4) 6 {Z S = }
=1
is a LFHD alongg if 3, @ = 1,...,r are positive-defi- L,V (x) attains its maximum value b < 0. That is

nite matrices with dimensions;, x n;.
O LyV(z) £ -b<0, z€b.
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Now anyxz € R™ can be expressed as= kz for somez € S. Proof: Choose a LFHD as
Then
_ - 1 2m—k; +1
L,V(x) =L,V (kz) = k*™L,V(z) < —bk*™ V= 2 <72m y— 1) L ;
o 2m
=—b) () Then we have
i=1
which proves the claim. V|, = Z Z alsa® g2m ki (3.4)
Using (2.8), the derivative of the LFHD becomes i1 |S|=k;

This is a homogeneous polynomial of degéze. Now using

y _ T _ \2m 2m+1
Vir = Vlgro(lapers < bz(x”) +0 (Jll ) 29 (3.1) to split each term in (3.4) and collecting terms, (3.3) yields

=1

that
where g + O(||z||¥*) is a shorthand for n
(1@ +0 (el +) . gu(@) +0 (el ). O Vlg <= eai™, for somee; > 0.
For the homogeneous vector fields [11] gives (with slightly =1
different statement) the following. The conclusion follows immediately. O
Theorem 2.6 [11]: Assume (2.1) hag; = --- =k, = k

: : % ) One obvious improvement for this estimation can be done as
and its approximate system (2.2) is asymptotically stable. thgq, tojiowing: Negative semidefinite nondiagonal terms can be

(2.1) is asymptotically stable. _ _ eliminated from the estimation. Formally, for eaghdefine a
The Proposition 2.5 and Theorem 2.6 will be our major tool:t of its terms by their exponents as

for testing approximate stability.
Qi = {|S| = kils;(j # i) are even and’; < 0} .
I1l. SOME SUFFICIENT CONDITIONS FORNEGATIVITY
This section investigates some sufficient conditions fgerMs Wwith exponents inQ; are negative-semidefinite in
testing approximate stability of systems with odd approximatéV/9=:)gi- Moving such terms from (3.3) yields
systems. o+ 2m — b
We need the following inequality, which is based on the fact —a, > Z || <;)

that the algebraic average is greater than or equal to the geo- |5|=k:,5¢Q; 2m
metric average. n s
. n 7 i iN- J * —
Lemma 3.1..LetS € Z% andz € R". The following in + Z | > dd (Zm)’ i=1,....,n
equality holds: J=1,j#i|S|=k;,5¢Q;
B (3.5)
s S .. 1]
< — |17 3.1 _—_
|x | - ; |S] 1 (3.1) Later on we will simply use (3.5) as CRDDP.

Next, we give a simpler form, which deals with each row
Given a component-wise homogeneous polynomial vectitdependently.
field g = col(gr,...,gn) With dim(g;) = k; ¢ = 1,...,n. Corollary 3.3 Diagonal Dominating Principle (DDP)::
We expresg; as Given a polynomial vector fieldy as in Theorem 3.2. It is
asymptotically stable at origin if
gi(x):af’lix?i + Z asa®, i=1,...,n (3.2) ‘ ‘
S7d: —al, > > as|, i=1...n  (36)

- T |S|=ki,SEQ:
where theindex; = k;6; = (0,...,k;,...,0),whichindicates

thediagonal term Then we have Proof: Sincein (3.5)n can be arbitrary large, let — oo,
Theorem 3.2: Cross Row Diagonal Dominating Principléhe right-hand side of (3.5) becomes right-hand side of (3.6).
(CRDDP): The vector fieldg, given in above, is asymp- Hence the strict inequality (3.6) implies (3.5) for large enough

totically stable at origin, if there exists an integer with m. O
2m > max{ky, ..., k,}, such that In fact, DDP is an analog of Gersgorin’s theorem [25].
Considering linear systems, they provide same stability results.
—di > Z |ag| <Sz +2m — kz) Howgver_, CRDD_P does not have its linear analog.
’ |S|=F So£d; 2m Using inequality (3.1), we can reduce the homogeneous poly-

nomial ofdeg = 4k into a “dominating” quadratic form with
Y e (SZ )7 i=1,...,n (3.3) variablest?* i=1,. .. n.
|S1=k; 2m Algorithm 3.4: Quadratic Form Reducing Algorithm
(QFRA): Letg = col(g1,...,9,) anddeg(g;) = k; ¢ =
whereS = (s1,...,5,) € Z7. 1,...,n with odd &;.

+

n
J
S
j=1j#i
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Step 1) Choose smallest even number= 2k such that ds = (005), aj, = —2.1, afyy) = 2, afpy, = —1. For
2m > max{ky,..., ks, }. Construct &m homoge- the otherS € G3, a? = 0. Since the last term is i)3, SO
neous polynomiay(x) as Qs = {(023)}.
" Now we are ready to test the negativity of the derivative. We
q(z) = Z xzzm—kigi_ first check DDP. For second and third equations, the dominating
1 condition (3.6) is satisfied. For first equation, (3.6) yield§ >
2)2. So

Step 2) Find all terms ig(x), for which the indexS of x*
has componen; less thar2k. Split it into two equal |A| < 0.2886751346.
exponent groups in the alphabetical ordernf

e.q., foraz2zxi we haveS = (2,1,5), m = 4 Next we check CRDDP. Let» = 3. Then (3.5) yields

andk = 2. Itis split asaz?zo23 = ar?zars X 3. % > 222 (%)
Foraz?x3x3 we haveS = (2,5, 1), and itis split as 1> 2200 + 1 (2) +2(L)
CL.’IZ’%:L'%.’L’E; = axir3 X xirs. . 2.1>2(2)+1(1).
Step 3) Using (3.1) to convert them into sevé¥akxponent
terms, e.g., The solution is

4 4 4 Al < 0.3535533906.
axirers X 3 <|a <ﬂ+&+ﬁ> T3 .

2 4 4 Finally, let us use QFRA. The smallest evenshould be 4.
=|a] <1x411$§ + la:;*a:}f + 1@) ) Then
2 4 4 1 1.
. . ) . q(z) = — =2 + 2222823 — 25 — —wlzs
Replace the original terms () by their splitting 6 2
terms. —2.1a5 + 2x5x0 — 253,
The algorithm produces a quadratic form of*, i . .
1,...,n. Then the following can be proved by constructing E-':lrhe algorithm produces a quadratic form as
suitable LFHD. _% +A2 11X 0
Proposition 3.5: If the resulting quadratic form produced by A2 -5 2
the above algorithm is negative definite, thgl) is negative 0 Z  —06

definite. Consequentlyy(z) is asymptotically stable at zero.

The following example is used to describe the notations arTH make it negative—definite we have

results in the above Theorem 3.2 through Proposition 3.5. IA| < 0.3922535218.
Example 3.6:Find a region for parameter, such that the
following system is asymptotically stable at origin: O
. ) In fact, we can prove that in general QFRA is stronger than
1= 51;1(951) — &1 co8(2Ax2) ) CRDDP and CRDDP is stronger than DDP. However, DDP is
Ty =5 In(1 —z3 — 23) + 0.5z523 (3:7)  the easiest one in use, while QFRA is the most difficult one.

K 3 5 .
&3 = 2w3 (1 — cosh(zz — x9)) — 1.1a3. Later on, according to the problems one or more of these three

methods are used for testing the negative—definiteness of the

Using Taylor expansion on (3.7), its approximate system is
g'ey P 3.7) PP y derivatives of LFHD.

i1 = —gai +2X 123 (= g1)
To = —25 _'%xgxg (:= go) (3.8) IV. STABILIZATION OF SYSTEMSWITH ZERO CENTER
23 = —2.123 + 22320 — 2323 (:= g3).

Consider an affine nonlinear system with the following
We figure out all the parameters in Theorem 3.2 and CorollaByrnes-Isidori canonical form [4]:

3.3 as follows: Fog; (x), k1 = 3. Denote byG; = {S | |S]| = it = ANE) + Bi(E)us, 2 € RY, i=1,...,m,
k1 = 3}, then S ni=mn; & = (z,w, 2) 1)
_ w=Sw+p(), we R Ro(S) <0 '
G1 ={(300), (210), (201), (120), (111}, (102), (030), S= Ot gl6), = € Rt Ro(C) = 0
(021), (012), (003)} = {Sl, SQ, ceey SIO}-
where

Note thatd, = (300) = S1, aj = —1/6, ay, =2)\*, a5 =0, AY(E) = col(x?, . ...z, , fi(£)), £:(0) =0;
(¢ # 1, ands # 4). It is easy to check that there is no term in  B?(¢) = col(0,...,0,9:(£)), g:(0) # 0;
Q1,500 = ¢. p(€) andg(¢) vanish at origin with their first derivatives.

Forgs(x), ks = 3. Hence(Gy = G1. Thend, = (030) = S, Since the first variables in each integral chain play a particular
aj, = —1,a%, =—1/2,a5 =0, (i # 7,andi # 8). We also role, we adopt the following notations:
have@,; = ¢. _ 1 m

For  gs(z), ks = 5. Hence, z =(z1,71), wherez; = (zy,...,27")

Gs = {(500), (410), (401),...,(005)}.  Then Tr= (T3 T TS T )

by Mgy,
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System (4.1) is said to hawero centeif C = 0. Only this According to the approximation Theorem [9], (4.4) ensures than

case is considered in this paper. in (4.5) the functiong:(z) andw(z) have the following forms:
Letwg”)(z), r=2,....h,i=1,...,m, be aset of polyno- .
mials of » with degreer. Define i r e —i e
: J # = @0 (A, 7 =0 (I,
( C — : i h (r) r=2
pj(—zi) = pjb(QT(Z),O,Z), Wlbth &y —21:21/}7‘, (), i=1,...,m: w:0(||z||e+l) )
z1=0,2=1,...,m, jg=1,...,s;
i(2) = qu(2(2),0,2), with 2 = S, ¢§">(z), Now (4.5) is of the type of the first equation of (4.2). So con-
Tv=0,i=1,....m, k=1,...,¢ ditions C3) and C4) ensure the approximate stability of (4.5).
Gr(2) == qruz(2), w(z), z), with Hence, the closed-loop form of system (4.1) is asymptotically
7= 3 0(2) + Ei(2), stable. n
| (), = E]i»(z), j=2...,n;,i=1,....,m It is clear from above proof that + 1 is the order of the
approximation error.
whereE}(z), t =1,....m, 5 = 1,...,n;, andw(z) are In Section |, it has been pointed out that the higher order feed-
uncertain functions, and they will be specified later. We denolck can be injected into the dynamics on the center manifold
p(2) = (p5(2), ..., ps(2)" etc. throughz, . To distinct different injection types we define the

The following theorem shows a general design idea. Polyniojection degrees as
mials of degrees 2 th are used for the nonlinear control design. Definition 4.2: For system (4.1) the injection-degrek,, is
Theorem 4.1:AssumeC' = 0 and there exists a set of poly-defined as
nomialswg”)(z), r=2,...,hi=1,...,m,deg (z/)i(r)(z)) = SITI+IS|
. . .\ : dk
r, and an integee > 2, such that the following conditions ¢ Imm{2|T| + S| | 7] >0, O TS 0}7
C1)-C4) hold:

k=1,...,t.
C1) p°(z) = O(||=l|**);
C2) ¢°(z) = 0(||~||®); In fact, thed;, are the lowest degrees of the nonvanishing terms
C3) if Ei(z) = 0(||2]|*T"), andw(z) = 0(]|2]|***), then in the dynamics on center manifold which containgz).
Given system (4.1) the approximation ordecan be esti-
z=q°(z)andz = ¢°(z) (4.2) mated from (4.4). Lel; be the lowest degree of the nonvan-

) ishing terms irp$. Then we have
have same approximate system;

C4) z = ¢°(=) is approximately stable. e=min{d;, i=1,...,6 ;—-1,j=1,...,s}. (4.6)
Then system (4.1) is (locally) asymptotically stabiliz- o )
able (at origin). Moreover, if C1-C4 are satisfied, a suit- |t can be seen intuitively that, (e.g., refer to some examples in

able feedback control, which stabilizes system (4.1) id1]: [2]) an even-degree leading system can hardly be homoge-
neously stable. Our design idea is: When the injection-degree,

£ 1 no [k - dy, is odd, use it as lowest degree of the resulting system, i.e., for

= — 2L 4 Zaixj -] <Z b, (z)) ) the dynamics on the center manifold, Igt = d,. Otherwise,
9:(8)  4il©) j=1 =2 choose control to eliminaté, degree terms and turn the lowest
i=1,...,m. (4.3) degree of the resulting system to odd, ifg,,= dy + 1. In such
o a way, we finally make the dynamics on the center manifold to
whereA™ — 37U ai X~ is Hurwitz. have an odd approximate system,. will be calledleading de-
Proof: Choose gree
Remark: Even in Theorem 4.2 + 1 > h is not claimed, it
o) {xi(/:*) =" v(z) is required implicitly. Otherwise some terms of”(z) in the
2) =

zi(2)=0, ¢=1,....,m designed approximation of the center manifold will be mean-
w(z) =0 ingless.

. . i . Ly iti 1)- in Th 4.1
to approximate the center manifold of the closed-loop systemUSIng ¢ di, andLy, conditions C1)-C3) in Theorem 'S

. . computable.
with control (4.3). Using C1), C2), and control (4.3), we have Proposition 4.3: In Theorem 4.1, for arbitrary chose/yf”),

S v (2) . i=1,....mr=2,...,h
M®(z) = (( =2y ) »v= 1,...,m> 7°(2) i) condition C1) holds, iff

0

ANTIHISIp,
0 w70 =0, 2IT|+|S|<e, k=1,...,5 (47)
_ et1 O(x1)T0z
- 0 =0(|lz)°*) . (4.4)
p°(2) i) condition C2) holds, if

The dynamics on the center manifold is AITI+151 g,
——(0)=0, 2|T S| <dp—1; k=1... ¢
8($1)T825() ? | |+| |_ k s ) IRe)

z= Q(x(z)vw(z)vz)' (4.5) (4.8)
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iif) condition C3) holds, iff (4.8) holds and whe#/|+|V| > For (4.9), onlyg; has a term involvings; and/orw, which
0 iS z2x2. For this terml” = (0), S = (0,1), U = (1,0), and
HITIHISIHU+V V =(0). So

Mg 2o,

O(w1)" 025077 dw" 2\T| + S| + (e + DU+ V) =5 > L, = 3.
2T+ 15|+ (e+ DU+ |V]) £Li; k=1,...,¢
(4.9) equation (4.9) is, therefore, satisfied.

We conclude that the degree matching conditions are satisfied
Proof: In p,(¢) setz; = 0 andw = 0, then use Taylor iff a = 0.
expansion o1 andz. Note thatz¥(2) = 0 (]|2||?). Then (4.7) Next, from (4.11) and (4.12) it is clear that the two equations
means all terms ip5(2) of degree less than or equaldaare in (4.2) have same approximate system.
zero. Sincez < dy, (4.7) holds for2|T'| + | S| < e — 1, which
means all terms i (=) of degree less thamare zero. As for V. STABILIZATION FOR ODD INJECTIONDEGREECENTER

k _ e _ e

C3), note thaty(z) = 0 (llzl1=*1) andw(z) = 0 (=1 +1),' This section considers the case when all the injection degrees
Then itis easily seen that (4.9) holds, iff, bathandw don't  gqya) 10 a same odd number. Then, we have the following.
appear in the approximate system of the dynamics on the centéfpaorem 5.1: Assume system (4.1) with = 0 has an odd
manifold. Hence the two equations in (4.2) have same approyjiversal injection degree, say = L < 3, V k. The system
mate System. ) . o D is state feedback stabilizable, if it satisfies the degree matching

Equation (4.8) is sufficient for C2). But it is necessary fogyngitions (4.7)—(4.9) with = 2,2 < ¢ < LandLy = L
the required leading degrees. So we call (4.7)—(4.90#8ee v/ 1. 4nd there exists a quadratic hoT’noggneous vagtoy —
matching conditionsThey are always assumed in the foIIowingzOl(z/)1 .., %m), such that
sections for center manifold design. e

We use an example to give a detailed description for all the 1 gITIHISlg, m
objects in this section. Z = Z WWWZ’;(O)ZS <H(z/;i)Tf (z)) ;

Example 4.4: Consider the following system: 2AT+ISI=L i=1

. . . k=1,...,t (5.1)

Tr1 =2, T2 = T3, T3 =1U

@1 = —;U +a12iz (4.10) is asymptotically stable at origin. Moreover, if the above condi-
A1 = az + 2121 + 2272 tions are satisfied, (4.3) Wit’qbf?) = 1), is a suitable feedback
%2 = 2172201 control, which stabilizes system (4.1).

For this systemn = 1,7, = (20,23), s = 1,t = 2, Proof: Using control (4.3), conditions (4.8) and (4.9) as-
pz,w,z) = x123%, qz,w,2) = az] + 2121 + zx0, and  surethelowest degree of the dynamics of the closed-loop system
q2(z,w, z) = z1221. Consequently, we have on the center manifold i&. Note that in this casé;, = ¢ = L,

1+ =1,...m. Conditions (4.7) and (4.8) assure the center mani-
Pz =", zbf”)(z)z%z? : fold is described as
(%) = az2 h wr 411
QIEX _ Z’i ;ﬁ Z&z% 7(%) (=) (10 %} =thi(2) + Ri, whereR; = 0 (||2]|")
PH T AR L= T =0 ("), = L...m; w=0(]2]").
and
. \ - Using (4.8) and (4.9)R;, ', andw will not appear into the
Gi(2) = azf + 21 (25:2 (=) + E%(z)) +2:E3(7) degreeL terms. Hence the 1olegrei[eterms of the dynamics are
@5(2) = 2129 (ELQ z/Jf”)(z) + Ef(z)) exactly the right side _of (5.1). That is, (5.1) i_s the approximatg
(4.12) system of the dynamics on the center mann‘o_ld_. Since (5.1) is
wherez/JE”)(z), » = 2,....h will be chosen to design control, homogeneous and asymptotically stable at origin, Theorem 2.4

assures the approximate stability of the dynamics on the center
manifold of the closed-loop system. Then the asymptotical sta-
bility of the closed-loop system follows from Theorem 4.
Whend, = 3,k = 1,...¢itis an interesting case [1]. Now
seth = 2, andL = 3. The previous result leads to the following

El, F}, andE? are some uncertain terms @f||z||***).

According to Definition 4.2, the injection degrees die—= 3
andd, = 4. Hence we choos; = 3 andL, = 5. Fromp®(z)
we havel = 5. Then

e=min{dy =3,do =4,l —1=4}=3. simpler one.
] Corollary 5.2: System (4.1) withC' = 0 is state feedback
It is ready to check that (4.7) holds. stabilizable if

Consider (4.8). Fog;, whensS = (2,0) andT = (0), | S| + C1) 9p/dz,(0) = 0: &%p/8z,92(0) = 0,0 = 1,....m;
7| < dy — 1. However p/92(0) = 0; 92p/z2(0) = 0; FPp/3=3(0) = 0;
Mg P2q C2) 9q/0z(0) = 0; 9g/92(0) = 0; 9%q/92%(0) = 0;
9.5 02 2a. C3) there exists quadratic homogeneous vector fi¢ld =
! col(1,...,%m), such that

So (4.8) holds foy iff « = 0. Itis easy to check that (4.8) is
true for g». 2 =D(2)(z) + E(z) (5.2)
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is asymptotically stable. Whei®(>) andE(~) aretxm (5.4) becomes
andt x 1 matrices with entries as

S (2 2) ()37
Di'zz ,»qz (0)z,: i=1,..., j=1,...m; AL %2 P2(2) %2

k=l Ox; Oz _ azd +bxizg + ez 23 — 423z (5.6)
Pq; s . T\ —azd + (d = b)efre + (e — )zizd + (f +1)23
Eizzs!azS(O)z; i=1,...,t

=3 Using CRDDP withm = 2, we have

respectively. Moreover, (4.3) wi'dj)i(” = 1), is a suitable feed- —a> 30+ 2le| + 3+ Bla| + 2|d — b + Lle — ¢
back control, which stabilizes system (4.1). {—f ~ f> l|b4| + 2o + 1 + ;|a4| +2d— b4| +3le—df
4 4 4 4 4 *

The following example shows that when the injection-degree (5.7)
is 3 we have only to solve a set of algebraic inequalities to obtainone particular solution of (5.7) is = —25; b = 4; ¢ = 0;
the required control. d=4;¢=0; f =-10. Then
Example 5.3: Consider the following system:
T1 = T2 b= <_i5§% +1321222> .
,’i'Q—fl(.T,Z)—i-gl(.T,Z)ul S
xr3 = f2($7z)+92($7z)u2 (53) . .
3= qu(z, 2) To stabilize linear part, one may choagse= —1; a3 = —2;
29 = qolz, 2) al = —1. Then (4.3) yields:
wheref;(0) = 0, g;(0) # 0 satisfies the condition C2 in Corol- fi(@,2) 1 9
. . . . = — e —x1 — 2z9 — 252 4212
lary 5.2,i = 1.2. Our goal is to find a sufficient condition for ! g}ggzg + 22 (-~ x; 07; +4z122)
system (5.3) to be feedback stabilizable. Denote by ur = — 2205 + ooy (Ces e - 1023)
; aQQk
K . : O
= 0 k=12 =12 57=1,3
Cij 92,01 (0), ) 4 ) J )
‘ P .
i’j S q% . ) k=12 it+j=3 VI. STABILIZATION FOR EVEN INJECTION DEGREECENTER
L'J2' (21)0(z2) , , , In this section we consider the even injection degree case.
Y1 =azi bz + ez p =dxf +emza+ [, Assume there exists a positive even numbsuch that the in-
_ jection degrees are eitheor ¢ 4 1. Then we design a suitable
Then (5.2) leads to the following: control to turn the leading degree of the dynamics on the center
manifold toL; = ¢ + 1 for all £.
ez 4 ez ez + el Y1 (2) For system (4.1) witlC' = 0. As_sume there exists_a positive
G2+ Czr ozl + oz Pa(2) even numbet such that the injection degrees are eitlige= ¢

Z3 gl Bt ordy, =c+1.Setly := L = ¢+ 1, V k. Letif it satisfies the
+ < goiemme t) . (5.4) degree matching conditions (4.7)—(4.9) with= 3,3 < ¢ < L.
2 im0 317172 (4.3) be used to form the closed-loop system. Then
Lemma 6.1:A necessary condition forL to be the
Thus the sufficient conditions developed in Section Il majeading degree of the dynamics on the center manifold of the
be used to design a stabilizing control. closed-loop system is: there exists a quadratic homogeneous
To specify the above general form, we consider the followingactor¢(z) = col(¢1, .. .,%m), such that
system as a special case of (5.3):

) 1 aITH—ISqu
L= 2 T1S! 9(x1) Ta75 H¢ =0

T2 = fi(w,2) + g1(x, 2)uy 2T |+|S|=c
T3 = fa(z,2) + g2(2, 2)u2 (5.5) k=1,....t
%1 = sin (a:lzl — 2322) — 3tan (75322) (6.1)

Zo =21 — 2o+ 25 — 21€%" + 29073

Proof: According to condition (4.8), when we calculate

Then the coefficients are computed as the approximate system of the systems in (4.1), only the
guadratic terms4>§2)(z) inzt,i=1,...,mare chosen to form
chi=1;¢cl=0; ¢}, =0; ¢33 =0 the degree: terms. This turns out to be the left side of (6.1).
Al=-1;=0,c3,=0;c3;=1 To make the leading degrde = ¢ + 1, the control should be
dyo=0; d5 = —4; di, =0; dj3 =0 chosen to eliminate degred¢erms, which leads to the (6.1l

d3o=0; d3 =0; &2, =0; d3; = 1. Then we have the following sufficient condition:
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Theorem 6.2:Given system (4.1) as described in the above|T’| + |S| +5(|U| + |V|) < L = 5, we havdl/| < 1. So (4.8)
and (6.1) is assumed for certaif(z). If there exists a cubic holds, (4.9) is obviously true.

homogeneous vecterz) = col(¢1,. .., dm ), such that Now denote
. 1 8|T|+|S|qk s z/) :az]? + bz 20 + cz%;
T A TS10(e)ToLS b =azd + By + vl + 625,
|T|#0

m Then (6.1) becomes
< S T ) [ [0 =)
i=1 G4 zfz% + zf (azf + bz 29 + cz%) =
1 aITI-I-ISqu s {zgL + z% (azf + b1z + cz%) =0
+ Z 718! 9(21)T025 (02
2|T|+]S|=c+1

0

Seta = 0,b = 0, ¢ = —1. Equation (6.1) is satisfied.

m Equation (6.2) yields a fifth degree homogeneous vector field
< [[[e5= ), k=1,...t (6.2) as

=1

22 (azi)’ + B2y 4y 23 + 625’)
is asymptotically stable at origin, then (4.1) is stabilizable. <z§ (azf + B2z + vz 23 + 5Z§>) o 0_5z§z§>
Moreover, if the above conditions are satisfied, a suitable
feedback control, which stabilizes system (4.1) is (4.3) with Simply chooser = —1, 5 =0, v = 0, andé = 0. It is ready
P = o andy® = 4. to check that CRDDP is satisfied with = 3. Choseni; = —1,
Proof: Conditions (4.7), (4.8) and (6.1) assure that the, = —2, then (4.3) provides a stabilizing control as
center manifold is defined by
f(x’ Z) 1 2 3
zt = i(2) + ¢i(2) + R;, whereR; = 0 ([|z||“*!) ; B 9(x, z) * 9(x, 2) (= =202 = (55 +27))
{ﬁIOWﬂH57i=Lnﬂm w =0 (]l2]|“+1) .

O

According to Theorem 4.1, we have only to construct the ap-

proximate system of the dynamics on the center manifold oY“' STABILIZATION FOR MIXED INJECTIONDEGREECENTER

the closed-loop system and show that it is approximately stableThis section considers a general case when the injection de-

Conditions (4.8) and (4.9) assure tifgt 7%, andw will not ap-  grees differ. By reordering we may, without loss of generality,

pear in the degreé terms. Hence the degrdeterms can only assume that the injection degrees @lg ... ,d,,...,d;) and

from terms of2|T°| 4 | S| = cand|T’| # 0. Consider the product d; is odd fori < «, evenfor > «. Then, we have the following.
Theorem 7.1:System (4.1) withC' = 0 is feedback stabi-

T Lo m LT lizable if it satisfies the degree matching conditions (4.7)—(4.9)
(z1) " ()t = H (i + ¢ +0(ll2lI"F)) . with ¢ > 3 and the following conditions.
=1 C1) There exists a quadratic homogeneous vegter) =

To raise the power by 1, there should be exactlyared one of col{yr, .-, ¥m), such that

theT; factors, which is chosen to provide a cubic tefmand 1 QlTi+Isly,

from all otherT; — 1 factors and the # ¢ factors the quadratic — " (0)2°
- - 7151 9(x1)T 9%
terms should be chosen. A careful calculation shows that (6.2)§8|+|5|=d;
the required approximate system. Now Theorem 2.4 assures the m
asymptotically stability of the dynamics on the center manifold X <H(z/;i)Tf (z)) =0, k>« (7.1)
and thus the stability of the closed-loop system. O i=1

Example 6.2: Consider the following system:
C2) There exists a cubic homogeneous vecior) =

B = 29 col(¢1,...,ém), such that
Ty = f(x,z) + g(x, Z)U’
. . 6.3 ‘. ITI+I5],,
R CrIe T R A N T I O
2o = z5 tan(z1) — 25 (e®> — 2) + 0.527 5. m .
2 = 23 tan(w1) — 2 ( ) 173 % (szl(z/}j)Tj(z) . k<a
Since the inje_ction degrees are 4, 4 we chooge leading degree| z, = > zi7i4151=q; ﬁ%(ow
L = 5. Now, since we use quadratic and cubic feedback, so . 1 T (7.2)
h = 3. There is nap(¢), we check (4.7) first. Since®(z) = X\ Xz Titi(2)9 ™ (2) T ¥ ](2’))

0 (||z]|*), soe = 4. It is obvious that (4.7) is satisfied. To check
(4.8), onlyg, (£) containsz; = x2, SO we have only to check it. o -
Since ing; (£) the degree ok is 2, it is easy to see that when L x (Hﬁl(%’) j(z)) i k>«

1 [)‘T“Hs‘qk s
+ D o415 | =dy 41 THST @) o5 (0)z
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is approximately stable at origin. —2, we conclude thatwhek < —1.25 system (7.3) is stabilized

Moreover, if above conditions are satisfied, the control (4.8) the following control
with 9 = ¢, andy® = ¢, stabilizes (4.1).

Proof: The proof is basically the combination of the _ f(z,2) 1

proofs of Theorem 5.1 and Theorem 6.2, therefore, we will just “= g(z,2) gz, 2)
sketch it.

1) Equation (7.1) implies that the lowest degree terms in N U
even injection degree subsystems are eliminated by suitIn fact, Theorem 4.1 and Proposition 4.2 allow us to use any
able feedback(z)). nonlinear polynomial state feedback. The formulas in Theorem

2) Equation (7.2) is the approximate system of the dynamiésl, Corollary 5.2, Theorem 6.2, and Theorem 7.1 use only
on center manifold. quadratic and cubic polynomials. The next example shows that

Using Theorems 4.1 and 4.2, the degree matching conditictinétimes even higher degree terms are necessary.

and the approximate stability of (7.2) ensure the stability of the EX@mple 7.3: Consider the system

(—a:l — 230 — 2120 + 625’) .

closed-loop system. O L .
Remark: Unlike Theorem 5.1 and Theorem 6.2, since in [ 1 = %20+ %=1 = Tnas oy = U
Theorem 7.1 the approximate system of the dynamics on the | ¥ = Y23 Una—1 = UnysYn, =¥
Z1 =Ty (7.5)

center manifold of the closed-loop system is not homogenous
and so approximate stability is required to assure the asymptoti-
cally stable of the dynamics on the center manifold. Meanwhile,
the results in Theorem 5.1 and Theorem 6.2 are topologica\llw1
invariant. The result in Theorem 7.1 is coordinate-dependent|
and so it is not topologically invariant.
Example 7.2: Consider the following system:

?:“2 = 222.7}1 + Z%ZQ
o 2
i3 = 23Y1 + p1212371 + p2z12377, 1 > 0,

ereu; andus are parameters.

t is easily checked that the degree matching conditions
(4.7)—(4.9) are trivially satisfied becaug®&(z) = ¢°(z) = 0,
andg(¢) doesn’t contain either;, or g, & > 1. So if only we
can find the approximate system of the dynamics on the center
manifold, which is approximately stable, we are done.

(7.3) Case 1) Consider a subsystem of (7.5) where the differential

equations about; andz3 are removed.

Now d; = 4. So we choosd.; = 5. Using

Theorem 6.1, (6.1) implies either, = 0 (||2]|*) or

] =2

T2 = f(xv Z) + g(x,z)u

z =sin(z1a1) + 2125 + Az}
2o = 23 tan(zy + x2) + 2173

where 3 ; . ;
=0 (]|z||?). An obvious solution for (6.2) is
H0.0) o, w =0 (l2I°) 6.2)
9(0,0) #0;
A( ) parameter. Pi(z) = azi, ¢1(2) =0;
et _ _ P2(2) =0,  ¢a(2) = azf, aa<0
The injection degrees arg = 3, d2 = 4, so we choose the

designed lowest degreeshs = 3 andL, = 5. Leth = 3, and

b = az? + brize + 23, ¢ = aZd + Belas + ymAd + 623, which leads to a set of controls

Sinceq®(z) = 0(||z|*) the approximation ordet = 3. We w=S" ate; 4 ax?

don’t need to consider (4.7) because there i$(9. Consider { v — Z{El aéU‘ZJr a;}” (7.6)

(4.8), it is obviously true. As for (4.9), only,(¢) containses. =t e

Sincee = 3 asz2(z) = 0 (||z[|***) the lowest term involving i . -

29 is 2272 ~ 0(]|2]|°). Hence (4.9) holds fo|T] + || + whereai., i=1,...,n5,7j =12are coeff|c.|er.1ts

A(|U| + [V]) < 6. However,L, = 5, 50 (4.9) is true. of Hurwitz polynom@tls. Ifrny = ne = 1, thisis '
Next, we check that (7.1) rendess= 0, ¢ = 0, b = —1. a system discussed in Brockett [8] and the solution

(7.6) is in Aeyels [1].
Case 2) Consider subsystem of (7.5), where the differential
equation abouts is removed.
(7.4) Now d; = 4 andd, = 3. We setl,; = 5 and
L, = 3. Using Theorem 7.1, (7.1) leads to the same
conclusion as in Case 1: i.e., onexafor y; should

Moreover, (7.2) turns out to be

o= A2 — 2Eae + 222
2 = 23 (o2} + Baizg +y2123 +623) .

To find a possible solution, we may simply set= 3 = v = be 0 (||z]|*). To avoid notational mess, we simply
0, then test (7.4) by DDP, CRDDP, and QFRA, respectively. chooser; = az? + b22 andy; = a2{. Then (7.2)
DDP yields:6 < 0, A < —2. turns out to be
Setm = 3, CRDDP yieldst < —0.5, A < —1.5.
Choosingm = 4, QFRA yields a quadratic form as\ + # = aazy + bazdzs
1.25)28 +0.752123 + 628 To make it negative—definite we need 2o = 2azlzy + 223 + 2120,

A < —1.25,6 < 9/(64) + 80).
It is clear that the last method provides the best estimation. We use CRDDP and choose = 3. Thenb < 0.
Using (4.3) and choosing linear feedback with= —1, a> = For finding a particular set of solutions we assume:
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a < 0, = 1,2|a|—1 > 0. By some algebraic com- First, a new tool, the Lyapunov function with homogeneous
putations, we finally obtain the following condition: derivative along solution curves was proposed. Based on this,
three independent sufficient conditions (Cross Row Diag-
{|a| > 2| —1 7.7) onal Dominating Principle, Diagonal Dominating Principal,
la| < 1.25[b] 4 0.5. ' Quadratic Form Reducing Algorithm) were developed to test
the negative definiteness of the homogeneous polynomials. It

Then the control becomes was shown that this new tool is particularly suitable for testing
S Lo ) the approximate stability of the dynamics with odd lowest
{“ = =1 %t T 0 (azf + b23) nonvanishing terms.
v =302 afy — aizy Secondly, it was shown that under certain designed state feed-

back controls, the first variables of each integral chains of the
linearized part of the system could be used as the "controls”
of the dynamics on the center manifold of the closed-loop sys-
X X : tems. This followed because the choice of the approximation
Ly = Ly = 3. Butitdoesn't work because either g, tions for them does not affect the approximation accuracy
or 1 should be0 (II=1°). TPenLg = 3 means for ¢ e dynamics on the center manifold.
#3 the injection terms don't affect the approximate |, yhe'jight of the above two results, a systematic design tech-
system of the dynamics on the center manifold. Sg, e was developed to provide a set of sufficient conditions for
we have to raisé; to atleast 5. That is, we have 0ejgning controls which stabilize the dynamics on the designed
assume center manifold, and then stabilize the overall system.
® @ Only the systems with zero center were discussed in this
y1= 9" (2) + () paper. However, the method can also be used for affine non-
linear systems with oscillatory center [26] or the case of a

Now a new problem occurs. Since the fourth degregnter with multiple zero eigenvalues [27].
terms,¢™* (z), are used, to keep it as a meaningful

term in the real dynamics on the center manifold the
order of the approximation error shouldbel > 5.
(Itwas mentioned in Section IV). Choose= 4 then The authors are indebted to the anonymous reviewers for
L, = 3 will violate the approximation error. So wemany helpful corrections and suggestions for improving the
are forced to choose, at least; = 5. Motivated by readability of the paper.

the previous results, we choose the designed center

wherea < 0, b < 0 and they satisfy (7.7).
Case 3) Consider overall system. Sinke= 4, d> = 3 and
ds = 3, trying Theorem 7.1, we sdt; = 5 and
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