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Abstract

This work is concerned with identification of Wiener systems whose outputs are measured by binary-valued sensors. The
system consists of a linear FIR (Finite Impulse Response) subsystem of known order, followed by a nonlinear function with a
known parametrization structure. The parameters of both linear and nonlinear parts are unknown. Input design, identification
algorithms, and their essential properties are presented under the assumptions that the distribution function of the noise is
known and the nonlinearity is continuous and invertible. It is shown that under scaled periodic inputs, identification of Wiener
systems can be decomposed into a finite number of core identification problems. The concept of joint identifiability of the core
problem is introduced to capture the essential conditions under which the Wiener system can be identified with binary-valued
observations. Under scaled full-rank conditions and joint identifiability, a strongly convergent algorithm is constructed. The
algorithm is shown to be asymptotically efficient for the core identification problem, hence achieving asymptotic optimality in
its convergence rate. For computational simplicity, recursive algorithms are also developed.

Key words: Identification, binary-valued observations, Wiener systems, parameter estimation, sensor thresholds, periodic
inputs, joint identifiability.

1 Introduction

Binary-valued sensors are commonly employed in prac-
tical systems since they are more cost effective than reg-
ular sensors. In some applications, they are the only
ones available during real-time operations (Wang et al.,
2002a). More importantly, binary-valued observations
are the fundamental building blocks for quantized ob-
servations that are an integrated part of communication
channels.

Wiener systems are typical nonlinear systems, which
represent a nonlinear dynamic system with a dynamic
linear part, followed by a memoryless nonlinear function,
shown schematically in Fig. 1. Wiener systems have been
successfully used to represent systems in many practical
applications such as biological systems (Hunter & Ko-
renberg, 1986; Wang et al., 2002b, 2004), signal process-
ing, communications and control (Norquay et al., 1999),
etc.
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Fig. 1. Wiener systems

This paper focuses on identification of Wiener systems
with binary-valued output observations. Since finite
quantization may be regarded as a finite cascading of
binary sensors, binary-valued observations are building
blocks for quantization. When the output of a Wiener
system must be measured by a binary-valued sensor
or sent through a communication channel, it can be
represented as a Wiener system with binary-valued or
quantized output observations. Consequently, under-
standing identification of Wiener systems with binary-
valued observations will be essential for studying both
identification of nonlinear systems and impact of com-
munication channels on system models. Binary-valued
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observations supply very limited information on the
system outputs, and hence introduce difficulties in sys-
tem modeling, identification, and control. In Wang et
al. (2003), we investigated the identification errors, time
complexity, input design, and impact of disturbances
and unmodeled dynamics on identification accuracy
and complexity for linear systems that are modeled by
impulse responses with binary-valued observations. The
work was extended to rational models and unknown
noise distributions in Wang et al. (2006a). Recently, the
methodologies have been extended to system identifica-
tion with quantized observations in Wang et al. (2006b,
2006c). Most significantly, the optimality of the identi-
fication algorithms has been established by showing the
Cramér-Rao lower bound is asymptotically achieved
Wang et al. (2006b).

Related works on identification with quantized output
measurements can be found in Krishnamarty (1995)
and Wigren (1995, 1998). Wigren (1995) considered the
identification problem of linear IIR (Finite Impulse Re-
sponse) systems with quantized output measurements
and obtained local convergent parameter estimates by
using a recursive search algorithm with approximate
gradients. Based on this algorithm, Wigren (1998)
studied linear FIR systems and gave global convergent
identification results. Krishnamarty (1995) dealt with
ARMA model with binary-valued observations, where
the density of the noise is assumed to be symmetric
about zero. However, the aforementioned research and
our early investigations were limited to linear systems.

There have been substantial efforts in nonlinear system
identification. The reader is referred to Sjoberg et al.
(1995), Bai (2003), and Roll et al. (2005) for extensive
exposition of the existing literature. Within nonlinear
system identification, Wiener/Hammerstein structures
have drawn much attention due to their structural
simplicity and connections to linear systems (Hunter
& Korenberg, 1986; Schoukens, 2003; Verhaegen &
Westwick, 1996). Identification methodologies used for
Wiener structures may be loosely classified by iterative
algorithms (Hunter & Korenberg, 1986; Korenberg &
Hunter, 1998), correlation techniques (Billings, 1980),
least-squares estimation and singular value decompo-
sition methods (Bai, 1998; Lacy & Bernstein, 2002),
stochastic recursive algorithms (Chen, 2006; Hu &
Chen, 2005), etc. Several identification algorithms were
analyzed in Wigren (1994) for their convergence and
error bounds. Frequency-domain identification methods
for Wiener/Hammerstein structures were explored in
Bai (1998) and Ninness and Gibson (2002). All these
approaches require output measurements by regular
sensors.

Our work in this paper has essential differences with
previous research, mainly due to introduction of binary
measurements into the system configuration. Interaction
between the nonlinear sensor and the nonlinear subsys-

tem imposes a challenge in relating empirical measures
to system parameters and ensuring identifiability, which
can be readily established for linear systems (Wang et al.,
2003). Different from the traditional gradient methods,
we use the methods of empirical measures, periodic in-
put design, and recursive algorithms to develop strongly
convergent algorithms for Wiener system identification
with binary-valued observations. One of the advantages
of this approach is: We are able to establish the optimal-
ity of the algorithms by using the Fisher information.
Assuming that the noise distribution function is known,
it is shown that under scaled periodic inputs, identifica-
tion of Wiener systems can be decomposed into a finite
number of core identification problems. The concept of
joint identifiability is introduced to capture the essen-
tial conditions, under which the Wiener system can be
identified with binary-valued observations. Under joint
identifiability and input full-rank conditions, a global
convergent algorithm is constructed. The algorithm is
shown to be asymptotically efficient for the core identifi-
cation problem, hence achieving asymptotically optimal
convergence rate. For computational simplicity, simpli-
fied recursive algorithms are also discussed.

The rest of the paper is organized as follows. The struc-
ture of Wiener systems using binary-valued observations
is formulated in Section 2. It is shown in Section 3 that
under scaled periodic inputs, identification of Wiener
systems can be decomposed into a number of core iden-
tification problems. Basic properties of periodic signals
and the concepts of joint identifiability are introduced
in Section 4. Based on the algorithms for the core prob-
lems, Section 5 presents the main identification algo-
rithms for Wiener systems. Under scaled full-rank inputs
and joint identifiability, the identification algorithms for
Wiener systems are shown to be strongly convergent (in
the sense of convergence with probability one). Identifi-
cation algorithms for the core problems are constructed
in Section 6. By comparing the estimation errors with
the Cramér-Rao lower bound, the algorithms are shown
to be asymptotically efficient, hence achieving asymp-
totically optimal convergence speed. For simplicity, re-
cursive algorithms are discussed in Section 7 that can
be used to find system parameters under certain sta-
bility conditions. Illustrative examples are presented in
Section 8 to demonstrate input design, identification al-
gorithms, and convergence results of the methodologies
discussed in this paper. Section 9 provides a brief sum-
mary of the findings of this paper.

2 Problem formulation

Consider the system in Fig. 2, in which





x(k) =
n−1∑

i=0

aiu(k − i),

y(k) = H(x(k), η) + d(k),

(1)
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Fig. 2. Wiener systems with binary-valued observations

where u(k) is the input, x(k) the intermediate variable,
and d(k) the measurement noise. H(·, η): DH ⊆ R → R,
is a parameterized static nonlinear function with domain
DH and vector-valued parameter η ∈ Ωη ⊆ R

m. Both n
and m are known. By defining φ(k) = [u(k), . . . , u(k −
n + 1)]T and θ = [a0, . . . , an−1]

T , the linear dynamics
can be expressed compactly as x(k) = φ(k)T θ.

Assumption A1. The noise {d(k)} is a sequence of
independent and identically distributed (i.i.d.) random
variables with finite variance. The distribution function
F (·) of d(1) is known, which is continuously differen-
tiable together with a continuously differentiable inverse
F−1(·) and a bounded density f(·) with f(x) 6= 0 for
x 6= 0.

Assumption A2. For any given η ∈ Ωη, H(x, η) is
bounded for any finite x, continuous and invertible in x.

The output y(k) is measured by a binary sensor with
threshold C. That is, the sensor output s(k) = S(y(k))
is a function of y(k) indicating only whether y(k) ≤ C
or y(k) > C, where C is known. We use the indicator
function

s(k) = S(y(k)) = I{y(k)≤C} =

{
1, if y(k) ≤ C,

0, otherwise
(2)

to represent the sensor.

Remark 1. The threshold C has significant impact on
identification accuracy. For the binary series estimation
algorithm employed in Wigren (1995), it was shown that
for improving identification accuracy, it is necessary to
have C 6= 0 and is desirable that signal energy is centered
around C. In Wang et al (2003), C 6= 0 is also shown to
be required in the worst-case identification framework.
However, this constraint is no longer relevant under the
stochastic framework introduced in Wang et al. (2003).

This paper employs the approach of empirical measures.
While this approach requires the knowledge of noise dis-
tribution functions (Wang et al., 2003), or its estimation
(Wang et al., 2006a), the essential requirement is that
the input and C are selected such that C − y(k) lies
within the support of the noise density f(·) (otherwise,
sk ≡ 0 or sk ≡ 1, w.p.1., and the sensor does not pro-
vide useful information on yk). If f(·) has infinite sup-
port, such as the normal distribution, theoretically any

C is valid. However, the Cramér-Rao lower bound, which
will be derived subsequently, will characterize precisely
the impact of C selection on identification accuracy in
this approach. In other words, it is desirable to design
C and inputs to minimize the Cramér-Rao lower bound.
Threshold selection is studied in depth in (Wang et al.,
2006c) and will not be explored further in this paper.

Parametrization of the static nonlinear function H(·, η)
depends on specific applications. Often, the structures
of actual systems can provide guidance in selecting
function forms whose parameters carry physical mean-
ings (Wang et al., 2002b, 2004). On the other hand,
when a black-box approach is employed, namely, the
models represent input/output relationships based on
data only, one may choose some generic structures
for theoretical and algorithm development. For in-
stance, a common structure is H(x, η) =

∑m−1
i=0 bihi(x),

where hi(x), i = 0, . . . ,m − 1, are base functions and
η = [b0, b1, . . . , bm−1]

T ∈ R
m is a vector of m unknown

parameters. For example, the typical polynomial struc-
ture is

H(x, η) =

m−1∑

i=0

bix
i. (3)

In this paper, we will discuss input design, derive joint
estimators of θ and η, and establish their identifiability,
convergence, convergence rates, and efficiency (optimal-
ity in convergence rate).

3 Basic input design and core identification
problems

We first outline the main ideas of using 2n(m + 1)-
scaled periodic inputs and empirical measures to iden-
tify Wiener systems under binary-valued observations.
It will be shown that this approach leads to a core identi-
fication problem, for which identification algorithms and
their key properties will be established.

Unlike adaptive controls, the purpose of this paper is
only on parameter estimation. And the key rule for se-
lecting inputs is to provide sufficient information to sup-
port identification accuracy. The persistent and decay-
ing excitation conditions described in, for instance, Chen
and Guo (1991), are typical conditions for traditional
identification algorithms to ensure convergence and con-
sistency of the parameter estimators. It is well estab-
lished that there are many classes of persistent excita-
tion signals. The periodic inputs are particularly useful
in supporting the identification method of this paper, al-
though theoretically many other signals can potentially
be used also. Not only they provide sufficient informa-
tion, but they lead to much simplified identification al-
gorithms and well established convergence properties.
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The input signal, that will be used to identify the sys-
tem, is a 2n(m + 1)-periodic signal u whose one-period
values are (ρ0v, ρ0v, ρ1v, ρ1v, . . . , ρmv, ρmv), where
v = (v1, . . . , vn) is to be specified. 1 The scaling factors
{ρ0, ρ1, . . . , ρm} are assumed to be nonzero and distinct.

If under the 2n input values u = (v, v), the linear sub-
system has the following n consecutive output values at
n, . . . , 2n − 1

δi = a0u(n + i) + · · · + an−1u(1 + i), i = 0, . . . , n − 1,

then the output under the scaled input (qv, qv) is

x(n + i) = qδi, i = 0, . . . , n − 1.

Without loss of generality, assume δ0 6= 0. 2 The out-
put of the linear subsystem contains the following (m +
1)-periodic subsequence with its single period values
{ρ0δ0, ρ1δ0, . . . , ρmδ0}:

x(n) = ρ0δ0, x(3n) = ρ1δ0, . . .

x((2m + 1)n) = ρmδ0, . . .

By concentrating on this subsequence of x(k), under a
new index l with l = 1, 2, . . ., the corresponding output
of the nonlinear part may be rewritten as

ỹ(l(m + 1)) = H(ρ0δ0, η) + d̃(l(m + 1)),

ỹ(l(m + 1) + 1) = H(ρ1δ0, η) + d̃(l(m + 1) + 1),
...

ỹ(l(m + 1) + m) = H(ρmδ0, η) + d̃(l(m + 1) + m).

(4)

The equations in (4) form the basic observation relation-
ship for identifying η and δ0.

For ρ = [ρ0, . . . , ρm]T and a scalar δ, we denote

H(ρδ, η) = [H(ρ0δ, η), . . . ,H(ρmδ, η)]T . (5)

Then, (4) can be expressed as

Ỹ (l) = H(ρδ, η) + D̃(l), l = 0, 1, . . . , (6)

where δ 6= 0, Ỹ (l) = [ỹ(l(m+1)), . . . , ỹ(l(m+1)+m)]T

and D̃(l) = [d̃(l(m + 1)), . . . , d̃(l(m + 1) + m)]T . Corre-
spondingly, the outputs of the binary-valued sensor on

Ỹ (l) are S̃(l) = S(Ỹ (l)), l = 0, 1, . . ..

1 The reason for repeating each scaled vector, such as
ρ0v, ρ0v, etc., is to simplify algorithm development and con-
vergence analysis, not a fundamental requirement.
2 It will become clear that when v is full rank, to be discussed
later, there exists at least one i such that δi 6= 0.

Let τ = [τ0, . . . , τm]T , [δ, ηT ]T . We introduce the fol-
lowing identification problem.

Core Identification Problem: Estimate the parame-

ter τ from observations on S̃(l).

Denote ζi = H(ρiδ, η), i = 0, 1, . . . ,m. Then ζ =
[ζ0, . . . , ζm]T = H(ρδ, η) and (6) can be rewritten as

Ỹ (l) = ζ + D̃(l), l = 0, 1, . . . (7)

The main idea of solving the core identification problem
is first to estimate ζ, and then to solve the interpolation
equations

ζi = H(ρiδ, η), i = 0, 1, . . . ,m (8)

for δ and η. The basic properties on signals and systems
that ensure solvability of the core identification problem
will be discussed next.

4 Properties of inputs and systems

We first establish some essential properties of periodic
signals and present the idea of joint identifiability, which
will play an important role in the subsequent develop-
ment. Some related ideas can be found in Horn and John-
son (1985), Lancaster and Tismenetsky (1985), Wang et
al. (2006a).

4.1 Generalized circulant matrices and periodic inputs

An n×n generalized circulant matrix (Lancaster & Tis-
menetsky, 1985)

T =




vn vn−1 vn−2 · · · v1

qv1 vn vn−1
. . . v2

qv2 qv1 vn
. . . v3

...
. . .

. . .
. . .

...

qvn−1 qvn−2 qvn−3 · · · vn




(9)

is completely determined by its first row [vn, . . . , v1] and
q, which will be denoted by T (q, [vn, . . . , v1]). In the spe-
cial case of q = 1, the matrix in (9) is called circulant
matrix and will be denoted by T ([vn, . . . , v1]).

Definition 1. An n-periodic signal generated from its
single-period values (v1, . . . , vn) is said to be full rank if
the circulant matrix T ([vn, . . . , v1]) is full rank.

An important property of circulant matrices is the fol-
lowing frequency-domain criterion.

Lemma 1. (Horn & Johnson, 1985) If T = T (q, [vn, . . .,
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v1]) is a generalized circulant matrix, then the eigenvalues
of T are {qγk, k = 1, . . . , n} and the determinant of T is

det(T ) =
n∏

k=1

qγk, (10)

where γk is the discrete Fourier transform (DFT) of

vjq
− j

n , j = 1, ..., n.

γk =
n∑

j=1

vjq
−j
n e−iωkj , ωk =

2πk

n
, k = 1, . . . , n.

Hence, T is full rank if and only if γk 6= 0, k = 1, . . . , n.

Proof. Let P =

[
0 In−1

q 0

]
, whose characteristic poly-

nomial is det(λIn − P ) = λn − q and eigenvalues are

q
1

n eiωk , k = 1, . . . , n. Then T can be represented by
T =

∑n
j=1 vjP

n−j . For P and k = 1, . . . , n, if λk is the

corresponding eigenvector of q
1

n eiωk , then

Tλk =

n∑

j=1

vjP
n−jλk =

n∑

j=1

vj(q
1

n eiωk)n−jλk = qγkλk.

Therefore, qγk is an eigenvalue of T and (10) is con-
firmed. By hypothesis, q 6= 0. Hence T is full rank if and
only if γk 6= 0, k = 1, . . . , n. 2

For the special case of q = 1, we have the following
property.

Corollary 1. An n-periodic signal generated from v =
(v1, . . . , vn) is full rank if and only if its discrete Fourier
transform γk = V (ωk) =

∑n
j=1 vje

−iωkj is nonzero at

ωk = 2πk
n , k = 1, . . . , n.

Recall that F [v] = {γ1, . . . , γn} is the frequency sam-
ples of the n-periodic signal u, where F [·] is the discrete
Fourier transform. Hence, Definition 1 may be equiva-
lently stated as “an n-periodic signal v is said to be full
rank if its frequency samples do not contain 0.” In other
words, the signal contains n nonzero frequency compo-
nents.

Definition 2. A 2n(m + 1)-periodic signal u is called a
scaled full rank signal if its single-period values are (ρ0v,
ρ0v, ρ1v, ρ1v, . . . , ρmv, ρmv), where v = (v1, . . . , vn) is
full rank, i.e., 0 6∈ F [v]; ρj 6= 0, j = 1, . . . ,m, and ρi 6=
ρj , i 6= j. We use U to denote the class of such signals.

Definition 3. An n(m+1)-periodic signal u is called an
exponentially scaled full rank signal if its single-period
values are (v, qv, . . . , qmv), where q 6= 0 and q 6= 1, and

v = (v1, . . . , vn) is full rank. We use Ue to denote this
class of input signals.

4.2 Joint identifiability

Joint identifiability conditions mandate that the un-
known parameters δ and η can be uniquely and jointly
determined by the interpolation conditions (8).

Prior information. The prior information on the un-
known parameters τ = [δ, ηT ]T for the core identifica-
tion problem is τ ∈ Ω ⊆ R

m+1. Denote R
m
d = {ρ =

[ρ1, . . . , ρm]T ∈ R
m : ρj 6= 0,∀j; ρi 6= ρj , i 6= j}, namely

the set of all vectors in R
m that contain non-zero and

distinct elements.

Definition 4. Suppose that Υ ⊆ R
m+1
d . H(x; η) is said

to be jointly identifiable in Ω with respect to Υ, if for
any ρ = [ρ0, . . . , ρm]T ∈ Υ, H(ρδ; η) is invertible in Ω,
namely ζ = H(ρδ; η) has a unique solution τ ∈ Ω. In
this case, elements in Υ are called sufficiently rich scaling
factors.

Depending on the parametric function forms H(·, η) and
the domain DH , the set of sufficiently rich scaling fac-
tors can vary significantly. For example, the polynomial
class of functions of a fixed order has a large set Υ. The
polynomial class has been used extensively as the non-
linear part of Wiener systems and their approximations
in Celka et al. (2001), Norquay et al. (1999), Wigren
(1994).

When the base functions are polynomials of order m,
H(x, η) can be expressed as

H(x, η) =

m∑

j=0

bjx
j , with bm 6= 0. (11)

Then H(ρiδ, η) =
∑m

j=0 bjδ
jρj

i , i = 0, 1, . . . ,m. Appar-
ently, one cannot uniquely determine m + 2 parameters
δ, b0, . . . , bm from m + 1 coefficients of the polynomial.
A typical remedy to this well-known fact is normaliza-
tion of the parameter set by assuming one parameter,
say, bl = 1 for some l. In this case, the coefficient equa-
tions become bjδ

j = cj , j 6= l and δl = cl. For given cj ,
to ensure uniqueness of solutions bj , j 6= l and δ to the
equations, l must be an odd number.

We now show that H(x, η) that satisfies Assumption A2
contains at least one non-zero odd-order term. Indeed,
if H(x, η) contains only even-order terms, it must be
an even function. It follows that H(x, η) = H(−x, η),
namely it is not an invertible function. This contradicts
Assumption 2.

Since H(x, η) contains at least one non-zero odd-order
term blx

l for some odd integer l, without loss of gener-
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ality we assume bl = 1. The reduced parameter vector is
η0 = [b0, . . . , bl−1, bl+1, . . . , bm]T , which contains only m
unknowns. Such polynomials will be called “normalized
polynomial functions of order m.”

Proposition 1. Under Assumption A2, all normalized
polynomial functions of order m are jointly identifiable
with respect to R

m
d .

Proof. For any given ρ = [ρ0, . . . , ρm] ∈ R
m+1
d , the

interpolation equations

m∑

j=0

cjρ
j
i = ζi, for i = 0, . . . ,m (12)

can be rewritten as ℜc = ζ, where ζ is defined in (7) and

ℜ =




1 ρ0 · · · ρm
0

1 ρ1
. . . ρm

1

...
. . .

. . .
...

1 ρm · · · ρm
m




, c =




c0

c1

...

cm




.

Since the determinant of the Vandermonde matrix

detℜ =
∏

0≤i<j≤m−1

(ρj − ρi) 6= 0

for distinct ρi, i = 0, . . . ,m− 1, we have c = ℜ−1ζ. Fur-
thermore, the equation δl = cl yields the unique solu-
tion δ = (cl)

1/l 6= 0 by hypothesis. Then, bj = cj/δj ,
j 6= l, solve uniquely for the remaining parameters. Con-
sequently, H(ρδ; η0) is invertible as a joint function of δ
and η0. This implies that H(x, η0) is jointly identifiable
with respect to any vector in R

m
d . 2

Other basis can also be used. For instance, H(x, η) =
η + ex, where η 6= 0. Under the prior information Ω =
{[δ, ηT ]T : δ > 0, η 6= 0}, consider Υ = {(ρ0, ρ1) : ρ0 >
0, ρ1 < 0}. The interpolation equations are

{
η + eρ0δ = ζ0

η + eρ1δ = ζ1.
(13)

These imply

eρ0δ − eρ1δ = ζ0 − ζ1. (14)

It is easily seen that for ρ0 > 0 and ρ1 < 0, the derivative

of (14) is d(eρ0δ−eρ1δ)
dδ = ρ0e

ρ0δ −ρ1e
ρ1δ > 0. Hence, (14)

has a unique solution, which indicates that H(x, η) is
jointly identifiable with respect to Υ.

Joint identifiability is certainly not a trivial condition.
For the above function form H(x, η) = η + ex, Υ can-
not be expanded to R

2
d. Indeed, if one selects ρ0 = −2,

ρ1 = −1, ζ0 = 1.075, ζ1 = 1.2, then (13) becomes{
η + e−2δ = 1.075

η + e−δ = 1.2,
Both δ = 1.921, η = 1.054 and

δ = 0.158, η = 0.346 solve the equations. By definition,
H(x, η) = η + ex is not jointly identifiable with respect
to R

2
d.

5 Identification algorithms

Based on periodic inputs and joint identifiability, we
now derive algorithms for parameter estimates and prove
their convergence.

Assumption A3.

i) The prior information on θ and η is that θ 6= 0, η 6= 0,
θ ∈ Ωθ and η ∈ Ωη such that under Ωθ and Ωη, the
set Υ of sufficiently rich scaling factors is non-empty.
C − y(k) lies within the support of the noise density
f(·) for k = 1, 2, . . .

ii) H(x, η) is jointly identifiable with respect to Υ and
continuously differentiable with respect to both x and
η.

By using the vector notation, for j = 1, 2, . . .,

X(j) = [ x(2(j − 1)(m + 1)n + n), . . . ,

x(2j(m + 1)n + n − 1)]T ,

Y (j) = [ y(2(j − 1)(m + 1)n + n), . . . ,

y(2j(m + 1)n + n − 1)]T ,

Φ̃(j) = [ φ(2(j − 1)(m + 1)n + n), . . . ,

φ(2j(m + 1)n + n − 1)]T ,

D(j) = [ d(2(j − 1)(m + 1)n + n), . . . ,

d(2j(m + 1)n + n − 1)]T ,

S(j) = [ s(2(j − 1)(m + 1)n + n), . . . ,

s(2j(m + 1)n + n − 1)]T ,

(15)

the observations can be rewritten in block form as

{
Y (j) = H(X(j), η) + D(j),

X(j) = Φ̃(j)θ.

The input is a scaled 2n(m + 1)−periodic signal with
single period values

(ρ0v, ρ0v, ρ1v, ρ1v, . . . , ρmv, ρmv),

where v = (v1, . . . , vn) is full rank.
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By periodicity, Φ̃(j) = Φ̃, for all j and Φ̃ can be decom-
posed into 2(m+1) submatrices Φi, i = 1, . . . , 2(m+1),

of dimension n×n: Φ̃ = [ΦT
1 ,ΦT

2 , . . . ,ΦT
2(m+1)]

T . Denote

the n×n circulant matrix Φ = T ([vn, . . . , v1]). Then the
odd-indexed block matrices 3 satisfy the simple scaling
relationship

Φ1 = ρ0Φ, Φ3 = ρ1Φ, . . . , Φ2m+1 = ρmΦ. (16)

Remark 2. In (ρ0v, ρ0v, ρ1v, ρ1v, . . . , ρmv, ρmv), there
are always two identical subsequences ρiv, i = 0, . . . ,m
appearing consecutively. The main reason for this input
structure is to generate block matrices that satisfy the
above scaling relationship (16).

Remark 3. We use the following notation for element-
wise vector functions. For a scalar function g(·) and a
vector x = [x1, . . . , xl]

T ∈ R
l, the boldface symbol g(x)

represents

g(x) = [g(x1), . . . , g(xl)]
T ∈ R

l. (17)

In addition, if g(x) is invertible, g−1(x) represents the
component-wise inverse

g−1(x) = [g−1(x1), . . . , g
−1(xl)]

T ∈ R
l. (18)

Similarly, for α = [α1, . . . , αl]
T ∈ R

l and c = [c1, . . . ,
cl]

T ∈ R
l, we use the vector notation I{α≤c} =

[I{α1≤c1}, . . . , I{αl≤cl}]
T . 11ℓ and 0ℓ ∈ R

ℓ will denote
column vectors with all components being 1 and 0,
respectively. For a given threshold C, Cl = C11l ∈ R

l.

5.1 Identification algorithms for the core problem

For the core problem (7), let

z̃(N) =
1

N

N−1∑

l=0

S̃(l)

=
1

N

N−1∑

l=0

I{D̃(l) ≤ Cm+1 − H(ρδ, η)},

3 The even-indexed block matrices are not be used in the
proof.

which is the empirical distribution of D̃(k) at Cm+1 −
H(ρδ, η). Define 4

ξ̃(N) =





z̃(N), if 0 < z̃(N) < 1;

1
N , if z̃(N) = 0;

N−1
N , if z̃(N) = 1.

(19)

Then, by the strong law of large numbers,

ξ̃(N) → p = F(Cm+1 − H(ρδ, η)), w.p.1. (20)

By Assumption A1, F has a continuous inverse. Hence,

ζ(N) = Cm+1 − F−1(ξ̃(N))

→ ζ = Cm+1 − F−1(p) = H(ρδ, η) w.p.1.

By Assumption A3, H is invertible as a function of τ =
[δ, ηT ]T . As a result, τ(N) = H−1(ζ(N)) → τ w.p.1. In
summary, we have the following theorem.

Theorem 1. Under Assumptions A1-A3, let τ(N) =

H−1(ζ(N)) = H−1(Cm+1 − F−1(ξ̃(N))). Then

τ(N) → τ w.p.1 as N → ∞. (21)

Proof. Under Assumptions A1 and A2, H−1 and F−1

are continuous. By the above analysis, we have

τ(N) = H−1(Cm+1 − F−1(ξ̃(N)))

→ H−1(Cm+1 − F−1(p)) = H−1(ζ) = τ w.p.1. 2

5.2 Parameter estimates of the original problem

Parameter estimates are generated as follows. Define

z(N) = 1
N

∑N−1
l=0 S(l) and

ξ(N) =





z(N), if 0 < z(N) < 1;

1
N , if z(N) = 0;

N−1
N , if z(N) = 1.

(22)

Then, the strong law of large numbers yields that

ξ(N) → ξ = F(C2(m+1)n − H(Φ̃θ, η)) w.p.1. (23)

4 This modification is to avoid the points ez(N) = 0 orez(N) = 1 since the distribution function F (·) is not invert-
ible at these points. Since the probability of of these points
are asymptotically zero as N → ∞, the consequent analysis
and conclusions will not be affected by this modification. As
a result, this modification will not be explicitly stated in the
subsequent proofs and development.
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Equations in (23) for system (1) contain the following
equations by extracting the odd-indexed blocks

H(ρjΦθ; η) = Cn − F−1(ξ2j), j = 0, . . . ,m.

We now show that this subset of equations are sufficient
to determine θ and η uniquely.

Theorem 2. Suppose u ∈ U . Under Assumptions A1-
A3,

ξ = F(C2n(m+1) − H(Φ̃θ, η)) (24)

has a unique solution (θ∗, η∗).

Proof. Consider the first block Φ1θ of Φ̃θ. Since v is full
rank, Φ1 is a full rank matrix. It follows that for any
nonzero θ, Φ1θ 6= 0n. Without loss of generality, suppose
that the i∗th element δ of Φ1θ is nonzero. By construc-

tion of Φ̃, we can extract the following m nonzero ele-

ments from Φ̃θ: the (2nl+ i∗)th element, l = 0, . . . ,m, is

ρlδ. Extracting these rows from the equation H(Φ̃θ, η) =
C2n(m+1) − F−1(ξ) leads to a core problem

H(ρδ, η) = Cn − F−1(ξ̃), (25)

where ρ = [ρ0, ρ1, . . . , ρm]T . Since δ 6= 0 and ρ has dis-
tinct elements, ρδ has distinct elements. By hypothesis,
H(x; η) is jointly identifiable. It follows that (25) has a
unique solution (δ∗, η∗).

From the derived η∗, we denote the first n equations of

H(Φ̃θ, η) = C2n(m+1) − F−1(ξ) by

H(Φθ, η∗) = Cn − F−1(ξ1). (26)

By Assumption A2, H−1(x; η∗) exists (as a function of
x). Since v is full rank, Φ = T ([vn, . . . , v1]) is invert-
ible. As a result, θ∗ = Φ−1H−1(Cn −F−1(ξ1), η∗) is the
unique solution to (26). This completes the proof. 2

A particular choice of the scaling factors ρj is ρj = qj ,
j = 0, 1, . . . ,m for some q 6= 0 and q 6= 1. In this case,
the period of input u can be shortened to n(m+1) under
a slightly different condition.

Let ξ(N) be defined as in (22), with dimension changed
from 2n(m + 1) to n(m + 1). By the strong law of large
numbers, as N → ∞,

ξ(N) → ξ = F(Cn(m+1) − H(Φ′θ, η)) w.p.1 (27)

for some (n(m + 1)) × n matrix Φ′. Partition Φ′ into
(m + 1) submatrices Φ′

i, i = 1, . . . , m + 1, of dimension
n × n:

Φ′ = [(Φ′
1)

T , (Φ′
2)

T , . . . , (Φ′
m+1)

T ]T . (28)

If u ∈ Ue, then it can be directly verified that Φ′
l+1 =

qlΦ′ = qlT (q, [vn, . . . , v1]), l = 0, 1, . . . ,m. We have the
following result, whose proof is similar to that of Theo-
rem 2 and hence is omitted.

Theorem 3. Suppose u ∈ Ue. Under Assumptions A1-
A3,

ξ = F(Cn(m+1) − H(Φ′θ, η)) (29)

has a unique solution (θ∗, η∗).

5.3 Identification algorithms and convergence of esti-
mates

The ξ(N) = [ξ0(N), . . . , ξ2n(m+1)−1(N)]T in (22) has
2n(m + 1) components for a scaled full rank signal
u ∈ U . But there are only n + m unknown para-
meters. Consider Φθ = [δ0, . . . , δn−1]

T . We separate
the components to n groups, for i = 0, . . . , n − 1,
εi(N) = [ξi(N), ξi+2n(N), . . . , ξi+2nm(N)]T . Let δi(N)
and ηi(N) satisfy

εi(N) = [εi
0(N), . . . , εi

m(N)]T

= F(Cm+1 − H(ρδi(N), ηi(N))).
(30)

Then, by (23) we have

εi(N) → εi = F(Cm+1 − H(δiρ, η)). (31)

If δi 6= 0, (31) becomes a core identification problem.
Furthermore, since θ 6= 0n and Φ is full rank, there
exists i∗ such that δi∗ 6= 0. The identification algorithms
include the following steps:

1: Calculate i∗ = argmaxi|δi| to choose nonzero δi∗ .
If there exists j 6= k such that εi

j(N) = εi
k(N),

then let δi(N) = 0 and ηi(N) = 0m. Other-
wise, δi(N) and ηi(N) are solved from (30). Let
i∗(N) = argmaxi|δi(N)|, where “argmax” means the
argument of the maximum.

2: Estimate η from core identification problem. η(N) =
ηi∗(N).

3: Estimate θ. θ(N) = Φ−1H−1(Cn−F−1(ξ∗(N)), η(N)),
where ξ∗(N) = [ξ0(N), ξ1(N), . . . , ξn−1(N)]T .

Theorem 4. Suppose u ∈ U . Under Assumptions A1,
A2, and A3,

θ(N) → θ, η(N) → η w.p.1 as N → ∞. (32)

Proof. By Assumption A2, δi(N) and ηi(N) can be
solved from step 1. By core identification problems, if
δi 6= 0, δi(N) → δi w.p.1 as N → ∞. Hence,

i∗(N) = argmaxi|δi(N)| → i∗ = argmaxi|δi|, w.p.1.
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Since there exists δi 6= 0, we have δi∗ 6= 0. By (21), we
have δ(N) → δi∗ , η(N) → η, as w.p.1 as N → ∞. For
ξ∗(N) = [ξ0(N), ξ1(N), . . . , ξn−1(N)]T , ξ∗(N) → ξ∗ =
F(Cn − H(Φθ, η)) w.p.1, so as N → ∞,

θ(N) = Φ−1H−1(Cn − F−1(ξ∗(N)), η(N))

→ Φ−1H−1(Cn − F−1(ξ∗), η) = θ, w.p.1.

2

Similarly, for an exponentially scaled full rank signal
u ∈ Ue, the identification algorithms can be constructed
and its convergence can be derived similarly.

6 Asymptotic efficiency of the core identifica-
tion algorithms

The identification of the core problem contains the main
idea of the algorithms constructed in Section 5. In this
section, the efficiency of the core identification algo-
rithms will be established by comparing the error vari-
ance with the Cramér-Rao lower bound.

6.1 Asymptotic analysis of empirical measures

Suppose that FN (x) is the N -sample empirical distribu-

tion of the noise d at x ∈ R. Let νN (x) =
√

N(FN (x) −
F (x)).

Lemma 2. Under Assumption A1, the following asser-
tions hold.

a) For any compact subset S ⊂ R, supx∈S |FN (x) −
F (x)| → 0 w.p.1 as N → ∞.

b) νN (·) converges weakly to ν(·), a stretched Brownian
bridge process such that the covariance of ν(·) is given
by Eν(x)ν(y) = min{F (x), F (y)}−F (x)F (y), ∀x, y ∈
R.

Remark 4. In the above, Assertion a) is the well-
known Glivenko-Cantelli Theorem (p. 103, Billings,
1968), whereas b) is a rate of convergence result on the
sampling distribution. Lemma 2 b) indicates that νN (·)
converges to ν(·). By virtue of the Skorohod representa-
tion (p. 230, Kushner & Yin, 2003, with a slight abuse of
notation), we may assume that νN (·) → ν(·) w.p.1 and
the convergence takes place uniformly on any compact
set.

From (19), the i-th component ξ̃i(N) of ξ̃(N) is the N -

sample empirical distribution of d̃(k) at C − H(ρiδ, η),

denote µi(N) =
√

N(ξ̃i(N)− pi). Since d̃(i), i = 1, 2, . . .
are i.i.d., for 0 ≤ i ≤ m,

P{s̃(k(m + 1) + i) = 1} = P{s̃(i) = 1} = pi,

P{s̃(k(m + 1) + i) = 0} = P{s̃(i) = 0} = 1 − pi.

Hence, the expectation Es̃(i) = pi, E(s̃(i)−pi)
2 = pi(1−

pi), and for 0 ≤ i < j ≤ m, E(s̃(i) − pi)(s̃(j) − pj) = 0.

Since d̃(i), i = 1, 2, . . . are i.i.d, for i 6= j, µi(N) and
µj(N) are independent, hence Eµi(N)µj(N) = 0. Also,

E(µi(N))2 = NE(ξ̃i(N) − pi)
2 = E(s̃(i) − pi)

2 =
pi(1 − pi). Let µ(N) = [µ1(N), . . . , µm+1(N)]T . Then,
the above expressions imply that

Eµ(N)µ(N)T → V as N → ∞
= diag(p0(1 − p0), . . . , pm(1 − pm)).

(33)

In view of Lemma 2,

µ(N) ∼ N(0, V ) as N → ∞. (34)

That is, µ(N) converges in distribution to a normal ran-
dom vector with mean 0 and covariance V .

6.2 Asymptotic analysis of identification errors

The following analysis of identification errors is generic,
and hence is described without reference to specific al-
gorithms. For simplicity, for x ∈ R, denote B(x) =
C − F−1(x). Then, by (20) we have

p = [p0, . . . , pm]T = F(Cm+1 − ζ) = B−1(ζ), (35)

where ζ is denoted as ζ = [ζ0, . . . , ζm]T . Let g(ζ) =
[g0(ζ), . . . , gm(ζ)]T = H−1(ζ). Then, ζ(N), τ(N) in
Theorem 1 and τ = [τ0, . . . , τm]T can be written as

ζ(N) = B(ξ̃(N)), τ(N) = g(ζ(N)), τ = g(B(p)). (36)

The estimation error for τ is e(N) = [e0(N), . . . , em(N)]T =
τ(N) − τ.

For τ = g(ζ), the Jacobian matrix is

J(g(ζ)) =
∂g(ζ)

∂ζ
=




∂g0(ζ)

∂ζ0
. . .

∂g0(ζ)

∂ζm
...

. . .
...

∂gm(ζ)

∂ζ0
. . .

∂gm(ζ)

∂ζm




,

and for ζ = H(τ),

J(H(τ)) =
∂H(τ)

∂τ
=




∂h0(τ)

∂τ0
. . .

∂h0(τ)

∂τm
...

. . .
...

∂hm(τ)

∂τ0
. . .

∂hm(τ)

∂τm




.
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Since ζ = H(τ), we have

J(g(ζ))J(H(τ)) =
∂g(ζ)

∂ζ

∂H(τ)

∂τ

=
∂g(H(τ))

∂τ
=

∂τ

∂τ
= Im+1.

As a result, J(g(ζ)) = J(H(τ))−1. From (35), we have
ζi = B(pi), i = 0, 1, . . . ,m. It follows that the Jacobian
matrix for ζ = B(p) is

J(B(p)) = diag(
∂B(p0)

∂p0
, . . . ,

∂B(pm)

∂pm
),

and for p = B−1(ζ),

J(B−1(p)) = diag(
∂B−1(ζ0)

∂ζ0
, . . . ,

∂B−1(ζm)

∂ζm
).

Theorem 5. 5 Under Assumptions A1, A2, and A3,
Nσ2(e(N)) = NEe(N)e(N)T → Λ, as N → ∞, where
Λ = WV WT with W = J(g(ζ))J(B(p)) and V being
given by (33).

Proof. See Appendix A.

6.3 Cramér-Rao lower bound and asymptotic efficiency

Consider N blocks of m + 1 observations for the core
identification problem. We first derive the Cramér-Rao
lower bound based on these N(m+1) observation data.
The Cramér-Rao lower bound is denoted as σ2

CR(N). To
proceed, we first derive a lemma and then Theorem 6
follows.

Lemma 3. The Cramér-Rao lower bound for estimat-

ing the parameter τ , based on observations of {S̃(k)}, is
σ2

CR(N) = Λ/N.

Proof. See Appendix B.

Theorem 6. Under Assumptions A1, A2, and A3,
N [σ2(e(N)) − σ2

CR(N)] → 0 as N → ∞.

Proof. This follows directly from Theorem 5 and
Lemma 3. 2

5 The convergence in Theorem 5 is valid for disturbances
whose probability density functions are in an exponential

class: For some α > 0 and β > 0 , f(x) ≥ βe−αx
2

. This im-
plies that f(x) does not go to zero faster than the exponential
function of x2 as x → ∞. Since all commonly encountered
density functions are in this class, for clarity and simplicity
of presentation, we will not state this condition explicitly.

7 Recursive algorithms and convergence

This section develops a recursive algorithm for estimat-
ing (θ∗, η∗). The essence is to treat the parameters (θ, η)
jointly. Define Θ = [θT , ηT ]T ∈ R

(n+m)×1. For an (n +

m) × 2n(m + 1) matrix M , and for each ξ̃, define

G(Θ, ξ̃) = M [ξ̃ − F(C2n(m+1) − H(Φ̃θ, η)]. (37)

It is easily seen that the purpose of the matrix M is
to make the function under consideration “compatible”
with the dimension of the vector Θ. We use the following
recursive algorithm for parameter estimation

ξ(k + 1) = ξ(k) − 1

k + 1
ξ(k) +

1

k + 1
S(k + 1),

Θ(k + 1) = Θ(k) + βkG(Θ(k), ξ(k)), k = 0, 1, . . . ,
(38)

where S(k + 1) is defined in (15). In the above algo-
rithm, βk is a sequence of step sizes satisfying βk ≥ 0,∑∞

k=1 βk = ∞, βk → 0, and

βk − βk+1

βk
= O(βk) as k → ∞. (39)

Take for instance, βk = 1/kα with 0 < α ≤ 1. Then,
the condition (39) is satisfied. Commonly used step sizes
include βk = O(1/kα) with (1/2) < α ≤ 1.

Associated with (38), consider an ordinary differential
equation (ODE)

Θ̇ = G(Θ), (40)

where G(Θ) = M(ξ−F(C2(m+1)n−H(Φ̃θ, η)). Θ∗ is the
unique stationary point of (40). To proceed, we assume
the following assumption holds.

Assumption A4. The ODE (40) has a unique solution
for each initial condition; Θ∗ = (θ∗, η∗) is an asymp-
totically stable point of (40); H(·) is continuous in its
arguments together with its inverse.

Remark 5. A sufficient condition to ensure the as-
ymptotic stability of (40) can be obtained by lineariz-

ing M [ξ − F(C2n(m+1) − H(Φ̃θ, η))] about its station-
ary point Θ∗. Under this linearization, if the Jacobian

matrix −M(∂F(C2n(m+1)−H(Φ̃θ∗, η∗))/∂Θ) is a stable
matrix (that is, all of its eigenvalues are on the left-hand
side of the complex plane), the required asymptotic sta-
bility follows.

Theorem 7. Under Assumptions A1–A4, ξ(k) → ξ and
Θ(k) → Θ∗ w.p.1 as k → ∞.
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Proof. Note that we have already proved that ξ(k) → ξ
w.p.1. Thus, to obtain the desired result, we need only
to establish the convergence of {Θ(k)}. To this end, we
use the ODE methods to complete the proof.

We will use the basic convergence theorem (Theorem
6.1.1, p. 166 in Kushner & Yin, 2003). Thus, all needed
is to verify the conditions in the aforementioned theo-
rem hold. Note that we do not have a projection now,
but in our recursion F is used and is uniformly bounded.
In view of Assumptions A1–A4, as explained in (Section
6.2, p. 170 of Kushner & Yin, 2003), to verify the condi-
tions in the theorem, we need only show that a “rate of
change” condition (see p. 137 in Kushner & Yin, 2003,
for a definition) is satisfied. Thus, the remaining proof
is to verify this condition.

Define t0 = 0, tk =
∑k−1

i=0 βi, and let m(t) be the unique
value k such that tk ≤ t < tk+1 when t ≥ 0, and set
m(t) = 0 when t < 0. Define the piecewise constant
interpolation as Θ0(t) = Θ(k) for tk ≤ t < tk+1, and
define the shifted sequence by Θk(t) = Θ0(t + tk), t ∈
(−∞,∞). Using the ODE methods, we can show the
sequence of functions Θk(·) converges to the solution of
desired limit ODE. For m = 1, 2, . . ., and a fixed Θ,
denote

Ξ(m) =

m−1∑

i=0

[G(Θ, ξ(i)) − G(Θ)],

and Ξ0 = 0. In view of (37), G(·, ·) is a continuous func-

tion in both variables Θ and ξ̃.

We note that by a partial summation, for any m, j ≥ 0,

m∑

i=j

βi[G(Θ, ξ(i)) − G(Θ)] = βmΞ(m + 1) − βmΞ(j)

+

m−1∑

i=j

[Ξ(i + 1) − Ξ(j)](βi − βi+1).

Taking m = m(t) − 1 and j = 0, and recalling Ξ0 = 0,
we obtain

m(t)−1∑

i=0

βi[G(Θ, ξ(i)) − G(Θ)]

= βm(t)Ξ(m(t)) +

m(t)−2∑

i=0

Ξ(i + 1)
βi − βi+1

βi
βi.

It is readily seen that as k → ∞, βkΞ(k) → 0 w.p.1.

Thus, the asymptotic rate of change of
∑m(t)−1

i=0 βi[G(Θ,

ξi)−G(Θ)] is zero w.p.1. Then by virtue of Theorem 6.1.1
in Kushner and Yin (2003), the limit ODE is precisely

(40). The asymptotic stability of the ODE then leads to
the desired result. 2

Remark 6. Note that in (38), we could include ad-
ditional random noises (representing the measurement
noise and other external noise). The treatment remains
essentially the same. We choose the current setup for
notational simplicity.

8 Illustrative examples

In this section, we illustrate convergence of estimates
from the algorithms developed in this paper. The noise is
gaussian distributed zero mean and known variance, al-
though the algorithms are valid for all distribution func-
tions that satisfy Assumption A1. The identification al-
gorithm of Section 5 is shown in Example 1, and the as-
ymptotic efficiency is also illustrated for the core iden-
tification problem. Example 2 illustrates the recursive
algorithm. The estimates of parameters are shown to be
convergent in both cases.

Example 1. Consider

{
y(k) = H(x(k), η) + d(k) = b0 + ex(k) + d(k),

x(k) = a1u(k − 1) + a2u(k − 2),
(41)

where the noise {d(k)} is a sequence of i.i.d. normal ran-
dom variables with Ed1 = 0, σ2

d = 1. For normal distrib-
ution, the support is (−∞,∞). The output is measured
by a binary-valued sensor with threshold C = 3. The lin-
ear subsystem has order n = 2. The nonlinear function
is parameterized as b0 + ex. The prior information on
b0, and ai, i = 1, 2 is that b0, ai ∈ [0.5, 5]. Suppose the
true values of unknown parameters are θ = [a1, a2] =
[0.7, 0.63] and η = b0 = 1.1.

For n = 2 and m = 1, the input should be 2n(m + 1) =
8−periodic with single period u = [ρ0v, ρ0v, ρ1v, ρ1v].
By Section 4.2, H(x, η) is jointly identifiable with re-
spect to Υ = {(ρ0, ρ1) : ρ0 > 0, ρ1 < 0}. Let v =
[1, 1.2], ρ0 = 1 and ρ1 = −1. Define the block vari-

ables X(j), Y (j), Φ̃(j),D(j) and S(j), in the case of an

8-periodic input, Φ̃(j) = Φ̃ = [ΦT
1 , . . . ,ΦT

4 ]T , where

Φ1 = ρ0Φ = Φ =

[
v2 v1

v1 v2

]
and Φ3 = ρ1Φ. Using (22),

we can construct the algorithms in Section 5.3.

The estimates of θ and η are shown in Fig. 3, where
the errors are measured by the Euclidean norm. The al-
gorithms are simulated for five times. It is shown that
both parameter estimates of the linear and nonlinear
subsystems converge to their true values. In this simula-
tion η(N) demonstrates a higher convergence speed than
θ(N). A possible explanation is that η(N) is updated
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first, and then used to obtain θ(N). As a result, conver-
gence on θ(N) can occur only after the error η(N) − η
is reduced.
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Fig. 3. Joint identification errors of θ and η

To understand reliability of the estimation schemes, the
estimation algorithms are performed 500 times of total
data length 2000 each. Estimation errors for each run
are recorded at N = 500, N = 1000, and N = 2000.
The error distributions are calculated by histograms in
Figure 4, which illustrate improved estimation accuracy
with respect to data length N and are consistent with
the theoretical analysis.

Consider the core identification problem of (41)

Ỹ (l) = H(ρδ, η) + D̃(l) = b0112 + eρδ + D̃(l),

where δ = a0v2 + a1v1 6= 0 and ρ = [ρ0, ρ1]
T . The

convergence of N [σ2(e(N)) − σ2
CR(N)] in Theorem 6 is

shown in Fig. 5, where the error is measured by the
Frobenius norm.

Example 2. We use the same system and inputs as in
Example 1. The recursive algorithms in Section 7 are
now used.

Let ρ1 = 0.5 and Θ = [θT , ηT ]T . For system (41), the
ODE (40) becomes

Θ̇ = M [ξ − F(C8 − b118 − exp(Φ̃θ))].
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Fig. 4. Estimation error distributions
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Fig. 5. Asymptotic efficiency

Choose βk = 1
k and

M = −




1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0


 .

Then the Jacobian matrix can be calculated to be

J(Θ) = −M [∂F(C8 − b118 − exp(Φ̃θ))/∂Θ]

=




−0.660 −0.247 −0.429

−0.242 −0.645 −0.434

−0.210 −0.079 −0.397


 .

The eigenvalues of J(Θ) are [−1.08,−0.402,−0.220],

12



which are all less than 0. As a result, the Jacobin matrix
J(η) is stable.

Let Θ(k) = [θ(k)T , η(k)T ]T be the estimates of
Θ = [θT , ηT ]T . Then the recursive algorithms can
be constructed as follows: First, set βk = 1/k,
Θ(1) = [1.5, 1.5, 1.5]T , and ξ1 = 08. The estimates are
then updated according to (38). Convergence of Θ is
shown in Fig. 6, where the errors are measured by the
Euclidean norm and the algorithms are simulated for
five times.
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Fig. 6. Estimation errors of Θ using recursive algorithms

Remark 7. It is easy to see that when θ(N) → θ and
η(N) → η, the prediction of the output H(Φθ, η) con-
verges to the true output H(Φθ, η). This implies that
one can use the parameter estimation errors as a good
indicator for output prediction errors. For this reason,
the output prediction errors are not plotted here.

9 Concluding remarks

In this paper, identification of Wiener systems with
binary-valued output observations is studied. Unlike
traditional approximate gradient methods or covariance
analysis, we employ the methods of empirical measures.
Under assumptions of known disturbance distribution
function, invertible nonlinearity and joint identifiability,
identification algorithms, convergence properties, and
identification efficiency are derived.

We have assumed that the structure and order of the
linear dynamics and nonlinear function are known. The
issues of unmodelled dynamics (for the linear subsystem
when the system order is higher than the model order)
and model mismatch (for the nonlinear part when the
nonlinear function does not belong to the model class)
are not included in this paper, mainly due to page lim-
itations. Irreducible identification errors due to unmod-
elled dynamics were characterized in Wang, et al (2003).
The impact of model mismatch on identification errors
were presented in Yin, et al (2006).

There are many potential extensions of the results in
this paper. For example, when the sensor threshold
value and/or the noise distribution function are un-
known, combined identification of systems, distribution
functions and sensor thresholds is of practical impor-
tance. Some related results can be found in Wang, et
al (2006a). For other typical nonlinear structures, such
as Hammerstein systems and kernel systems, similar
identification problems can be pursued.

A Appendices

Appendix A: Proof of Theorem 5. Consider

ei(N) = τi(N) − τi = gi(ζ(N)) − gi(ζ), i = 0, . . . ,m,

where ζ(N) = [ζ0(N), . . . , ζm(N)]T , τ(N) = [τ0(N), . . . ,
τm(N)]T , τ and ζ are given by (36) and (7), respectively.
Denote

Ω(N) = [min{ζ0(N), ζ0},max{ζ0(N), ζ0}] × · · ·
×[min{ζm(N), ζm},max{ζm(N), ζm}]

as the Cartesian product (p. 3, Royden, 1988) of sets
[min{ζi(N), ζi},max{ζi(N), ζi}], for i = 0, . . . ,m.

For j = 0, . . . ,m − 1, denote

ζ̃j(N) = [ζ0, . . . , ζj , ζj+1(N), . . . , ζm(N)]T ,

ζ̃−1(N) = [ζ0(N), . . . , ζm(N)]T and ζ̃m(N) = ζ. Then

ei(N) = gi(ζ(N)) − gi(ζ)

=
m−1∑

j=−1

[gi(ζ̃j(N)) − gi(ζ̃j+1(N))].

Since H(·) is continuous, by the well-known mean value
theorem, there exists λij(N) ∈ Ω(N) for j = 0, . . . ,m
such that

gi(ζ̃j(N)) − gi(ζ̃j+1(N)) =
∂gi(λij(N))

∂ζj
(ζj(N) − ζj),

which implies

ei(N) =
m∑

j=0

∂gi(λij(N))

∂ζj
(ζj(N) − ζj)

= [
∂gi(λi0(N))

∂ζ0
, . . . ,

∂gi(λim(N))

∂ζm
](ζ(N) − ζ).

Thus

e(N) = L(N)(ζ(N) − ζ), (A.1)
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where

L(N) =




∂g0(λ00(N))

∂ζ0
. . .

∂g0(λ0m(N))

∂ζm
...

. . .
...

∂gm(λm0(N))

∂ζ0
. . .

∂gm(λmm(N))

∂ζm




.

Since ζi(N) = B(ξ̃i(N)), i = 0, 1, . . . ,m, by the mean
value theorem, there exists κi(N) on the line segment

ξ̃i(N) and pi such that

ζ(N) − ζ = diag(
∂B(κ0(N))

∂p0
, · · · , ∂B(κm(N))

∂pm
)

×(ξ̃(N) − p).
(A.2)

Moreover, as N → ∞, w.p.1,

L(N)diag(
∂B(κ0(N))

∂p0
, · · · , ∂B(κm(N))

∂pm
) → W. (A.3)

Using (A.1), and by virtue of (34), (A.2), and (A.3), as
N → ∞, NEe(N)e(N)T → WV WT = Λ. 2

Appendix B: Proof of Lemma 3. Let x(k) take val-
ues in {0,1}. The likelihood function, which is the joint
distribution of s̃(1), . . . , s̃(N(m+1)), depending on τ =
[τ0, . . . , τm]T = [δ, ηT ]T , is given by

l(N)

= P{s̃(1) = x(1), . . . , s̃(N(m + 1)) = x(N(m + 1)); τ}

=

m∏

k=0

P{s̃(kN + 1) = x(kN + 1),

. . . , s̃(kN + m + 1) = x((k + 1)N); τ}.

Replace x(k)’s by their corresponding random elements
s̃(k)’s, and denote the resulting quantity by l in short.
Then, we have

log l(N)

= log
[ m∏

k=0

pk(τ)Nξ̃k(N)(1 − pk(τ))N(1−ξ̃k(N))
]

= N

m∑

k=0

[ξ̃k(N) log pk(τ) + (1 − ξ̃k(N)) log(1 − pk(τ))],

∂ log l(N)

∂τi
= N

m∑

k=0

(
ξ̃k(N)

pk
− 1 − ξ̃k(N)

1 − pk
)
∂pk

∂ζk

∂ζk

∂τi
,

∂ log l(N)

∂τ
= [

∂ log l(N)

∂τ0
, . . . ,

∂ log l(N)

∂τm
]T .

Furthermore, for i, j = 0, . . . ,m,

∂2 log l(N)

∂τi∂τj
= N

m∑

k=0

[(− ξ̃k(N)

p2
k

− 1 − ξ̃k(N)

(1 − pk)2
)
∂pk

∂τi

∂pk

∂τj

+(
ξ̃k(N)

pk
− 1 − ξ̃k(N)

1 − pk
)

∂2pk

∂τi∂τj
].

As a result,

E
∂2 log l(N)

∂τi∂τj

= NE

m∑

k=0

[(− ξ̃k(N)

p2
k

− 1 − ξ̃k(N)

(1 − pk)2
)
∂pk

∂τi

∂pk

∂τj

+(
ξ̃k(N)

pk
− 1 − ξ̃k(N)

1 − pk
)

∂2pk

∂τi∂τj
]

= −N

m∑

k=0

1

pk(1 − pk)

∂pk

∂τi

∂pk

∂τj

= −N

m∑

k=0

1

pk(1 − pk)
(
∂pk

∂ζk
)2

∂ζk

∂τi

∂ζk

∂τj
,

and

E
∂2 log l(N)

∂τ∂τ
= −NW−1V −1(WT )−1.

The Cramér-Rao lower bound is then given by

σ2
CR(N) = −(E

∂2 log l(N)

∂τ∂τ
)−1 =

WV WT

N
=

Λ

N
.
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