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Strong Consistency of Recursive Identification for
Hammerstein Systems With Discontinuous

Piecewise-Linear Memoryless Block

Han-Fu Chen

Abstract—This note deals with identification of Hammerstein systems
with discontinuous piecewise-linear memoryless block followed by a linear
subsystem. Recursive algorithms are proposed for estimating coefficients
of the linear subsystem and six unknown parameters contained in the non-
linear static block. By taking a sequence of iid random variables with uni-
form distribution to serve as the system input, strong consistency is proved
for all estimates given in the note. The theoretical results are verified by
computer simulation.

Index Terms—Hammerstein system, least squares, parametric approach,
recursive estimation, strong consistency.

I. INTRODUCTION

The system consisting of a static nonlinear block followed by a linear
dynamic system is a useful model for many areas and is called the Ham-
merstein system. Because of the importance of Hammerstein systems
in many control applications, its identification issue has been attracting
many scientists. The block diagram of the Hammerstein system is pre-
sented in Fig. 1.

This is a single-input–single-output (SISO) system with input uk ,
output yk, and the memoryless nonlinearity f( � ). The output yk is ob-
served with additive noise �k; and the observation is zk . For identifying
the nonlinearity, there are parametric [1], [3], [4], [13], [16], [17] and
nonparametric [2], [6], [9]–[12], [15] approaches. In the nonparametric
approach, the unknown function f(u) at an arbitrarily fixed u, where
f( � ) is continuous, may be directly identified [6], [10], [11], but f( � )
may also be identified with the help of its approximation by smooth
functions, e.g., by an approximating polynomial in [12] and by series
expansion in [15].

In the parametric approach the estimates for unknown parameters
are usually obtained by minimizing some loss function formed from
data of fixed size. In this case the estimates are nonrecursive.

As pointed in [1], [17], the discontinuous nonsmooth nonlinearities,
for example, the two-segment piecewise-linear with preloads and dead
zones, are common in engineering practice. The nonlinearity f( � ) con-
sidered in this note is similar to but more general than those discussed in
[1], [17]. To be precise, it is a discontinuous piecewise-linear function
containing six unknown parameters c+; c�; b+; b�; d+; d� expressed
as

f(u) =

c+(u� d+) + b+; u > d+

0; �d� � u � d+

c�(u+ d�)� b�; u < �d�.
(1)

Since a stable autoregression and moving average (ARMA) model
can be approximated by a moving average (MA) model with any
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Fig. 1. Hammerstein system.

accuracy if the order of theMAmodel is sufficiently high, let us assume
the linear subsystem to be given by the MA system as follows:

yk+1 = D(z)vk (2)

where

D(z) = 1 + d1z + � � �+ dqz
q

zyk = yk�1: (3)

The purpose of the note is to recursively estimate the coeffi-
cients [d1; . . . ; dq] of the linear subsystem and six parameters
c+; c�; b+; b�; d+, and d� contained in the nonlinear block on the
basis of the observation fuk; zkg and to prove the strong consistence
of the estimates. The system input fukg is at our disposal.
It is worth noting that because of discontinuity of f( � ) for its identi-

fication many methods consisting in representing f( � ) by a finite com-
bination of continuous functions cannot be used, and the methods pro-
posed in [6] and [10] can neither be applied because in [6] and [10]
f( � ) is estimated only at u where f( � ) is continuous.
The rest of the note is arranged as follows. The estimation algo-

rithms are given in Section II and their convergence to true parameters
is proved in Section III. A numerical example is given in Section IV
and some concluding remarks are included in Section V.

II. RECURSIVE ESTIMATION ALGORITHMS

Before defining estimation algorithms for [d1; . . . ; dq];
c+; c�; b+; b�; d+, and d�, we first list conditions to be used later on.

A1) D(z) is stable, i.e., all roots of D(z) are outside the closed
unit disk.

A2) The upper bound U for d+ and d� is available

0 � d
+
< U and 0 � d

�

< U:

A3) The observation noise f�kg is a sequence of mutually inde-
pendent random variables with E�k = 0 and supk E�

2
k <

1.
As the system input, let us take fukg to be a sequence of mutually

independent and identically distributed (iid) random variables with uni-
form distribution over [�2U; 2U ] and independent of f�kg.

A. Estimation Algorithms for the Linear Subsystem

Since without the strictly positive realness condition on D(z) the
extended least squares (ELS) estimate for [d1; . . . ; dq] may be incon-
sistent [7], in lieu of ELS we apply the stochastic approximation algo-
rithm with expanding truncations [5] to estimate the coefficients of the
linear subsystem.
In order to define the increasing truncations, let fMkg be a sequence

of positive real numbers withMk+1 > Mk; 8k andMk �!
k!1

1. With

arbitrary initial values �0(i); i = 0; 1; . . . ; q, define

�k+1(i) = (�k(i)� ak(�k(i)� ukzk+1+i))

� I[j� (i)�a (� (i)�u z )j�M ] (4)

�k(i) =

k�1

j=1

I[j� (i)�a (� (i)�u z )j>M ]

�0(i) = 0 ak =
1

k
(5)
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where IA denotes the indicator of a random event A with IA = 1 if
! 2 A, and IA = 0, if ! =2 A. Note that �k(i) is used to estimate
�

�
= Eu1v1, and �k(0) for �di; i = 1; . . . ; q, respectively.

B. Estimation Algorithms for c+; h+; c�, and h�

We now estimate c+; c�; h+, and h�, where h+
�
= c+d+�b+; and

h�
�
= c�d� � b�.

In order to avoid the possible division by zero we modify �k(0) as
follows:

�k
�
=

�k(0); if j�k(0)j � 1
k

(sign�k(0))
1
k
; if j�k(0)j < 1

k
.

(6)

Define the estimate dik for di

dik
�
=

�k(i)

�k
: (7)

Further define q � q-matricesD andDk and q-dimensional vector H
as follows:

D
�
=

�d1 1 � � � 0
...

...
...
... 1

�dq 0 0

Dk
�
=

�d1k 1 � � � 0
...

...
...
... 1

�dqk 0 0

HT �
= (1 0 � � � 0): (8)

Recursively define x̂k with an arbitrary initial x̂0

x̂k = Dkx̂k�1 +Hzk+1: (9)

and define the estimate v̂k for vk , the output of the nonlinear block

v̂k
�
= HT x̂k: (10)

Let

w+
k

�
= v̂kI[u �U]: (11)

and

�+
�
= [c+; h+]T �+k

�
= [uk;�1]T I[u �U ]: (12)

Noticing that f(u) = c+u � h+ for u � U or vk = �+T �+k for
uk � U , it is natural to estimate �+ by the least squares (LS) algorithm
[7], [14]

�+k = �+k�1 + a+k P
+
k �

+
k w+

k � �+Tk �+k�1 (13)

P+
k+1 = P+

k � a+k P
+
k �

+
k �

+T
k P+

k

a+k = 1 + �+Tk P+
k �

+
k

�1

: (14)

The estimation for ��
�
= [c�; h�]T is carried out in a similar way.

Defining

w�k
�
= v̂kI[u ��U ] ��k

�
= [uk 1]T I[u ��U ] (15)

we estimate �� by the recursive LS algorithm

��k = ��k�1 + a�k P
�
k ��k w�k � ��Tk ��k�1 (16)

P�k+1 = P�k � a�k P
�
k ��k �

�T
k P�k

a�k = 1+ ��Tk P�k ��k
�1

: (17)

C. Estimates for d+; b+; d�, and b�

Set �w+
0 = 0, and recursively define the time average of fv̂kI[u �0]g

�w+
k =

k � 1

k
�w+
k�1 +

v̂kI[u �0]

k
: (18)

Similar to (6), we modify c+k as follows:

�c+k
�
=

c+k ; if jc+k j �
1
k

(signc+k )
1
k
; if jc+k j <

1
k
.

(19)

Then d+ and b+ are estimated by d+k and b+k , respectively, where

d+k =
h+k � sign(h+k ) h+2k + 4�c+k U(�c+k U � h+k � 2 �w+

k )

�c+k
(20)

and

b+k
�
= c+k d

+
k � h+k : (21)

Similarly, set

w�0 = 0 (22)

and define

�w�k =
k � 1

k
�w�k�1 +

v̂kI[u �0]

k
: (23)

After modifying c�k to �c�k

�c�k
�
=

c�k ; if jc�k j �
1
k

(signc�k )
1
k
; if jc�k j <

1
k

(24)

d� and b� are, respectively, estimated by

d�k =
h�k � sign(h�k )((h

�
k )

2 + 4�c�k U(�c�k U � h�k + 2 �w�k ))

�c�k
(25)

and

b�k
�
= c�k d

�
k � h�k : (26)

III. STRONG CONSISTENCY

We now show that all estimates defined in Section II converge to the
corresponding true values with probability one.

Theorem 1: Assume conditions A1)–A3) hold and � = Eu1v1 6=
0. Then the coefficients of the linear subsystem are strongly consis-
tently estimated by (4)–(7)

�k(0) �!
k!1

� and dik �!
k!1

di a:s:; i = 1; . . . ; q: (27)

Proof: The conclusions of the theorem coincide with those given
in [6, Th. 1]. Notice only that f( � ) in [6] is assumed to be continuous
at uwhere f(u) is estimated, but this continuity is not used there in the
proof of Theorem 1.
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Theorem 2: Under the assumptions of Theorem 1, �+k and��k given
by (13), (14) and (16), (17), respectively, are strongly consistent

�+k �!
k!1

[c+; h+]T a:s: ��k �!
k!1

[c�; h�]T a:s:

Proof: Define

Dni
�
= DnDn�1 . . .Di; for n � i Dji

�
= I; for j < i

(28)

xk = Dxk�1 +Hyk+1 and �̂xk = Dk �̂xk�1 +Hyk+1:

(29)

It is clear that

vk = HTxk (30)

and both x̂k given by (9) and �̂xk given by (29) serve as estimates for
xk .

Denote the estimation error for the output of the nonlinear block by

�k = v̂k � vk: (31)

The proof is essentially based on the following fact, which will also be
used in the proof of Theorem 3

1

n

n

k=1

�kI[u 2B] �!
n!1

0 a:s: for any Borel set B: (32)

We now prove (32). Noticing

x̂k � �̂xk = Dk(x̂k�1 � �̂xk�1) +H�k+1 (33)

and

�̂xk � xk = Dk(�̂xk�1 � xk�1) + (Dk �D)xk�1 (34)

by (10), (28), (31), (33), and (34), we have

�kI[u 2B] = HT x̂kI[u 2B] �HTxkI[u 2B]

= HT (x̂k � �̂xk)I[u 2B] +HT (�̂xk � xk)I[u 2B]

= HTDk1(x̂0 � �̂x0)I[u 2B]

+HT

k

i=1

Dk;i+1H�i+1I[u 2B]

+HTDk1(�̂x0 � x0)I[u 2B]

+HT

k

i=1

Dk;i+1(Di �D)xi�1I[u 2B]: (35)

Since, by Theorem 1, Dk converges to the stable matrix D as k tends
to infinity, there exist constants c > 0 and � 2 (0; 1) such that

kDkjk � c�k�j and kDk�jk � c�k�j 8k � j: (36)

Noticing that fukg is bounded, we find that both fvkg and fykg are
bounded. Therefore, by (35), (36) for (32) it suffices to show

1

n

n

k=1

k

i=1

Dk;i+1H�i+1I[u 2B] �!
n!1

0 a:s: (37)

and

1

n

n

k=1

k

i=1

kDk;i+1(Di �D)k �!
n!1

0 a:s: (38)

The left-hand side of (37) can be written as

1

n

n

k=1

k

i=1

Dk�iH�i+1I[u 2B]

+
1

n

n

k=1

k

i=1

(Dk;i+1 �Dk�i)H�i+1I[u 2B]

=
1

n

n

i=1

n

k=i

Dk�iI[u 2B] H�i+1

+
1

n

n

i=1

n

k=i

(Dk;i+1 �Dk�i)I[u 2B] H�i+1: (39)

Since fukg is independent of f�kg and uniformly bounded, by sta-
bility ofD the sum n

k=iD
k�iI[u 2B] as n tends to infinity a.s. con-

verges to a finite random matrixGi, which is independent of f�kg and
kGik < kD�1kc=(1� �). Then, the first term on the right-hand side
of (39) is estimated as follows:

1

n

n

i=1

n

k=i

Dk�iI[u 2B] H�i+1

=
1

n

n

i=1

GiH�i+1

+
1

n

n

i=1

n

k=i

Dk�iI[u 2B] �Gi H�i+1

�!
n!1

0 a:s: (40)

where on the right-hand side the first term tends to zero as n!1 by
[7, Th. 2.8], while the last term tends to zero because

lim sup
n!1

1

n

n

i=1

j�i+1j <1 and
n

k=i

Dk�iI[u 2B] �Gi �!
n!1

0:

We now estimate the last term in (39) as follows:

1

n

n

i=1

n

k=i

(Dk;i+1 �Dk�i)I[u 2B] H�i+1

=
1

n

n

i=1

n

k=i

(Dk;i+1 �Dk�i)I[u 2B] H�i+1

+
1

n

n

i=n +1

i+n

k=i

(Dk;i+1 �Dk�i)I[u 2B] H�i+1

+
1

n

n

i=n +1

n

k=i+n +1

(Dk;i+1 �Dk�i)I[u 2B] H�i+1:

(41)

For a given � > 0, we first take a sufficiently large n2 so that the norm
of the last term in (41) is less than �=3. This is possible because

n

k+i+n +1

(Dk;i+1 �Dk�i) �
2c�n

1� �
:

For this n2 byDk �!
k!1

D we can take a large n1 such that the norm of

the last but one term in (41) is less than �=3. Finally, for large enough
n the norm of the first term on the right-hand side of (41) is also less
than �=3 by (36) and the boundedness of fukg. This verifies (37).
For (38), it suffices to note that by (36) the left-hand side of (38) is

bounded by

1

n

n

i=1

1 +

n

k=i

c�k�i kDi �Dk

� 1 +
c

1� �

1

n

n

i=1

kDi �Dk �!
n!1

0

since Di �!
i!1

D.

Thus, we have proved (37) and (38) and, hence, (32).
The LS estimate �+k given by (13) and (14) equals

�+k =

k

i=1

�+i �
+T
i

�1 k

i=1

�+i w
+
i (42)

whenever the matrix k

i=1 �
+
i �

+T
i is nonsingular [7], [14].
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Fig. 2. Estimates for , and .

Since fukg is iid with uniform distribution over [�2U; 2U ], by the
strong law of large numbers [8], we have

1

k

k

i=1

�
+
i �

+T
i =

1

k

k

i=1

u2i �ui
�ui 1

I[u �U ]

�!
k!1

7
12
U2 � 3

8
U

� 3
8
U 1

4

a:s: (43)

which is nondegenerate.
Noticing that vkI[u �U ] = �+T �+

k
, by (11), (32) we have

w
+
k
= �

+T
�
+
k
+ �kI[u �U ]: (44)

Consequently, from (42) and (43) by (32), we have

�
+
k
=

k

i=1

�
+
i �

+T
i

�1
k

i=1

�
+
i �

+T
i �

+ + �iI[u �U ]

�!
k!1

�
+ a:s:

The proof for the strong consistency of ��
k
is completely the same as

that for �+
k
.

Theorem 3: Under the conditions of Theorem 1 d+
k
; b+

k
; d�

k
, and b�

k

given by (20), (21), (25), and (26) are strongly consistent

d
+
k
�!
k!1

d
+a:s: b

+
k
�!
k!1

b
+ a:s:

d
�
k
�!
k!1

d
� a:s: and b

�
k
�!
k!1

b
�a:s:

Proof: It is clear that

EvkI[u �0] =
1

4U

2U

d

(c+u� h
+)du

= �
c+

8U
d
+2 +

h+

4U
d
+ +

c+U

2
�

h+

2

and from here it follows that

d
+ =

1
c

h+ � sign(h+) h+2 + 4c+U

� c+U � h+ � 2EvkI[u �0] ; if jc+j > 0

4U
h

h

2
+EvkI[u �0] ; if c+ = 0

(45)

where “�sign(h+)” is taken to make d+ to be continuous with respect
to c+ as c+ ! 0 for a fixed EvkI[u �0].
From (18) and (32), it follows that

�w+
k

=
1

k

k

i=1

v̂iI[u �0] =
1

k

k

i=1

(vi + �i)I[u �0]

�!
k!1

Ev1I[u �0] a:s: (46)

By Theorem 2 and (19), we have �c+
k
�!
k!1

c
+ a.s. and h+

k
�!
k!1

h
+ a.s.

This combining with (46) leads to that d+
k
given by (20) tends to d+

a.s. as k ! 1 whenever c+ is zero or not.
Since b+ = c+d+ � h+; b+

k
given by (21) converges to b+ a.s. as

k ! 1.
Finally, noticing that

EvkI[u �0] =
1

4U

�d

�2U

(c�u+ h
�)du

=
c�(d�)2

8U
�

h�d�

4U
�

c�U

2
+

h�

2
and

d
� =

1
c

h� � sign(h�) (h�)2 + 4c�U

� c�U � h� + 2EvkI[u �0] ; if jc�j > 0

4U
h

h

2
� EvkI[u �0] ; if c� = 0

we conclude that d�
k
given by (25) is strongly consistent, while strong

consistency of b�
k
is obvious.
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Fig. 3. Estimates for , and .

Fig. 4. Estimates for , and .

IV. NUMERICAL EXAMPLE

To numerically demonstrate the strong consistency of the algorithms
proposed in Section III, let the parameters appearing in (1), (3) of the
system described by Fig. 1 take the following values:

d1 = 0:75 d2 = 0:6 d3 = 0:45

d
+
= 1 c

+
= 0:7 b

+
= 1:6

d
�

= 1:2 c
�

= 0:6 b
�

= 1:7 and U = 2:
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It is direct to check that the polynomial

D(z) = 1 + 0:75z + 0:6z2 + 0:45z3

has roots equal to 4=3 and �i 5=3. Hence, it is stable, but the SPR
condition required for strong consistency of ELS [7] is not satisfied
since D�1(ei�) +D�1(e�i�) < 1 at � = 0.

Let uk be uniformly distributed over [�4; 4], and let �k 2 N (0; 1).
Matlab is used to generate the iid sequences fukg and f�kg, and to
carry out the recursive estimation according to (4), (5), (13), (14), (16),
(17), (20), (21), and (25), (26).

Fig. 2 demonstrates the estimates for d1; d2, and d3, while Figs. 3
and 4 give estimates for c+; b+; d+, and c�; b�; d�, respectively. In
all figures, the solid lines represent the true values and the dotted lines
are their estimates. It is seen that all estimates converge to their true
values, i.e., the computer simulation justifies the theoretical conclusion
concerning strong consistency.

V. CONCLUDING REMARKS

The recursive identification algorithms are proposed in the note for
Hammerstein systems with memoryless nonlinearity being a discon-
tinuous piecewise-linear function containing six unknown parameters.
The strong consistency is proved for estimates for the unknown param-
eters contained in the static nonlinearity and for the coefficients of the
linear subsystem as well.

For further research, it is of interest to consider the multidimensional
systems, to weaken conditions imposed on the linear subsystem, and to
remove the availability assumption of an upper boundU for d+ and d�.
It is important to connect the proposed identification method with con-
trol task, i.e., to solve adaptive control problems for systems described
in the note.
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Identification of IIR Wiener Systems With Spline
Nonlinearities That Have Variable Knots

Matt C. Hughes and David T. Westwick

Abstract—An algorithm is developed for the identification ofWiener sys-
tems, linear dynamic elements followed by static nonlinearities. In this case,
the linear element is modeled using a recursive digital filter, while the static
nonlinearity is represented by a spline of arbitrary but fixed degree. The
primary contribution in this note is the use of variable knot splines, which
allow for the use of splines with relatively few knot points, in the context of
Wiener system identification. The model output is shown to be nonlinear
in the filter parameters and in the knot points, but linear in the remaining
spline parameters. Thus, a separable least squares algorithm is used to esti-
mate the model parameters. Monte-Carlo simulations are used to compare
the performance of the algorithm identifying models with linear and cubic
spline nonlinearities, with a similar technique using polynomial nonlinear-
ities.

Index Terms—Block structured models, cubic spline, Levenberg–Mar-
quardt algorithm, nonlinear system identification, separable least squares
optimization.

I. INTRODUCTION

The Wiener system is a block oriented model consisting of a dy-
namic linear system followed by a memoryless nonlinearity, as shown
in Fig. 1. Unlike more general models, such as a Volterra series or a
multiple layer neural network, theWiener model can represent systems
with high-order nonlinearities using relatively few parameters, making
it suitable for control applications.
The Wiener system is well suited to modeling linear processes mea-

sured by nonlinear sensors whose dynamics, if any, are orders of mag-
nitude faster than the process being measured. As such, the Wiener
model has found applications in the process control industry. Wiener
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