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Abstract In time series analysis, almost all existing results are derived for the case
where the driven noise {wy,} in the MA part is with bounded variance (or conditional vari-
ance). In contrast to this, the paper discusses how to identify coefficients in a multidi-
mensional ARMA process with fixed orders, but in its MA part the conditional moment
E(|lwnl/® | Fa-1), 8 > 2 is possible to grow up at a rate of a power of logn. The well-
known stochastic gradient (SG) algorithm is applied to estimating the matrix coefficients of
the ARMA process, and the reasonable conditions are given 1o guarantee the estimate to
be strongly consistent.
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1 Introduction

Data coming from various systems such as social-economical, bio-medical, engineer-
ing, and ecological, are often modelled by an m-dimensional ARMA process with m > 1:

A(z)y, = C(2)w,, y; =0, i<0, (1)
where
Az) =T+ A1z+---+A,2°2 and C(z)=I+Ciz+---+C.2" (2)

are matrix polynomials in backward-shift operator 2 : zy,, = y,,.; with unknown coeffi-

cients
A

0" =[-Ay,---,—A,,C,---,C.l. (3)
The orders p and r of polynomials A(z) and C'(z) are assumed to be available or set to be
the upper bounds for the true ones. The problem discussed here is to recursively estimate

6 on the basis of data {y,, £ =0,1,--- }.

By the classical approach in time series analysis, the second empirical moments for
{y,} are first calculated, and the Yule-Walker equations are derived at the same time.
The Yule-Walker equations in fact form a system of nonlinear algebraic equations with
respect to 8, and the solution to the system leads to an estimate for 6. By this approach,
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Recursive identification for multidimensional ARMA processes with increasing variances 597

it is necessary to assume that {y } and {w;} both are stationary and ergodic with some
additional assumptions on {wy} such as being iid or a martingale difference sequence
(mds). There exists a vast of literature on this approach, e.g. refs. [1-5] among others. As
a matter of fact, these conditions implicitly imply that A(z) is stable, by which it is meant
that det A(z) # 0, Vz : Iz\ < 1. To be precise, in ref. [6] it is shown that for a wide

class of {w, }, limsup = Z |yx|l* < oo a.s. is equivalent to stability of A(z), whatever

T— 00 k=1

C(z) is. When det A(z) has no root in |2| < 1 but possibly has roots on the unit circle,
the consistent estimate for @ is also possible to be obtained as shown in ref. [7].

It is clear that the estimation accuracy for all nonrecursive estimation methods depends
on the sample size. For example, the estimate obtained by the Yule-Walker equation ap-
proach depends on the second empirical moments whose accuracy in turn depends on the
sample size. Besides, the numerical solution to the nonlinear algebraic equations may give
rise to additional errors.

The other approach to estimate 8 is the recursive way by which the estimate for @ is
updated after receiving a new y,,. For the one-dimensional AR process, i.e. C(z2) = 1,
the least squares (LS) estimate gives consistent estimate for € if {wy } is an mds satisfying
the following conditionS'

liminf B(w?_; | ) >0, and sup E(jwny1]” ‘.7-"”) < 00 a.s. (4)

00

for some 3 > 218,

For multidimentional ARMAX systems, the consistent coefficient estimates can also be
derived in a recursive way by using a diminishing excitation technique!®!. For this, among
other conditions it should be assumed that

. 1
lim inf — /\mm Zwkwk >0, and hmsupEZHwkHz<oo a.s., (H)

nmee nmee k=1

where and hereafter )\min(./-l) denotes the minimum eigenvalue of a matrix A. It is worth
noting that for mds the condition sup E(||w, ||’ | Fn_1) < oo with 3 > 2 implies that
Tt

lim sup = E |wy||* < oc.

n— o0 k=1

In both recursive and nonrecursive approaches mentioned above, the variance in the
(1

time average sense — » . ||wg||? of {wy} is not allowed to grow up unboundedly.
k=1

When modelling a sequence of data received in real time, if it is observed that
T

= 5" |lyxll* grows up as fast as (logn)®, s > 0, then the Yule-Walker equation ap-

pro;ch fails to work. One may still want to apply a recursive estimation method to fit the

data into an ARMA process with the standard assumption on {wy } that {wy} is an mds

satisfying lowever, such a data sequence does not fit any ARMA process. This can
n

be explained as follows. If A(2) is stable, then as n — 00, = > |lyk||? is bounded as
1

www.scichina.com



598 Science in China Ser. F Information Sciences 2005 Vol.48 No.5 596—614

shown in ref. [6], and hence a stable ARMA process does not fit the data. If det A(z)

is unstable with some root inside the open unit disk, then = 3 ||y || will exponentially
1

n

diverge to infinity. If det A(z) has no explosive root but may have roots on the unit circle,

then = Y [|yx||*> may still grow up as fast as a polynomial as n — oo. Therefore, any
1
unstable A(z) describes a too fast growth rate of - Y ||yx||* compared with that for the
1

data. Thus, we conclude that when modelling data with slowly increasing = > ||yx||* by
k=1
an ARMA process, the standard condition (4) is inappropriate.

In this paper, we discuss modelling by using ARMA processes with increasing

n
= 3" |lwg||* as n — oo. The rest of the paper is organized as follows. In section 2,
k=1
some properties of ARMA processes with increasing variances are pointed out. The esti-

mation algorithm and the behavior of the estimation error for wy, are presented 1n section
3. The convergence of the estimate is characterized in terms of transition matrices in sec-
tion 4. The main result on strong consistency of 8,, is given in section 5. Some concluding
remarks are given in the last section.

In ref. [9], a detailed analysis is given for the algorithm to be defined in section 3 for
the bounded variance case. Techniques developed there are used here with modifications
to cope with unbounded variances of {wy }.

2 ARMA processes with increasing variances ‘

T
L] 1 2 L] L]
As discussed above when - k§~:1 |lyx|l* slowly grows up as n — 00, it is reasonable
to model the data as an ARMA process with increasing variance, by which we mean

n

= 3" |lwg||* — oo as n — o0. Let us first characterize such kind of ARMA processes.
k=1
For this we introduce the following conditions.

Al. {w,,F,}is an mds with

e ~ A
lim inf = Ay, w] | =A>0 as. 6
im inf ;’w w; >0 as (6)
and s , . .
sup(logn)™ "7 E(||w,||’ | Fac1) =1 <00 as. (7)
4 -
for some 3 > 2and d € (5,1 .

A2. A(z) is stable.

Remark 1. It is worth noting at once that the condition (7) means that
B(1-3)

E(||lw,|l? I Fn_1) is allowed to diverge to infinity at a rate of (logn)~ 2. By the
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Lyapunov inequality it follows that

1 1 3 3
(logn)1 5 (”wn“2 ,fn——l) RS SUP (logn)1 y; [ (||'wnHﬁ I Fo_ )] < CF.

Therefore condition (7) implies that
E(|lwa|? | Fr-1) <cf (logn)'=°, n>1, (8)

which means that the second conditional moments of {w,, } are also allowed to diverge to
Infinity.

sup

In what follows, by ¢;, ¢« = 1,2, ---, we always denote positive values that are con-
stants for any fixed sample (w).

The following lemma shows that with A1 and A2 satisfied how fast + ) ||yx||* and
k=1

= 3" ||lw]|* may diverge for an ARMA process with increasing variances.
Lemma l. Assume Al and A2 hold. Then

Y " [lwil|* = O(n(logn)'~°) a.s. (9)
and -

Z”yk”z (n(logn)'™°) as. (10)

Proof. Since 3 > 2, by the C,.- and Lyapunov inequalities it follows that

L [(”wk||2 E(|lwk|* | Fr- 1)) | Fi— 1] <27 B ([lwkll® | Fu-t). (11)
Then by (7) and (11) we have

8 I

- erk 2 — E(|lw|l® | Fr-1) 5w Ci
ZE ” k(log k)1“_5l < 22 Z-—g o0 Aa.s. (12)

1

B B, : . : :
Since (E(” ”ﬁ”gll f;”‘l)) is nondecreasing with respect to 3, without loss of generality

we may assume — < 2 in ref. [7], and by the convergence theorem for mds!'%, see also

ref. [9]

< X a.s.

i lwell? — E(lwell? | Fe-1)
k=2
From this by the Kronecker lemma it follows that

1 o JJwill? = Efllwel® | Feo]
2 (log k)13 n—oo.

which incorporating with (8) implies that

lwel*
Z(logk)l 7 = O0m);
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From here (9) follows, and by A2 (9) implies (10). Q.E.D.
Let R
900 — [yn y " 7yg—p+1a wg: IR wg—r—l-l]T

which is called the stochastic regressor, since by (1) and (2) y,+1 can be written in a
regression form:

Ynty1l = QT(PH + Wn41- (13)

Let
S0 2 0,07 | I 14
n ;‘Pk@k DT ( )

The behavior of S° will play an important role in the coefficient estimation. However,
because of involving wyg, - - - , Wr_r41, the regressor ¢} and hence the matrix S> is un-
available. We need the following condition.

A3. A(z) and C(2) have no common left factor, and [A, : C,] is of row-full-rank.

Lemma 2. Assume Al and A3 hold. Then
1
liminf =Apin(S°) 2 ¢, >0 as. (15)

n—o0

Proof. The analysis method is similar to that for Theorem 6.3 in ref. [9], but here
some modifications should be made to cope with the situation of increasing variance. We
present the complete proof for readability.

Let
fn 2 (det A(2))¢°, det A(z) =ao+a1z+- - +as2°, s<mp.

It 1s clear that

rmn (Z fkfk) — |:}::?|1£1 Z(fok)Q “‘<*- (8 + 1) ZaiAmin(Sg),

and for (15) it suffices to show

llﬂtl;}lf Amln (Z fkfk ) (16)

Assume the converse: There exists a sequence {7 } of unit vectors ||7x|| = 1 such that
Tt}
2
Lim 7 (Z (1., £) ) = 0. (17)
=1
Let
I [ E&)T, . (p-l)T /8(0)’1“ ‘_ /3(7'——1)T]
where o!7) ang ,B(j) both are m-dimensional, and let
7
H, (z) = z ol 2" AdjA(2)C(z) + Z BT 2 det A(2) I, = Z R 2,
1=0 t=0 =
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From (1) we have

det A(2)y, = AdjA(z)C(2)w,,

and hence
fn = det A(2)p
= [det A(2)y,,, - ,det A(2)y,_,,1,det A(z)w,,--- ,det A(z)wE_TH]T
= [(AdjA(2)C(2)wn)" ;- , (A A(2)C(2)Wn—p11)", (det A(z)wn)", -,
(det A(z)wp—rt1)" ] '
Thus,
ny fi = {ag)k)Ade(z)C(z) +---+ agi_l)sz“lAde(z)C(z)

+ B80T det A(2)I + - -+ + B VT2 " det A(z I}'wt
= H,, (2)w; = Z AT w,

By the converse assumption

ME ng

lim n, Z(nnkf )2 = hm n; ' Z (R w; + -+ + thTwz-_”)z =0. (18)

k—»00
i=1 =1
Paying attention to (8) we find that Theorem 2.8 in ref. [9] can be applied to the mds
{ oo }, and hence for 7 > s we have

(logn) 2

hO)T Z w;_;wr  h)

Rorvd i—s'"ng
<IRDIA N S (logli — 1)) T (logli — 8)) F* — 21
i>j\ s (log(i—j))T
W;—s
(log(z—-s))

N ki
< W2 [H o ((Zaog i)l-ﬂlww) )
1=1

< [P [[[h22 |0 ((log ma)*='my) (19)
where v € (£, 1), and for the last inequality the estimate (9) of Lemma 1 is invoked.

Thus, by (6) and (19) we have

D _(hTwi oo+ AT wi )’

i=1
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Nk
s 3O LT 4o (] 3 3 K7 S )|
i=1 j=0 s=0 =1

S#j

> Ang Z llh(g)uz Z Ilh(3)||20 ’T(log nk)m(l—é))

> X1+ o(m)) 3 KD 20

3...._..
Combining (18) and (20) leads to
||h(a)n ——0, 7=0,1,---,pu,

k— 00

and hence

an (Z) k_) 0.

Since {7, } is bounded, there is a convergent subsequence tending to a unit vector

[a(O)T’ oo oPDT gOT ,ﬁ(r-l)T]T
Since H,, (2) — 0, we have
P— r—1
Y oW AdjA(Z)C(z) + ) B2 det A(2)I = 0. (21)
t=0 1=0

Since A(z) and C(z) have no common left factor, there are M (z) and /N (z) of com-
patible dimensions such that

A(2)M(z) + C(2)N(z) = I. {22)
From (21) and (22) it follows that
~1

Y a7 AdjA(z) = ZaW ' Adj A(2)(A(z)M(z) + C(2)N(z2))

=0
r—1
= det A(z (Z o\ 2 M (2 Z ﬂ(i)TziN(z))

1={)

= det A(2) Z uT 2
=0

Multiplying the above expression respectively by A(z) and C'(z) from the left, we derive

p—1 v
Z o\IT 2 = Z 19T 2 A(2) (23)

1=0 1=0

r—1 %
- Z BOT ¢ = Z pOT 2 C(2). (24)
i=0 i=0

and

Since [A, : C,] is of row-full-rank, uMT[A, : C,] # 0if u¥ # 0. Assume pVT A, #
0. Then the right-hand side of (23) is with order greater than or equal to p, while the
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left-hand side of (23) is a polynomial of order less than or equal to p — 1. This is impos-
sible. Therefore, 19T A, = 0, and we must have u¥7C, # 0. From (24) by the same

argument we arrive at a contradiction. This means that u* = 0,7 = 0,1,..., v, which
in turn imply that

a¥ =0 i=0,....p—-1, BY =0 j=0,...,7r—1.
This contradicts with that [@(®7, ..., oP= DT gOT 3(r=UT|T 5 a unit vector. The

contradiction proves (15).
3 Estimation algorithm
As mentioned in the last section, the stochastic regressor ¢ in the regression model
(13) is not available, and hence it cannot be used 1n the estimation algorithm.
Denote by ;. an estimate for wy. Then ¢? is estimated by .
AT .

A
(;bn — [yg: yg--la e ayg——-p—l—lﬂ Wy ?wn—r—l—l]T' (25)

We estimate & by the following recursive algorithm:

k
Or+1 = O - O (Yrs1 —Or d)”, =1+ &, a>0. (26)
=1

From (13) it is seen that the estimate w; for w;, 1s naturally to be defined as

Wk = Yr — Op_1Pk—1. (27)
With an arbitrary # and initial values ¢; = 0, 7 < 0, (25), (26) and (27) form a recursive
algorithm estimating 6 called as the stochastic gradient (SG) algorithm. ‘

Noticing that ¢ (yi+1 — 607 dr)? is the gradient of ||yx+1 — 67 @& ||*, we find that the SG
algorithm, roughly speaking, is a stochastic approximation algorithm!!!! for minimizing

me;m E”yk—l—l - 9T¢’kHQa

o 1
k=1

Let (i and ¢>§ denote the estimation errors for w;_; and ¢, respectively, i.e.

A .
(r = Wie1 — Wey1 = Yrp1 — 0% Pr — Wiy1, (28)

b5 = dr — 0. (29)

For the convergence analysis of the algorithm (25)—(27), the behavior of (;, 1s of crucial
importance, because the estimation error for the regressor ¢, is totally determined by

{Ck }-

The property formulated in the following lemma was established in ref. [12] for the
case where {w), } is of bounded variance. We now show that this property remains true for
{wy } being of increasing variance.

We need the following condition.
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Ad4. (C(z) is strictly positive real (SPR), i.e. C(e**) + CT(e™**) > 0,V € [0, 27).

Remark 2. From A4 it is clear that there is a small number & > 0 such that C(e™*) +

Ct(e™*) > al, VA € [0,2n]. Thus, A4 implies that there exists « > 0 such that
C(z) — o1 is SPR. From now on, it is assumed that o in (26) is selected in such a way.

Lemma 3. Assume Al, A3, and A4 hold. Then for {{;.} given by (28)

00 2
Z Jai < 00 as. (30)
Tk
k=0
Proof. Let the estimation error produced by (25)—(27) be denoted by
0, =6 — 6.
From (26), (28) it follows that
. - g
Ori1 = Ok 'r': (G + wiyr)- (31)

Notice that

C(2)¢ = C(2)(Yr+1 — Ok P — Wrt1)
= Yp+1 — C(2)wr41 + (C(2) — I) (Y1 — 9 Pr) — 91{%
=0T¢y — 0L bk = b b (32)

By Remark 2, o in (26) is selected such that C'(z) — 51 is SPR, by which there is a
constant €; > 0 such that

n _ 1 ‘
t, = 2032(? (9@3' al ;Q)Q) 20, to=0. (33)
1=1
By (31) it follows that
t T 9T
tr9k+19k+1 i ot —tr@}f@k —2a(§f+w{+l)ﬂ
Tk Tk
2H¢’k”2 tk+1
G |+
— ~ 2a[¢T (0 — 2(1 + €
— trag’gk [Ck ( k¢k 2( 1)Ck]
Tk
o (1 + e1)]| G |? 2awk+19T¢> o || s H 1Ck |
Tk T Tk
2”‘35’ ”2 2 20‘2”‘35 ”2 Trt1
w
7'.:; Hwk+1” Tk Ck k+1 .
. ¢ 2 2 2quw¥, .07
it fe el 2kl
2”¢’k”2 2 2a2||¢’kH2 T
"’"k | wit1]] r2 Chk Wrt1-
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Summing up both sides of the above inequality from 0 to n + 1 and assuming r_; = 1,
we arrive at

.-...-,‘_{I ~

thi1 | Q€ G2
+ = Z -

'n

<tr6r 0y + to — 2 *+19T¢"' 2§ 1190 Nk
0T lo C“Z o Z > | Wi |

r.
— ¢ i=0 ?

4 20v> Z “‘;b ”2C Wis 1 o’ 61 Z nCsz (34)

By Lemma 2 it follows that there is c3 > 0 a.s. such that

Y il >en n.
1=1

Then we have

> 1+ Z ly:1|? > ean. (35)
1

We now estimate the sums at the right-hand side of (34).

By (7) and Theorem 2. 8 in ref. [9] we have
Z Wit 0T ¢i(log(i + 1))
~ log(i + 1)) 7 ri

((Z 167 ¢ log(i + 1)) )
((Z”C"‘Hg) ) for v € (%1) (36)

where (32), (35) are invoked for the last equality.

By (7) and the convergence theorem for the following martingale difterence sequence
lwell® E(lwgl]*[Fr-1)
(log k)1—4 (logk)1-¢

we see that

S 12 (wisal? = Bl I717) 37)

is convergent on the set where

= H‘;bt”z(lo N1—6 38
> — 5 (logi)'™* < 0. (38)
=2 Z

Notice that for any p € (0, 1)
oo T3 o0
(Al ‘odr d
1+N Z/ }-H—t = Z/ xltu L rltu < 0. (39)
L z i=2 Y Ti—1
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Further, by (8) and (38) it follows that

ol :
Z 2 (lwis1]l%|Fi) < o0 as.
i=0 ¢

This together with convergence of (37) implies

Z H¢'z

Again, applying Theorem 2.8 of ref. [9] we see that by (35) for v € (3, 1)

Zuqs P T ((Z”% I - 1og(i + 1)) )
) O(( uczu‘z)) @1)

Since y € (3, 1), the terms on the right-hand sides of (36) and (41) are either bounded
or dominated by a quantity of o( Z “C‘” ) Therefore, by (36), (40), and (41) 1t follows
=0
that the right-hand side of (34) 1s bounded.

Thus, (34) yields that {||0|| } is bounded and (30) is correct.

'i+1”2 < OO a.s. (40)

I*

4 Auxiliary results

We are planning to prove strong consistency of 8, defined in the last section. For this
we first establish some auxiliary results.

From (13), (26), and (29) it follows that
~ ~ o
Orr1 = Ok fk (¢2T9 + wg-f-l — ‘i’gek)

gl

= b — 22 (67 - 9118 — o700 + wl )
aék@f

k
Tk Tk Tk

(T
VR ST (42)

k+1-

= (I

T
From here it is seen that (1 Wjj’“ ) serving as the transition matrix plays an important

role in the behavior of {6;}.

Let us recursively define ®(n + 1,7) and ®°(n + 1,7) forn+1 > 4,7 =0,1,... as
follows:

T

®(n+1,1) = (I aqin(ﬁ”) ®(n,i), ®(,1) =1, (43)
0 40T

W+ 1) = (-5 ) 8mi), #0)=1 @b
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where

re=1+> [ (45)

1=1

The following lemma shows the properties of ®(n, ) and its relationship with &° (n,1).

Lemma 4. 1) For the algebraic recurrence (43) the following inequalities take place:

2
ZH(I) 7,0 ¢3” (p—l—*r), (46)
o
2
o
i1) Assume Al, A3, and A4 hold. Then
S° 2 {w:®%n,0) — 0} C S £ {w: ®(n,0) —— 0} (48)

with possible exception on a set of probability zero.

Proof. The assertion i) 1s derived by a purely algebraic manipulation without using
any assumption on the system. For 1ts proof we refer to Lemma 4.2 of ref. [9].

In 11) all conditions A1, A3, and A4 are used for deriving (30). With (30) having been
established, the proof can be carried out along the lines of the proof for Theorem 4.4 in
ref. [9].

Theorem 1. Assume Al1-A4 hold. Then the estimate 8, given by the SG algorfthm
with an arbitrary initial value converges to & on S defined by (48) with possible exception
on a set of probability zero.

Proof. The proof is modified from that for Theorem 4.3 of ref. [9] by taking notice
of increasing variances of {w;, }.

By (42) and (43) it follows that

én—l—l:q)(n+150)é0+az¢(n+1aj+1)¢3¢3 0 — O!Z‘I’(ﬂ—!—].]—l—].) J+1

7.
3=0 J =0

(49)
For proving the theorem it suffices to show that the last two terms of (49) a.s. converge to
zeroon S.

For the second term on the right-hand side of (49) we have

(T N Pres
Z@(n—l—l ]—I—l)%é < Z@(n+1,j+1)¢3fj
.7 =0 7 ||
2 G112
| 3 u@(n+13+1)¢3||) 5 19 u) 50
j=N+1 T =N+1
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For any fixed IV, the first term on the right-hand side of (50) tends to zero on S as n — 00,
while the last term may be arbitrarily small if V is sufficiently large by (47) and Lemma 3.
Therefore, the second term on the right-hand side of (49) tends to zero a.s. on S.

We now consider the last term of (49).

Let v > =. Then by (35) there is ¢4 € (0, 1) such that
(log4)'~° Cq

T?? < T'?:l-]-“ (51)
for some ¢4 > 0 a.s., where 0 is the one figured in Al. By (39), (51) it follows that
2
Z ”(;3 “ (logi)'™° < oo as. (52)

Then, by the convergence theorem for martingale difference sequences!®'%, (8) and
(52) yield that

o0 i T | 1
Z ? w;+1 <00 as. Vy>-. (53)
—~ T 2
This implies
2y d oy 020 as 54
=1

Defining Q | 20, we find that

Z@n+13+1)-w3+1 =1 ®(n+1,j+1)(Q; — Qj-1)
=1 T3 3=0
=1Qn — ) [®(n+ 1,5 +1) - ®(n+1,7)]Q,-

Qn — Z[‘I’(n +1,j+1) - ®(n+1,7)]Q

+Z[‘I’(n+lj+1) @(n+1j]z¢’¢’wz+1

=0 1=3

: : ¢U¢§“ a}‘ﬁﬂngl
Qn—Q+2(n+1,00Q+a) &(n+1,j+1) - > L,
=0 iy T

and hence on S

:
7}1_}1130{ Z@ n+ 1, J+1)—w3+1

j=0 "3
" ¢J ¢T s ¢zwz+1
_ a ;@(n+1,3+1) - ; - = 0. (55)
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If we can show that the second term on the left-hand side of (55) tends to zero as
n — 00, then so does its first term. This combining with convergence of (50) to zero
leads to that all terms on the right-hand side of (49) tend to zero a.s. on § and thus
completes the proot of the theorem.

In order to show

- . ¢j ‘;b:f = (?f’iwg;q
Z ®(n+1,5+1) - Z | 7= 0 ason S, (56)
3=0 1=J
we first prove that for any given €; > 0, NV can be selected large enough such that
v — szw? :
Tj Z ?"i+1 < €3, \7,3 = N, (57)

where v € (0, %) is arbitrarily fixed. Set

00 T
_ PiW; 41
UTL - 1]—p

T
which is finite by (53).
We find that
v — (rb’&w? 7, = 1
i 2 'r.+1 =715 D_(0i = oisr)
1= ’ i=N L
ey 1 1
=Ty ’)"?V ;Uz+1 (T: Tf+1)
<H0N”+’Fvi||0' 1”(1 1 ) » 0 a.s.
S N ' 1+ T';) T;+1 N oo
i=N
By (57) we now have
- ¢’J¢’T — q-/)tw 1
P 1, 1 s
D Bnt L+ D7D
3=N
n T
zwz
=) @(n+1,j+1) ¢ii JZ¢ -
=N
|®(n+ 1,5 + 1)¢,] 2%
Z T Z 1+2V ’
j=N J =N i

which tends to zero as n — o0 then N — 00 by (47) and (39). From this, the convergence
(56) is derived and at the same time the proof is completed.

5 Main result

We now in a position to prove our main result.

Theorem 2.  Assume A1-A4 hold. Let 8, be given by the SG algorithm (25)-(27).
Then 6, > @ a.s.

n—00
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Proof. By Lemma 4 and Theorem 1 it suffices to show that
®°(n,0) +0 as.,

n— o

where ®°(n, 0) is recursively given by (44), (45).

Step 1. Let us first explain the idea of the proof. For this we define

s, é nz—: 7.0( ||¢0“2 (58)

log Tz 1)1 e’

E-n(]

where € is taken such that: % < € < 0 and ng possibly depending on sample ng is large
enough so that log 70 > 1. The selection of ¢ is possible since § € (£, 1] as required in

Al. We now show that s, » 00 a.s. By Lemma 1
ry = O(n(log n)l_‘s). (59)
By (15) there is c; > 0 a.s. such that
Tp—1 = CsT (60)

for all sufficiently large n.

Combining (59), (60) leads to
r0 < cord_, (logrd_,) (61)

for some cg > 0 a.s. and all large enough n. Assume 7y in (58) is large enough so that
both (60), (61) hold for n > ng. Then

T

) >iz |7 || ____2/
" g ro_i(logry_;)?~? logrt )20

;/o a:(loga: )2—e—9
- T o)~ lorr) T o s,

since € + ¢ > % > 1. This means that there is ¢» > 0 a.s. such that

Sny1 = Cr(log 'ro)e”"l — 00 a.s. (62)
From s, » OO 1t 1s clear that
m(t) 2 max{m : 8,, < t} (63)

is finite for any ¢ € (0, co) and diverges to infinity as t — oc.

Therefore, for ®°(n, 0) » 0 it is equivalent to show ®°(m(t),0) ——

n— o0 t— 00
The idea of proving ®°(n, 0) » 0 consists in showing
|8°(m(no + kd)),m(no + (k — 1)d))[| <1 —ck™™ (64)

withc > 0 and 0 < a7 < 1, where d > 1 is fixed.

If this is QOIIC, then |
lim [|2°(n,0)|| = lm [|®°(m(no + nd),0)]]
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< lim [|9°(m(no, 0))]| | ] 119°(m(no + kd), m(no + (k — 1)d))|

k=1
< lim JJ( —ck™) =0,
and the proof of the theorem will be completed.

Thus, our goal is to prove (64).

Step 2. We now show that there is ¢g > 0 a.s. such that
m(ﬂa—l—kd)—-l

0 OT 3 —€
E %(% >cgk e ILVk=1,2,... (65)
i=m(no+(k—1)d) T2

From the definition (63), for m(t) it is seen that
t < Sm(t)+1 < Sm(t) + 1 £ { —l" ]. (66)

Noticing that by (61) for large ng
logr? < 2logry_, Vn > ny,
and hence

13 11° 2
’"’\“22 ;(logr;)t—e 22/0 :z:(l(::ga:)1 ¢ S (log'rn )%

=T 1—NnQ

we find that

-

> (St k-1d)",  (6)

€
log r'?n(ng+(k—l)d) 2 (§3m(no+(k-—1)d)+1)
where for the last inequality (66) is invoked.

For large enough ng from (15) we see that SY > <1, Vi > no, and from (59), (60)
r? | < coi(logr? )12, Vi > ny. Consequently, for i — 1 > ngy we have
S; 1 C2
> 1. 68
7 7 Senllogrl )0 (68)
Thus, summing by parts and taking notice of (68) we have
m{no+kd)—1 ¢?¢?T - m(ng+kd)—1 SO _ SO

2 2, T

t=m(no+{(k—1)d) T i=m(no+(k—1)d) ¢
0 0 m(no+kd)—1
_ Smnotkd)=1 _ Sm(no+(k=1)d)~1 3 50 ok
0 0 ! 1—1 0,.0
m(ng+kd)—1 m(ng—l-(k:—l)d) s=m(no+(k—1)d)+1 ¢ 4—1
m(np+kd)—1 0112
Co [fox]
> — 1 Z e
269 t=m(no+(k—1)d)+1 T Iog rz__l)
Co
~ T | d—e€
! 2Cg (log rm(ng+(k--1)d))
n{no+kd)—1

3 ] H¢’0H2 I
(log Tz 1)1“6

i=m(no+(k—1)d)+1 T2
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d—e
d—e

€ e
>~ I+ o [-2—(7?,0 1+ (k — l)d)] (d =11 > csk™ =T (69)

with cg > 0 a.s., where for the last but one inequality, (67) and the definitions (58), (63)
are used.

Co

Step 3. We now prove (64). Let p; be the largest eigenvalue of ®°7 (m(ny +
kd),m(ng +- (k — 1)d))(1)0 (m(no + kd),m(no -+ (k — 1)d)) and Lm(no+(k—1)d) the
corresponding unit eigenvector.

For i € [m(ng + (k — 1)d), m(ng + kd) — 1| recursively define z; by
o 2T
Tiy1 = (I to - ) I;. (70)

r;

Then, we have
TE o kd) Tm(nokd) = Tmimor -1y 20" (M0 + kd), m(no + (k — 1)d))-
. @O(m(no -+ kd), m(no -+ (k - 1)d))xm(ng+(k-—1)d)

= Pk T (g4 (k—1)d) Ern(nio+(k=1)d) = Pk- (71)
Further, from (70) we have
#0907
T Tip1 < T} T; — QT] ———1T;,
s
which, by summing up both sides, leads to
m(no+kd)—1 0T o
|p;" x|
x Z -0 S Hmm(no+(fc—-1)d)”2 — “"w’"m(no+1rcaz)”2 =1-p, (72)
i=m(no+(k—1)d) ¢

where for the last equality, (71) 1s used.
From (70) by (72) it follows that for ¢ € [m(ng + (k — 1)d), m(ng + kd) — 1] we have

t—1 ¢0¢0T$ ‘

i J
HCE?; — xm(no-l-(k-—-l)d)” = & § : - T‘Q
j=m(no+(k—1)d) J

m(no+kd)—1

< a(log ng(no+kd)-1)—;_ Z
i=m(no+(k—1)d)

I 10
(1) (logr? )T (D)3

< Va(log Ty ikgy-1) T L+ ) (L—pr)s. (73)

By (62) and (66) we see

o 1 o
log T m(no+kd)~1 S (6_78?’?’?»(710+kd) S

T

Cr

Combinir 3) and (74) yields

H.’E?; o xm(ﬂo-l-(k-l)d)” < \/a (

1—e¢

3{e+o—1) . .
) (1+d)F (L - po)?

Ng + kd
C7
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< cmkﬂ;ﬁl) (1— pk)% for some c;¢ > 0 a.s. (75)

By (65) incorporating with (75) we arrive at

d—¢
Cgk €

m{no+kd)—1 (;52 t;bgT
0

T
S Ton(no+(k—1)d) Z

7 (mm(no+(k—1)d) — T+ xj)
j=m{ng+{(k—1)d) J

m(no+kd)—1
° 18;1I°

0 1—e¢
< (]'Og Tm(no-{-kd)—l) Z ?‘O(log TQ)]__C
j=m(no+(k—1)d) J J

(no+kd)—1
e T ]

+ (log'f‘o (n —I—kd)-—l) 2 l—e¢ 1
e jzm(ngz—l—(k—l)d) (’T‘?)% (log TQ—I)T (T.?) 2

which, by (72), (74), and the Schwarz inequality, leads to

ok T (1 — py)?

sk ™ < en kT TEETT (1 — pp)Y2 4 10k T3 (1 — py )Y/
< c1zk? (FFD(1 — py)1/2 (76)
for some ci; > 0, ¢y190 > 0, ¢35 > 0 as.
From (76) it follows that

— A 3(1 — E) 2(5 — 6)
< — 1 —
Pr & 1 Cl4k ; 1 . 5 1 € ?

Since § € (£,1] and € € [£, 8), we have 26(1 — 6) + (1 — €) > 0, which implies that
«; > 0. The inequality av; < 1 is equivalent to
l—¢ 1-90 1
5§ ' e 2
which is clearly held for 6 > % and € > %. Consequently, we have
0<a; 1. (78)

c14 >0, as. (77)

Since ||®°(m(ng + kd), m(ne + (k — 1)d)|| = pZ, we have

|®°(m(ng + kd), m(ng + (k — 1)d)|| < (1 — crak™)% < 1 C;“ ko,

This verifies (64) with ¢ = =* and at the same time completes the proof of the theorem.

6 Concluding remarks

The strong consistency of the coefficient estimate given by the SG algorithm is proved
for multidimensional ARMA processes with increasing vartances. We now give a few
comments on the reasonability of the imposed conditions and on the possible further re-

search.

Condition A1 describes what kind of increasing variances is considered in the paper. If
we find that the variance of a time series slowly increases, then probably to impose A2
is necessary, because any instability of A(z) will give rise to a quick (at least at a rate of
polynomial) divergence of the second moment of the data.
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In A3 the condition on having no common left factor for A(z) and C(z) is natural for

identifiability of coefficients, but the row-full-rank condition of [A,, : C,] is rather tech-
nical, because the orders p and r are assumed to be the upper bounds of the true ones.

Concerning A4, it is a strong condition on C'(z) and may be weakened, e.g. to a stability
condition. This is for further research. Besides, it is of interest to consider other estimation
methods, e.g. the extended least squares (ELS) algorithm. It 1s not clear if the ELS works
for the case considered in the paper.
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