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Recursive Identification for Wiener Model With
Discontinuous Piece-Wise Linear Function

Han-Fu Chen, Fellow, IEEE

Abstract—This paper deals with identification of Wiener systems
with nonlinearity being a discontinuous piece-wise linear function.
Recursive estimation algorithms are proposed to estimate six un-
known parameters contained in the nonlinearity and all unknown
coefficients of the linear subsystem by using the iid Gaussian in-
puts. The estimates are proved to converge to the corresponding
true values with probability one. A numerical example is given to
justify the obtained theoretical results.

Index Terms—Identification, kernel function, strong consis-
tency, Wiener system.

I. INTRODUCTION

THE class of dynamic systems consisting of linear subsys-
tems cascaded with memoryless nonlinear blocks appears

very important for modeling many practical phenomena in engi-
neering, biology, communication, etc. The system with nonlin-
earity prior to the linear subsystem is called the Hammerstein
system, while it is called the Wiener system if the linear sub-
system is followed by a nonlinearity.

For recent years there is an increasing research interest
in identification of Hammerstein and Wiener systems, e.g.,
[1]–[3], [5], [6], [11]–[13], [16], [17], and [19] for Hammer-
stein systems and [4], [9], [10], [18], and [20] for Wiener
systems. For characterizing nonlinearity the previously cited
papers are classified into two classes: One uses the parametric
approach [1], [3], [4], [6], [9], [17]–[20], and the other one uses
the nonparametric approach [2], [5], [10]–[13], [16].

In the parametric approach the nonlinear static block may be
presented as a linear combination of known smooth functions,
e.g., polynomials; it may also be presented as a piecewise-linear
function, which is not necessarily be discontinuous. In such a
representation, identification of the nonlinear block is reduced to
estimating unknown parameters. In the nonparametric approach
there is no structure information about the nonlinearity, and the
nonlinear function may be treated by taking its series expan-
sion. In this case identification is equivalent to estimating un-
known coefficients in the series expansion, although the number
of coefficients in general is infinite. However, the possibly ex-
isting discontinuity in nonlinearity may make the series expan-
sion method unsatisfactory. The other nonparametric method is
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directly to estimate the values of the nonlinear function at as-
signed arguments by using kernel functions.

It is noticed that in most existing results whenever conver-
gence analysis is concerned, only convergence in probability
rather than convergence with probability one is established. Ref-
erences [5], [6] may be among a few exceptions.

For identifying Wiener systems a nonparametric approach
using kernel functions is presented in [10], where for the linear
subsystem the strongly consistent estimates are given for its im-
pulse responses multiplied by an unknown constant , and for
the nonlinear part the estimate given in [10] is proven to con-
verge in probability to the product of an unknown constant
and the argument corresponding to a pre-assigned value of the
nonlinear function. Here the problem is that the nonlinearity in
the system must be invertible and its inverse rather than the func-
tion itself is estimated, and the unknown parameters and re-
main to be defined. In spite of these limitations, the conditions
imposed on the system are quite general, in particular, the linear
part may be any stable ARMA system.

It is pointed out in [1], [18], [19] that the nonlinearity pre-
sented by a piece-wise linear function with preload and dead
zone is of importance in applications. It is clear that such kind
of nonlinear functions may be discontinuous and cannot be es-
timated by the method proposed in [10]. Identification of Ham-
merstein systems with such a nonlinearity is treated in [1], [6],
[19], while for Wiener systems it is dealt with in [18]. In this
case identification is reduced to estimating unknown parame-
ters contained in both linear and nonlinear blocks.

This paper deals with identification of Wiener systems with
nonlinearity being a discontinuous piece-wise linear function.
Recursive estimation algorithms are proposed to estimate all un-
known coefficients in the system by using the iid Gaussian in-
puts. The estimates are proved to converge to the corresponding
true values with probability one.

The rest of the paper is organized as follows. In Section II the
problem is precisely formulated. The coefficients of the nonlin-
earity are partly estimated by using output data in Section III.
Estimating the nonlinear function is completed in Section IV
based on the input–output data by using kernel functions. In fact,
the variance of the output of the linear subsystem is consistently
estimated in this section, but the proof of consistency is placed
in the Appendix. The coefficients of the linear subsystem are es-
timated by the least-squares method [7], [14] in Section V, and
the strong consistency of the estimates is proved there as well.
A numerical example is demonstrated in Section VI, and a few
concluding remarks are given in Section VII.
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Fig. 1. Wiener system.

Fig. 2. Nonlinearity.

II. THE PROBLEM

Consider the Wiener system expressed by the block diagram
shown in Fig. 1.

The nonlinarity of the system is characterized by a static
piece-wise linear function

(1)

which is shown in Fig. 2.
Let the system input and output be connected by

(2)

where

(3)

Denoting by

and

the unknown coefficients in the linear subsystem and the
regressor, respectively, we rewrite the linear subsystem

as

(4)

The problem is to design input signal and on the basis
of the input–output data to recursively estimate all
unknown coefficients in both nonlinear and linear parts of the
system. Moreover, we want the estimates strongly consistent,
i.e., converging to the true values.

The coefficients to be estimated are
for the nonlinear block, and for the linear subsystem.

As to be seen we will take a sequence of iid random variables
to serve as , so is stationary. Let denote the variance
of .

For simplicity of writing, let us denote

(5)

The parameters , and are first
estimated, and at the same time the estimate for

is derived. Estimation for , and are carried
out in a similar way.

With this done the nonlinearity has not been completely de-
fined yet, since is unknown. So, the next step is to estimate

, and the final step is to estimate the coefficient in the linear
subsystem.

III. ESTIMATION FOR , AND

Let us take a sequence of iid Gaussian random variables
to serve as the system input. Then the output of the

linear subsystem is Gaussian stationary and
ergodic [15]. It is clear that

(6)

Recursively, define

(7)

(8)

with arbitrary initial values , and then estimate and

according to the table of

(9)

Lemma 1: For the system described by (1)–(3), if is iid
with , then

(10)

where and are defined by (9).
Proof: By stationarity and ergodicity of is also

stationary and ergodic, and

(11)

Notice that and hence “ ” is equivalent to
“ ”. Consequently

(12)

Since is a continuous and increasing function, from
(11), (12) it follows that a.s.

The proof for is completely similar.
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For estimating , and we recursively calculate

(13)

(14)

(15)

(16)

with arbitrary initial values, and obtain estimates and ,
by solving the following second-order algebraic equations:

(17)

(18)

where , and are given by (7) and (9).
Similarly, and are derived from the following alge-

braic equations:

(19)

(20)

It is worth noting that (17), (18) [or (19), (20)] can easily be
solved with respect to and (or and ). For this it
suffices to replace in (18) with

(21)

derived from (17). As a result, (18) becomes a second-order
algebraic equation with unknown and its solution is

(22)

where .
Similarly, we have

(23)

and

(24)

where .

Lemma 2: Under the conditions of Lemma 1, ,
and given by (13)–(24) are strongly consistent

Proof: By ergodicity of , we have

(25)

and

(26)

On the other hand, we see

(27)

and

(28)

From (27), (28), it follows that

(29)

where

Noticing , by Lemma 1, (25), and (26) we conclude that
a.s. and a.s.

Similar to (28) we have
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and in a similar way we can prove a.s. and
a.s.

Setting

(30)

by Lemmas 1 and 2 we have

(31)

IV. ESTIMATION FOR AND

We have consistently estimated , and (and
, and ). In order to complete estimating we

need to consistently estimate (and ).
For this, we apply the kernel function approach used in [11],

and [12], and also in [5].
Define the kernel function

(32)

where is the system input defined in Section III.
It is clear that

Noticing and is independent of
, we then have

(33)

The expectations in (11), (25), and (26) are time-invariant and
are approximated by using stationarity and ergodicity of .
Although is no longer stationary, from (33) we see that

converges to a constant . The following lemma
asserts that the time average of converges to the
same constant.

Lemma 3: Under the conditions of Lemma 1

(34)

where is given by (33).
The proof is given in the Appendix.
By (5),

. Since we have obtained consistent estimates for
, and , in order to estimate , and

we need only to estimate .
In other words, we need to consistently estimate .
Let us recursively compute

(35)

where is given by (32) and is the system output, and find
the root of the following algebraic equations with respect to :

(36)

Let us check existence and uniqueness of the solution to (36). It
is clear that the following function:

is continuous on and , and its derivative is
positive

It is noticed that with varying from to 0 and from 0 to
increases from to and from to

, respectively. Therefore, has a unique root on ,
and hence by Lemmas 1 and 2 there is a unique root for (36)
on for all sufficiently large k. Thus, a numerical method
like Newton-Raphson method can be applied to find the root.

Denote by the solution of (36), and the estimate for
is defined by

(37)

Define

(38)

(39)
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Theorem 1: For the Wiener system described by (1)–(3), if
the system input is iid and , then
given by (7)–(9), given by (13)–(24), and

given by (35)–(39) are strongly consistent.
Proof: The strong consistency of ,

and is proved in Lemmas 1 and 2.
By Lemma 3, given by (35) converges to defined by

(33). Therefore, , the solution of (36), converges to
a.s., and hence a.s. In other

words, a.s., and the strong consis-
tency of and follows.

V. ESTIMATION OF LINEAR SUBSYSTEM

By Theorem 1, the nonlinearity has consistently been
estimated, it remains to estimate in the linear subsystem.

Define

(40)

where

are the modifications of and and have the same limits as
those for and .

Further, define

and (41)

By Theorem 1, , whenever .
Thus, by (4)

(42)

The unknown is estimated by the least squares algorithm:

(43)

(44)

with arbitrary and .
Theorem 2: Under the conditions of Theorem 1, defined

by (41)–(43) is strongly consistent

Proof: It is well known [7], [14] that the algorithm (43),
(44) is the recursive expression of

(45)

and

By ergodicity, we have

(46)

where .
We now show that is positively definite. For this, it suffices

to show

Noticing that

where , we have

and, hence, .
This implies

(47)

Noticing that

by ergodicity of and a.s., we have

This together with (45)–(47) proves the assertion of the theorem.

VI. NUMERICAL EXAMPLES

We now give a numerical example to demonstrate conver-
gence of the proposed identification algorithms. Matlab is used
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Fig. 3. Estimates for c ; c ; c ; c .

Fig. 4. Estimates for b ; b .

to generate the Gaussian iid random variables and
to realize all computation.

Let the parameters of as shown in Fig. 2 be as follows:

and be of the fourth-order, and let the coefficients in (3)
be such that

and

The parameter in the kernel function (32) should be small,
because otherwise would tend to zero too fast so that the new
data would be negligible. Here, we take .

In order to reduce the influence of the initial values, the pa-
rameters , and are estimated starting from

, and the values of their estimates for are set
to equal zero in the figures.

The simulation results for estimating the unknown parameters
are shown in Figs. 3–6, from which we see that all estimates
asymptotically tend to the true values. This means that the linear

Fig. 5. Estimates for c ; c .

Fig. 6. Estimates for d ; d .

Fig. 7. Estimates for c .

subsystem and the static nonlinearity, i.e., the piecewise linear
function, both are well identified.

We now use a naive FIR approach to fit the input-output data
into a 4th order MA model ignoring the existence of nonlin-
earity. Figs. 7–10 show that the estimates for , and
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Fig. 8. Estimates for c .

Fig. 9. Estimates for c .

Fig. 10. Estimates for c .

are considerably deviated from the corresponding true values.
This means that the static nonlinearity cannot be neglected.

The present paper differs from [18] not only in the estima-
tion methods but also in the models under consideration. The

methods given in these two papers, in general, are not compa-
rable. The difference is listed in the following table:

We take an example computable by both methods given in
[18] and in this paper: A fourth-order MA model to serve as the
linear subsystem and to restrict the nonlinearity to contain only
three parameters. The computational results may not give a fair
comparison of these two methods, because they are designed for
different models and with different purposes.

The estimates by the method of [18] are computed with avail-
able and with initial values

and the algorithm iterates 8 times with sample size 600. The
estimates by the method given in the paper are at
with . For both methods the inputs are taken to
be iid .

The method of [18], consisting in minimizing estimation er-
rors by iterations, is expected to have a better accuracy than the
one given by recursive methods, when the sample size is fixed.
This takes place when estimating the linear part, as can be seen
from the table. However, for estimating the nonlinear part the
table shows a different picture.

VII. CONCLUDING REMARKS

This paper gives strongly consistent estimates for all param-
eters contained in the Wiener system with nonlinearity being
a discontinuous piece-wise linear function with the help of iid
Gaussian inputs. It is worth noting that except the structural as-
sumptions no restrictive conditions are used for convergence of
the estimates. The main effort for proving consistency is devoted
to estimating the variance of not directly observed output of
the linear subsystem based on the system input-output data.

For further research it is of interest to consider more gen-
eral systems, for example, the multidimensional systems and
the general ARMA-type linear subsystems. It is also of interest
to consider the general nonlinear static block with output ob-
servation noise. However, in this case the method used in the
present paper may not be suitable, and the stochastic approxi-
mation method applied in [5] may be more promising.
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APPENDIX

Proof of Lemma 3: Since

(48)

for (34) it suffices to show

(49)

(50)

and

(51)

In what follows by , we denote the -algebra generated by
.

Noticing that

by the convergence theorem for martingale difference sequences
[7], [8], we have

By the Kronecker lemma [7], [8]

(52)

Further, by noticing

(53)

from (52) and (53), we conclude (49).

We now show (50). Since

and , again by the convergence the-
orem for martingale difference sequences [7], [8] we have

From this and the Kronecker lemma, it follows that for (50),
it suffices to prove that

(54)

Noticing

we have

(55)

where , and the -set is ignored be-
cause and, hence,

.
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By ergodicity of , the first term on the right-hand side of
(55) equals

(56)

Let . Then the first term on the right-hand side of
(56) can be estimated as follows:

(57)

as and then .
By a similar treatment, we see that the last term of (56) tends

to as . This combining with
(55), (56) we conclude that for (54) it suffices to show that the
second term in (55) tends to zero as . We estimate this
term as follows:

where the convergence to zero is proved in a way similar to that
done for the first term of (56). Thus, we have shown (50). It
remains to prove (51).

Set and

Noticing that by ergodicity and that

we apply the estimate for weighted sum of martingale difference
sequence [7, Th. 2.8] and find that

(58)

By using (58) it follows that

Therefore, for (51), it suffices to show

(59)

For this we first show that

(60)
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Since by ergodicity a.s.,
for (60) we need only to show

which is equivalent to

(61)

for which it suffices to show

(62)

Proceeding as before, we estimate the left-hand side as follows:

(63)

where on the right-hand side the first term tends to zero as
as can be shown by the treatment similar to that carried out in
(57), while the second term is bounded by

(64)

Thus, we have proved (60), and hence for (59), it is sufficient to
show

or to show

(65)

for which in turn it suffices to show

(66)

Similar to (63) (64) it is shown that

Consequently

Thus, we have proved (66), which in turn proves (65) and (59).
This means that (51) has been proved and the proof of the lemma
is completed.
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