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Abstract. Using an abstract condition of Riesz basis generation of discrete operators in the
Hilbert spaces, we show, in this paper, that a sequence of generalized eigenfunctions of an Euler–
Bernoulli beam equation with a tip mass under boundary linear feedback control forms a Riesz
basis for the state Hilbert space. In the meanwhile, an asymptotic expression of eigenvalues and
the exponential stability are readily obtained. The main results of [SIAM J. Control Optim., 36
(1998), pp. 1962–1986] are concluded as a special case, and the additional conditions imposed there
are removed.
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1. Introduction. When a tip mass is attached to the free end, the vibration
of a flexible beam that is clamped at one end and controlled at the free end can
be described by the following Euler–Bernoulli beam equation (Conrad and Morgül,
1998):

(1)




ytt(x, t) + yxxxx(x, t) = 0, 0 < x < 1, t > 0,
y(0, t) = yx(0, t) = yxx(1, t) = 0, t ≥ 0,
−yxxx(1, t) +mytt(1, t) = u(t), t ≥ 0,

where y is the amplitude of the vibration, m is the tip mass, and u is the boundary
control force applied at the free end. In order to achieve uniform stability for this sys-
tem, one has to employ “higher” derivative controllers. The following linear feedback
control law is proposed in Conrad and Morgül (1998):

u(t) = −αyt(1, t) + βyxxxt(1, t), t ≥ 0,

where α and β are real constants. The closed-loop system then becomes

(2)




ytt(x, t) + yxxxx(x, t) = 0,
y(0, t) = yx(0, t) = yxx(1, t) = 0,
yxxx(1, t) = αyt(1, t) +mytt(1, t) − βyxxxt(1, t).

The energy multiplier method is used in Conrad and Morgül (1998) to show that
system (2) is exponentially stable for any α, β > 0. It is further proved for a special
case where m = αβ that a set of generalized eigenfunctions of system (2) forms a Riesz
basis for the state Hilbert space, usually referred to as the Riesz basis (generation)
property, and that the spectrum-determined growth condition holds, both for almost
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every α > 0. Systems with the Riesz basis property are usually referred to as Riesz
spectral systems (Xu and Sallet, 1996).

Verification of the Riesz basis property is a very important problem both theo-
retically and practically. Usually, the property will lead to the establishment of such
results as the spectrum-determined growth condition and the exponential stability
of the system. However, such verification is usually difficult because the associated
system operator is non-self-adjoint. For one-dimensional string equations with gen-
eral variable coefficients under linear boundary feedback control, successful treatments
have been made for the basis property in last two decades; we refer to Cox and Zuazua
(1994), Shubov (1996, 1997), and the references therein. The case of a string equation
with a tip mass was investigated in Morgül, Conrad, and Rao (1994). An abstract
treatment of general Riesz spectral system with one rank perturbation can be found
in Sun (1981), Rebarber (1989), and Xu and Sallet (1996), to name just a few. In
Rao (1997) and, recently, Li et al. (1999), the beam equations with “low order” per-
turbations were considered. Since the model of serially connected Euler–Bernoulli
beams under joint linear feedback control was proposed in Chen et al. (1987), many
efforts have been made to study the asymptotic distribution of the eigenvalues (Chen
et al., 1989) and the exponential stability (Rebarber, 1995). However, the spectrum-
determined growth condition had not been reported until Conrad (1990), where a
cantilevered beam equation was shown to have the Riesz basis property for small
feedback gain, and hence the spectrum-determined growth condition is concluded for
this special case. The general case for this cantilevered beam equation was resolved
partly by Conrad and Morgül (1998).

In these works mentioned above, the verification of Riesz basis generation relies
upon Bari’s theorem (see, for example, Gohberg and Krein, 1969): if {φn}∞1 is a Riesz
basis for a Hilbert space H, and {ψn}∞1 , an ω-linearly independent sequence in H, is
quadratically close to {φn}∞1 in the sense that

∞∑
n=1

‖ φn − ψn ‖2<∞,

then {ψn}∞1 is also a Riesz basis itself for H. In order to use Bari’s theorem, the
following steps are required:

(i) to estimate “high” eigenfrequencies by asymptotic analysis technique;
(ii) to find a sequence of generalized eigenvectors {ψn}∞N+1 (where N is a large

integer) such that {ψn}∞N+1 is quadratically close to a given Riesz basis {φn}∞1 :∑∞
n=N+1 ‖ φn − ψn ‖2<∞; and

(iii) to show that the number of linearly independent “low” eigenvectors is exactly
N , or, more generally, as in Rao (1997) and Shubov (1996), to show that the root
subspace of the system is complete in the state space.

While steps (i) and (ii) are relatively easy, step (iii) has been very difficult, in
general, so far. Toward easing this difficulty, Guo (to appear) recently establishes an
abstract condition under which steps (i) and (ii) automatically imply step (iii) for
discrete operators in general Hilbert spaces. This greatly simplifies the verification
of the Riesz basis property in applications. In this paper, we shall use this result (a
simplified proof is presented in the appendix of the present paper) to show that a
sequence of generalized eigenfunctions of system (2) forms a Riesz basis for the state
Hilbert space for any real parameters α, β �= 0 and m. This covers the main results
of Conrad and Morgül (1998) as a special case and removes the additional conditions
imposed there. The exponential stability of the system is then readily established from
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an asymptotic expression of the eigenvalues, which is also obtained in the process of
verification of the Riesz basis generation property.

The paper is organized as follows. In sections 2 and 3, some asymptotic expres-
sions of eigenvalues and eigenfunctions are presented. Section 4 is devoted to the
Riesz basis generation. Concluding remarks are given in section 5. Finally, in the
appendix, we present a much simplified proof of the abstract result obtained in Guo
(to appear) about the Riesz basis property of discrete operators in general Hilbert
spaces.

2. Asymptotic expressions of eigenvalues and eigenfunctions. Through-
out the paper, we always assume that β �= 0. As in Conrad and Morgül (1998), the
state Hilbert space for system (2) is H = H2

E(0, 1) × L2(0, 1) × C, where H2
E(0, 1) =

{f ∈ H2(0, 1) | f(0) = f ′(0) = 0}, with the inner product induced norm defined as

‖ (f, g, η) ‖2=

∫ 1

0

[| f ′′(x) |2 + | g(x) |2]dx+K | η |2,

where K > 0 is any constant. Equation (2) can be written as an evolutionary equation
in H:

(3)
dY (t)

dt
= AY (t),

where Y (t) = (y(·, t), yt(·, t),−yxxx(1, t)+mβ−1yt(1, t)) and the operator A : D(A)(⊂
H) → H is defined as follows:

{A(f, g, η) = (g,−f (4),−β−1η − β−1(α−mβ−1)g(1)) ∀(f, g, η) ∈ D(A),
D(A) = {(f, g, η) ∈ (H4 ∩H2

E) ×H2
E × C, f ′′(1) = 0, η = −f ′′′(1) +mβ−1g(1)}.

Now, we present the following lemma on the spectrum of the operator A.
Lemma 2.1. A−1 exists and is compact on H. Hence the spectrum σ(A) of A

consists of isolated eigenvalues only: σ(A) = σp(A), where σp(A) denotes the set of
eigenvalues of A. Moreover, each λ = iτ2 ∈ σ(A), λ �= −β−1, is geometrically simple
and satisfies the characteristic equation

(4) τ(iτ2 + β−1)(1 + cosh τ cos τ) + (mτ2 − αi)(sinh τ cos τ − cosh τ sin τ) = 0.

An eigenfunction (f, g, η) corresponding to λ = iτ2 ∈ σ(A)(λ �= −β−1) is given by

(5)




f(x) = sinh τ(1 − x) − sin τ(1 − x) − (sinh τ cos τx+ sinh τx cos τ)
+(cosh τx sin τ + cosh τ sin τx),

g = λf,

η = − λβ−1

λ+ β−1
(α−mβ−1)f(1).

Proof. A simple calculation shows that

A−1(f, g, η) = (f1, g1, η1) ∀(f, g, η) ∈ H,

f1 =

∫ 1

x

(x− τ)3

6
g(τ)dτ +

∫ 1

0

(
τ3

6
− x

τ2

2

)
g(τ)dτ +

(x− 1)3 − 3x+ 1

6
[βη + αf(1)],

g1 = f, η1 = −βη − (α−mβ−1)f(1).
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Since f
(4)
1 = −g, g1 = f, |η1| ≤ |β||η| + |α−mβ−1|‖f‖H2 , it follows that

‖A−1(f, g, η)‖H4×H2×C ≤M‖(f, g, η)‖H
for some constant M > 0. By the Sobolev embedding theorem, A−1 is compact on
H. This is the first part.

Second, for any λ ∈ σp(A), λ �= −β−1, solving eigenvalue problem

A(f, g, η) = (g,−f (4),−β−1η − β−1(α−mβ−1)g(1)) = λ(f, g, η),

one gets

g = λf, η = − λβ−1

λ+ β−1
(α−mβ−1)f(1),

where f satisfies

(6)




f (4)(x) + λ2f(x) = 0,
f(0) = f ′(0) = f ′′(1) = 0,
(λ+ β−1)f ′′′(1) = β−1λ(α+mλ)f(1).

If (6) has two linearly independent solutions f1, f2, then there are constants c, d (|c|+
|d| �= 0) such that cf1(1) + df2(1) = 0. It follows from (6) that f = cf1 + df2 satisfies

{
f (4)(x) + λ2f(x) = 0,
f(0) = f ′(0) = f(1) = f ′′(1) = f ′′′(1) = 0.

A simple calculation shows that the above equation has only zero solution. Hence
cf1 + df2 ≡ 0. This contradicts the assumption that f1, f2 are linearly independent.
Therefore, each λ = iτ2 ∈ σ(A), λ �= −β−1, is geometrically simple.

Now, let λ = iτ2. By the first equation in (6) and the conditions f(0) = f ′(0) = 0,
we have

f(x) = c1(cosh τx− cos τx) + c2(sinh τx− sin τx),

where c1 and c2 are constants. Since f ′′(1) = 0, we can set

c1 = sinh τ + sin τ, c2 = − cosh τ − cos τ.

Obviously c1, c2 can not be zero simultaneously. Hence

f(x) = sinh τ(1 − x) − sin τ(1 − x) − (sinh τ cos τx+ sinh τx cos τ)

+(cosh τx sin τ + cosh τ sin τx),

which satisfies

(7)

{
f (4)(x) + λ2f(x) = 0,
f(0) = f ′(0) = f ′′(1) = 0

for all λ = iτ2.
Finally, from the last condition (λ + β−1)f ′′′(1) = β−1λ(α + mλ)f(1), one can

obtain (4) (see also Conrad and Morgül, 1998). The proof is complete.
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Lemma 2.2. There is a family of eigenvalues {λn, λn}, λn = iτ2
n of A satisfying

(8) λ = λn = iτ2
n = −2m+ i(kπ)2 + O(n−1),

where k = n − 1/2 and n is a sufficiently large positive integer. An eigenfunction
(fn, gn, ηn) of A corresponding to λn satisfies

(9)

Fn(x) = 2τ−2
n e−τn


 f ′′n (x)
gn(x)
ηn




T

=


 e−kπx + (−1)ne−kπ(1−x) + (cos kπx− sin kπx)
i[e−kπx + (−1)ne−kπ(1−x) − (cos kπx− sin kπx)]

0




T

+ O(n−1),

which holds uniformly for x ∈ [0, 1]. Consequently,

(10) ‖ Fn(x) ‖2
L2×L2×C

=‖ 2τ−2
n e−τn(fn, gn, ηn) ‖2

H→ 2 as n→ ∞.

Proof. Let k = n−1/2, with n as a sufficiently large positive integer. Noting that
as n → ∞, ‖e−kπx‖2

L2 → 0, ‖e−kπ(1−x)‖2
L2 → 0, ‖ cos kπx − sin kπx‖2

L2 → 1, we can
conclude (10) from (9) immediately. So only (9) should be verified. First, in a small
neighborhood of kπ, the following estimates are valid uniformly for all n > 0:

2e−τ sinh τ = 1 + O(e−2|τ |), 2e−τ cosh τ = 1 + O(e−2|τ |), sin τ = O(1), cos τ = O(1).

Second, multiplying −2iτ−3e−τ on both sides of (4) yields

(11) cos τ = O(| τ |−1) or cos τ =
m

τ
i(cos τ − sin τ) + O(| τ |−2),

which is valid uniformly in a small neighborhood of kπ for all n > 0. Since cos kπ = 0,
we can apply Rouche’s theorem to the functions f(τ) = cos τ and g(τ) = −O(| τ |−1)
in a small neighborhood of kπ to find a solution to the first equation of (11) to be

(12) τ = τn = kπ + O(n−1).

Note that

(13)

{
e−τny = e−kπy + O(n−1),
sin τnx = sin kπx+ O(n−1), cos τnx = cos kπx+ O(n−1),

which holds uniformly for bounded y > 0 and x ∈ [0, 1]. Upon substituting (12) into
the second equation of (11), the term O(n−1) in the expression (12) satisfies

− sin kπO(n−1) = −mi
kπ

sin kπ + O(n−2),

so

O(n−1) =
mi

kπ
+ O(n−2).

This, together with (12), gives

τn = kπ +
mi

kπ
+ O(n−2).
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Then (8) readily follows.
Now let τ = τn and (fn, gn, ηn) = (f, g, η) be defined by (5). Since

τ−2f ′′n (x) = sinh τ(1 − x) + sin τ(1 − x) + (sinh τ cos τx− sinh τx cos τ)

+(cosh τx sin τ − cosh τ sin τx),

it follows from (13) that

2τ−2e−τf ′′n (x) = e−τx + cos τx− e−τ(1−x) cos τ + e−τ(1−x) sin τ − sin τx+ O(e−kπ)
= e−kπx + e−kπ(1−x) sin kπ + cos kπx− sin kπx+ O(n−1)
= e−kπx + (−1)ne−kπ(1−x) + (cos kπx− sin kπx) + O(n−1),

2τ−2e−τgn(x) = ie−τfn(x) = i[e−τx − cos τx− e−τ(1−x) cos τ + e−τ(1−x) sin τ
+ sin τx] + O(e−kπ)
= i[e−kπx + (−1)ne−kπ(1−x) − (cos kπx− sin kπx)] + O(n−1),

2τ−2e−τηn = −2τ−2e−τ λβ−1

λ+β−1 (α−mβ−1)fn(1) = O(n−2).

The above estimates are valid uniformly for x ∈ [0, 1]. (9) is established.
It should be pointed out that we are not sure at this stage that (8) is an asymptotic

expression for all eigenvalues of A. This will be cleared up after the verification of
the Riesz basis generation in section 4.

3. Results of an auxiliary system. In this section, we consider an auxil-
iary system which is composed of a conservative system and an ordinary differential
equation coupled. This system will produce a reference Riesz basis of H, required
in Theorem 6.3 in the appendix in verification of basis generation. The principle of
constructing this system is based on an observation of the characteristic equation (4)
that the “dominant” equation of (4) is iτ3(1+cosh τ cos τ) = 0, which can be obtained
by letting α = m = β−1 = 0. In this case, system (2) becomes

{
ytt + yxxxx = 0,
y(0, t) = yx(0, t) = yxx(1, t) = yxxxt(1, t) = 0.

Naturally, we consider the well-posed conservative system

{
ytt + yxxxx = 0,
y(0, t) = yx(0, t) = yxx(1, t) = yxxx(1, t) = 0,

which has the same nonzero eigenvalues as that of the system above. In order to get
a state space the same as that of the system (2), i.e., H, we complete the conserva-
tive system with another ordinary differential equation; then the auxiliary system is
obtained, which is described by the following equation:




ytt + yxxxx = 0,
y(0, t) = yx(0, t) = yxx(1, t) = yxxx(1, t) = 0,
η̇(t) = 0.

Alternatively, we can describe the auxiliary system in the form of an evolutionary
equation in H,

(14)
dY (t)

dt
= A0Y (t),
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where the operator A0 : D(A0)(⊂ H) → H is defined as follows:{A0(f, g, η) = (g,−f (4), 0) ∀(f, g, η) ∈ D(A0),
D(A0) = {(f, g, η) ∈ (H4 ∩H2

E) ×H2
E × C, f ′′(1) = f ′′′(1) = 0}.

It is easy to show that 1 ∈ ρ(A0), (I − A0)
−1 is compact on H and A∗

0 = −A0.
That is, A0 is a skew-adjoint operator with compact resolvent on H (and hence iA0

is self-adjoint with compact resolvent). It then follows from a well-known result in
functional analysis that (i) there is a sequence of normalized eigenfunctions of A0

which forms an orthonormal basis of H; (ii) for each eigenvalue of A0, its geometric
multiplicity equals its algebraic multiplicity; and (iii) all eigenvalues of A0 lie on the
imaginary axis. (ii) is actually a consequence of (i). (iii) comes directly from the
skew-adjointness of A0. These are advantages of the construction of A0.

All the analysis of the operator A in the preceding section is true for the oper-
ator A0. In particular, each µ ∈ σ(A0), µ �= 0, is geometrically simple and hence
algebraically simple. And the characteristic equation for µ = iω2(�= 0) ∈ σ(A0) is

(15) 1 + coshω cosω = 0.

Since all eigenvalues of A0 lie on the imaginary axis, we need consider only the positive
solutions to (15) in order to find all nonzero eigenvalues of A0.

For ω > 0, writing (15) as cosω = O(e−ω), we can get the positive solutions of
(15) being

(16) ω = ωn = kπ + O(e−kπ),

where k = n− 1/2 for all sufficiently large positive integers n.
Therefore, the spectrum of A0 consists of all pairs {µn, µn} together with possibly

another finite set, where µn = iω2
n with ωn given in (16). This is unlike A; µn = iω2

n =
i(kπ)2 +O(kπe−kπ) is now indeed an asymptotic expression for all eigenvalues of A0.

Now, letting α = m = β−1 = 0 and τn = ωn, in Lemma 2.2, we get an eigenvector
(un, vn, νn) of A0 corresponding to µn = iω2

n(�= 0) given below:

(17)




un(x) = sinhωn(1 − x) − sinωn(1 − x) − (sinhωn cosωnx+ sinhωnx cosωn)
+(coshωnx sinωn + coshωn sinωnx),

vn = µnun,
νn = 0.

Clearly, the asymptotic expression (12) is also valid for ωn defined in (16). Noting
that only the expression (12) is used in the proof of Lemma 2.2, we have the following
counterpart of Lemma 2.2 for A0. Similar results were also obtained in Lancaster and
Shkalikov (1994).

Lemma 3.1. The spectrum of A0 consists of all {µn, µn} but possibly a finite
number of the other eigenvalues, where µn = iω2

n, ωn is determined by (16). And the
eigenvalues µn (µn) are algebraically simple for all large n. In addition, an eigen-
function (un, vn, νn) of A0 corresponding to µn satisfies

(18)

Gn(x) = 2ω−2
n e−ωn


u′′n(x)
vn(x)
νn




T

=


 e−kπx + (−1)ne−kπ(1−x) + (cos kπx− sin kπx)
i[e−kπx + (−1)ne−kπ(1−x) − (cos kπx− sin kπx)]

0




T

+ O(n−1),
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which holds uniformly for all x ∈ [0, 1].

4. Riesz basis generation. In this section, we shall apply Theorem 6.3 in the
appendix to get the basis property of A. To do this, we need a reference Riesz
basis of H first. This is accomplished by collecting the eigenfunctions of A0. As
we can conclude from Lemma 3.1 that a “maximal” set (see appendix) of ω-linearly
independent eigenfunctions of A0 consists of all (un, vn, νn) defined by (17) but a
finite number of the other eigenfunctions, we may assume, without loss of generality,
that such a set is

{2ω−2
n e−ωn(un, vn, νn)}∞1 ∪ {their conjugates}.

Since A0 is skew-adjoint, the set {2ω−2
n e−ωn(un, vn, νn)}∞1 ∪{their conjugates} forms

an orthogonal basis of H. Because they are approximately normalized (that is, they
are upper and lower bounded) according to (10), the set is indeed a Riesz basis of
H by a well-known fact that all approximately normalized Riesz bases in a separate
Hilbert space are equivalent.

From (9) and (18), it follows that there is a large positive integer N such that

(19)

∞∑
n>N

‖ 2τ−2
n e−τn(fn, gn, ηn) − 2ω−2

n e−ωn(un, vn, νn) ‖2
H

=

∞∑
n>N

‖ Fn −Gn ‖2
L2×L2×C

=

∞∑
n>N

O(n−2) <∞.

The same is true for their conjugates. Note that all λn = iτ2
n are different for large

n; we can now apply Theorem 6.3 in the appendix to obtain the main results of the
present paper.

Theorem 4.1. Let the operator A be defined as in (3). Then
(i) there is a sequence of generalized eigenfunctions of A which forms a Riesz

basis for the state space H;
(ii) all of the eigenvalues of A have the asymptotic expression (8); and
(iii) all λ ∈ σ(A) with sufficiently large modulus are algebraically simple.
Therefore, A generates a C0-group on H for any real constants m,α, and β.

Moreover, for the semigroup eAt generated by A, the spectrum-determined growth
condition holds. And the growth rate of eAt is not less than −2m.

The stability result for the system (2) is given in the following corollary.
Corollary 4.2. The semigroup eAt is exponentially stable for any m,α, β > 0.
Proof. Taking the inner product of H as in the beginning of the section 2 with

K = β2/(m+ αβ), it is calculated in Conrad and Morgül (1998) that

Re〈AY, Y 〉 = −K
β

| f ′′′(1) |2 −Kmα
β2

| g(1) |2≤ 0 ∀ Y = (f, g, η) ∈ D(A).

That is, A is dissipative and hence no eigenvalues of A lie on the open right half
complex plane. Now, if AY = λY , Y = (f, g, η), and Reλ = 0, then f ′′′(1) = g(1) = 0.
It follows from (6) that




f (4)(x) + λ2f(x) = 0,
f(0) = f ′(0) = f ′′(1) = 0,
f ′′′(1) = f(1) = 0.
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As it is indicated in the proof of Lemma 2.1, the above equation has a zero solution
only. Hence f ≡ 0 and so g = η = 0 by (5). Therefore,

(20) Reλ < 0 ∀λ ∈ σ(A).

Finally, since A is of compact resolvent, there are only finitely many eigenvalues of A
in any bounded region of the complex plane, which, together with Theorem 4.1 (ii),
shows that there is a constant ω > 0 such that

(21) S(A) = sup
λ∈σ(A)

Reλ < −ω.

The exponential stability then follows from the spectrum-determined growth condi-
tion. The proof is complete.

Before ending the section, we indicate that Theorem 4.1 can be used to obtain
the basis property and the spectrum-determined growth condition of a beam equation
without tip mass under linear boundary feedback control. Let A1 be defined by setting
m = θβ, where θ is real, in the definition of the operator A; that is,

{A1(f, g, η) = (g,−f (4),−β−1η − β−1(α− β−1)g(1)) ∀(f, g, η) ∈ D(A1),
D(A1) = {(f, g, η) ∈ (H4 ∩H2

E) ×H2
E × C, f ′′(1) = 0, η = −f ′′′(1) + θg(1)}.

Then Theorem 4.1 holds true for operator A1 for any reals β−1, α, and θ. Furthermore,
let A2 be defined by setting α = β−1 = 0 in the definition of A1. We have

{A2(f, g, η) = (g,−f (4), 0) ∀(f, g, η) ∈ D(A2),
D(A2) = {(f, g, η) ∈ (H4 ∩H2

E) ×H2
E × C, f ′′(1) = 0, η = −f ′′′(1) + θg(1)}.

And Theorem 4.1 is also true for operator A2 for any real θ. However,

dY

dt
= A2Y (t)

is equivalent to

(22)




ytt(x, t) + yxxxx(x, t) = 0, 0 < x < 1, t > 0,
y(0, t) = yx(0, t) = yxx(1, t) = 0, t ≥ 0,
yxxx(1, t) = θyt(1, t), t ≥ 0.

That is, system (22) is also a Riesz spectral system. This system is just the can-
tilevered beam equation considered in Conrad (1990), Conrad and Morgül (1998),
and Guo (to appear).

Remark 4.3. The conclusion of Corollary 4.2 was proved in Conrad and Morgül
(1998) by energy multiplier method. Theorem 4.1 (i) was shown there in the case
of m = αβ for almost every α > 0 with other additional conditions. Theorem 4.1
(iii) was also shown there by complex analysis. The Riesz basis property for (22) was
obtained there for almost every θ > 0.

5. Concluding remarks. In this paper, an abstract condition for Riesz basis
generation of discrete operators in Hilbert spaces is used to show that a sequence
of generalized eigenfunctions of an Euler–Bernoulli beam equation with a tip mass
under boundary linear feedback control forms a Riesz basis for the state Hilbert
space. The stability of the system is also established. This paper greatly improves
the work of Conrad and Morgül (1998), where the same results are obtained but
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for a very special case where m = αβ. Besides these results, the contributions of
this paper lie in providing a very simple method which enables us (a) to obtain
the asymptotic expressions of eigenvalues and eigenfunctions; (b) to avoid the usual
treatment for “low” eigenfrequencies in applying Bari’s theorem; and (c) to study
potential applications to other problems of beam equations (see Guo and Chan, 2001).

6. Appendix. Abstract result on Riesz basis property. In this appendix,
we present the abstract result together with a simplified proof about Riesz basis
generation for discrete operators in the Hilbert spaces. This result is crucial to the
establishment of the main results of the present paper.

Let us recall that for a closed linear operator A in a Hilbert space H, a nonzero
x ∈ H is called a generalized eigenvector of A, corresponding to an eigenvalue λ
(with finite algebraic multiplicity) of A, if there is a positive integer n such that
(λ− A)nx = 0. Let sp(A) , the so-called root subspace of A, be the closed subspace
spanned by all generalized eigenvectors of A. The following theorem gives a simple
characterization of the completeness of sp(A); that is, sp(A) = H.

Lemma 6.1. Let A be a densely defined discrete operator (that is, there is a
λ ∈ ρ(A) such that R(λ,A) = (λ − A)−1 is compact) in a Hilbert space H. Then
sp(A) = H if and only if the codimension of sp(A) in H is finite.

Proof. It is well known that the adjoint operator A∗ of a densely defined discrete
operator A is also a discrete operator. It follows from Lemma 5 on p. 2355 of Dunford
and Schwartz (1971) that the following orthogonal decomposition holds:

H = σ∞(A∗) ⊕ sp(A),

where σ∞(A∗) = {x|E(λ)x = 0, ∀λ ∈ σ(A∗)}, E(λ) is the eigen-projector of A∗

corresponding to λ. Hence sp(A) = H if and only if σ∞(A∗) = {0}. On the other
hand, Lemma 5 on p. 2295 of Dunford and Schwartz (1971) suggests that σ∞(A∗) is
either {0} or infinite dimensional. Therefore the codimension of sp(A) is finite if and
only if σ∞(A∗) = {0}. The proof is complete.

Lemma 6.2. Let {φn}∞1 be a Riesz basis in a Hilbert space H. Let {ψn}∞N+1

(N ≥ 0) be another sequence in H. If

∞∑
n=N+1

‖ φn − ψn ‖2<∞,

then there exists an M ≥ N such that {φn}M1 ∪ {ψn}∞M+1 is a Riesz basis of H. In
particular, {ψn}∞M+1 is ω-linearly independent.

Proof. The proof can follow from Corollary 11.4 on page 374 of Singer (1970).
Theorem 6.3. Let A be a densely defined discrete operator in a Hilbert space H.

Let {φn}∞1 be a Riesz basis of H. If there are an integer N ≥ 0 and a sequence of
generalized eigenvectors {ψn}∞N+1 of A such that

∞∑
N+1

‖φn − ψn‖2 <∞,

then the following hold.
(i) There are a constant M > N and generalized eigenvectors {ψn0}M1 of A such

that {ψn0}M1 ∪ {ψn}∞M+1 forms a Riesz basis of H.
(ii) Let {ψn0}M1 ∪{ψn}∞M+1 correspond to eigenvalues {σn}∞1 of A. Then σ(A) =

{σn}∞1 , where σn is counted according to its algebraic multiplicity.
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(iii) If there is an M0 > 0 such that σn �= σm for all m,n > M0, then there is an
N0 > M0 such that all σn are algebraically simple if n > N0.

Proof. (ii) and (iii) are consequences of (i). Only proof of (i) is needed. By Lemma
6.2, there is an M > N such that {ψn}∞M+1 is ω-linearly independent. Let {ψα} be
an arbitrary set such that {ψn}∞M+1 ∪ {ψα} is a “maximal” ω-linearly independent
set of generalized eigenvectors of A; that is, {ψn}∞M+1 ∪ {ψα} is a ω-linearly indepen-
dent subset of the set of the generalized eigenvectors of A, and for any generalized
eigenvector ψ of A, the extended set {ψn}∞M+1 ∪ {ψα} ∪ {ψ} must not be ω-linearly
independent anymore. Therefore, {ψn}∞M+1 ∪ {ψα} spans the root subspace sp(A).
By the assumption and Bari’s theorem, the number of such ψα’s does not exceed
M . Let {ψα} = {ψn0}L1 , L ≤ M . It follows from Theorem 3.2 of Rao (1997) that
{ψn0}L1 ∪ {ψn}∞M+1 forms a Riesz basis of sp(A).

On the other hand, by the assumption and Bari’s theorem, the number of linearly
independent elements in the orthogonal complement of sp(A) in H cannot exceed M ,
and hence the codimension of sp(A) is finite. Then from Lemma 6.1, sp(A) = H.

Therefore, {ψn0}L1 ∪ {ψn}∞M+1 forms a Riesz basis for the entire space H.
Since a “proper” subset of a basis can not be a basis, it follows from Bari’s theorem

and the assumption that L = M . This is (i). The proof is complete.
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