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Perturbation Realization, Potentials, and
Sensitivity Analysis of Markov Processes

Xi-Ren Cao,Fellow, IEEE, and Han-Fu Chen,Fellow, IEEE

Abstract—Two fundamental concepts and quantities, realiza-
tion factors and performance potentials, are introduced for
Markov processes. The relations among these two quantities and
the group inverse of the infinitesimal generator are studied. It is
shown that the sensitivity of the steady-state performance with
respect to the change of the infinitesimal generator can be easily
calculated by using either of these three quantities and that
these quantities can be estimated by analyzing a single sample
path of a Markov process. Based on these results, algorithms
for estimating performance sensitivities on a single sample
path of a Markov process can be proposed. The potentials
in this paper are defined through realization factors and are
shown to be the same as those defined by Poisson equations.
The results provide a uniform framework of perturbation
realization for infinitesimal perturbation analysis (IPA) and
non-IPA approaches to the sensitivity analysis of steady-state
performance; they also provide a theoretical background for the
PA algorithms developed in recent years.

Index Terms—Perturbation analysis, Poisson equations, sample-
path analysis.

I. INTRODUCTION

T HE SINGLE sample path-based performance sensitivity
analysis of discrete-event system has become an increas-

ingly important area. The main objective of this research area
is to obtain performance sensitivities with respect to system
parameters by analyzing a single sample path of a discrete-
event system. The area is promising because of its practical
usefulness. First, the single sample path-based techniques
save a great amount of computation in simulation for system
optimization; second and perhaps more importantly, they can
be applied to on-line performance optimization of real world
systems where changing the values of parameters is infeasible.

One of the major research fields in this area is perturbation
analysis (PA), which takes a dynamic point of view in studying
the system behavior. The history of the development of PA
resembles those of many other scientific fields; after an initial
period of exploration of the common nature of some practical
problems, a mathematical formulation was developed [5]. With
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this formulation, it became clear that the simple PA algorithms
developed earlier (called infinitesimal perturbation analysis
(IPA), hereafter) in fact yield “sample derivatives”; although
these sample derivatives are unbiased or strongly consistent
for many systems, it is not true for many others [6], [28].
This insight has set up two fundamental research directions:
to establish IPA theory, including the proof of convergence
of IPA algorithms for various discrete-event systems, and
to develop new algorithms for systems where IPA does not
work well. After the hard work of many researchers in more
than one decade, fundamental results have been obtained for
IPA [29], [22], [7], [12], [14], [47]–[49], and many useful
techniques that apply to different cases where IPA fails have
been proposed [1], [13], [17], [19], [21], [25], [30], [31], [50].
By and large, the theory for IPA is relatively mature, but the
works beyond IPA still seem exploratory; a general approach
that is simple and applies to a wide class of problems has yet
to be developed.

Besides the fundamental works in developing theory and
algorithms, PA has been successfully applied in a number of
practical engineering problems [2], [11], [26], [51], [52].

In this paper, we study the sensitivity of the steady-state
performance of a Markov process with respect to its in-
finitesimal generator. It is well known that IPA yields an
estimate of zero for the performance sensitivity (see, e.g., [6],
[28], and [29]), which is apparently useless. Our goal is to
develop a simple approach that provides accurate estimates.
The approach is widely applicable because a Markov process is
the most fundamental model for many discrete-event systems.
The work was motivated by some recent developments in the
area [16], [17], [9]; it may be also related to [19] and [20].
We first introduce a concept,perturbation realization, and
define a quantity,realization factor, for studying the effect
of state changes in a Markov process on its performance.
This can be considered as an extension of the perturbation
realization theory [7] from infinitesimal perturbations to finite
perturbations. We prove that under some minor conditions the
realization factors can be determined uniquely by a Lyapunov
equation. Next, using the realization factors, we introduce the
concept ofpotentialsand establish some simple relationships
among potentials, realization factors, and the group inverse
of the infinitesimal generator. We show that the performance
sensitivity can be calculated by using any of these three
equivalent quantities. Furthermore, we develop some formulas
that allow us to estimate these quantities conveniently with a
single sample path of the Markov process. Finally, we show
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that the potentials defined in this paper through realization
factors are in fact the same as those defined by Poisson
equations in the literature (see, e.g., [24], [27], [34], [35],
[37]–[39], and [41]). The results for Markov chains are briefly
stated as special cases.

We emphasize the main contributions of this paper with the
following points.

1) We developed some algorithms for finite perturbations
which are almost as simple as IPA yet yield very
accurate estimates. As shown in (16) and (17), the
performance derivatives can be calculated by using
potentials or realization factors; from (5) and (25), these
quantities can be estimated based on a single sample
path. The calculation involved in the estimation is only
addition for Markov chains and linear integration for
Markov processes; thus, the computations required are
comparable to IPA estimates. The detailed algorithms
are worked out in another paper [10].

Since a Markov process is the basic model for many
discrete-event systems, it is conceivable that similar al-
gorithms can be developed for many other systems such
as queueing networks and generalized semi-Markov pro-
cesses. Thus, the results may be viewed as one important
step toward a solution to the long standing problem:
finding a simple and generally applicable technique that
provides accurate estimates for performance sensitivities
when IPA fails.

2) The concept of perturbation realization, which was suc-
cessfully used in IPA to study the sensitivity of steady-
state performance, is extended beyond IPA, where a
small change in parameter may result in a big change
in the system’s sample paths. This provides a unified
framework for both IPA and non-IPA approaches (see the
discussion after Theorem 4 for an explanation). It also
provides a theoretical background for the PA algorithms
developed earlier in [16], [17], [19], and [20].

3) The results contribute to the modern Markov theory
by relating the potentials (with discount rate )
to perturbation realization and the single sample path-
based sensitivity analysis. Theorem 3 provides a nice
interpretation of the solutions to Poisson equations, and
our results relate the potentials to realization factors
that can be interpreted as the fundamental elements of
sensitivity analysis.

We discuss Markov processes with a countable state space;
the performance functions are not required to be bounded.
In Section II, the sensitivity analysis problem is described.
In Section III, the realization factor is defined, the Lyapunov
equation that uniquely determines realization factors is de-
rived, and two theorems for estimating the realization factors
are proved. In Section IV, the group inverse of a matrix is first
reviewed, the concept of performance potentials are formally
introduced by using realization factors, and the sensitivity for-
mula is obtained by using group inverse, realization factors, or
performance potentials. The relations among these quantities
and the Poisson equation are discussed. In Section V, similar

results are listed for Markov chains. The paper concludes with
a short discussion in Section VI.

II. THE PROBLEM

Consider a positive recurrent and irreducible (ergodic)
Markov process with a countable state
space and an infinitesimal generator
where We assume that
are bounded, i.e., there is such that for all

Thus, the Markov process is regular. (The condition
that are bounded is stronger than regularity. For
example, the M/M/ queue is regular, but the corresponding

are not bounded.) Denote by the row
vector representing the steady-state probabilities of the Markov
process. Let where the prime represents the
transpose. We have and

(1)

Let with being the mean first passage time
from state to state A Markov process is said to bestrong
ergodic, if is finite [34]. In Section IV, we require the
Markov process be strong ergodic.

We first normalize the Markov process (see, e.g., [18]). Let
, i.e., for all Then

We have That is, the Markov
process with infinitesimal generator has the same steady-
state probability as the Markov process with infinitesimal
generator Therefore, without loss of generality, we can
assume that is normalized, i.e., for all

Let where represents the
space of real numbers. is called aperformance function.
The performance measure of the Markov process is defined
as its expected value

where is a column vector, and de-
notes the expectation with respect to the steady-state measure

(We use the same notation for both a function and a
vector, with the th component .)

Now suppose that changes to
with being a small real number, and
Let be the Markov process with infinitesimal generator

For to be an infinitesimal generator we require that
if It is clear that with this requirement

is also irreducible. Let be the vector
of steady-state probabilities of

The performance measure of is We shall
study the derivative of in the direction of defined as

Similar definitions will be used for other quantities, e.g.,
and
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III. T HE REALIZATION MATRIX

The concept of perturbation realization plays an important
role in sensitivity analysis. The essential idea is that the effect
of a parameter change can be decomposed into a sum of the
effects of many individual changes on a sample path; the
average effect of each individual change can be measured by
a quantity called the realization factor. To apply this approach
to study the sensitivity of a performance measure with respect
to the infinitesimal generator, we first study the effect of the
system changing from one state to another.

Recall that is a Markov process with
infinitesimal generator and state space Let

be another Markov process, independent of with the
same state spaceand the same infinitesimal generatorThe
initial states of these two processes are, however, different.
Denote them by Define

Then is a Markov process
with state space

We use superscripts and to indicate the initial
states of the processes. Thus, the three Markov processes are
denoted as and respectively. We use the
same superscripts to represent quantities associated with these
Markov processes. Thus,

and For
any , i.e., is the

-field generated by and Furthermore, and
are independent. Let be the expectations with respect

to and be the probability measure on
is regular, irreducible, and positive recurrent since

and are. Thus, the first passage time from any state
to any other state has a finite mean. Let
Define

is a stopping time of At reaches
for the first time and is finite. After the two
processes and are still independent; however, because

they will behave similarly probabilistically
afterwards. is just the coupling time of the two inde-
pendent Markov processes with different initial distributions.
Readers are referred to [38] for a survey of the relevant results
about coupling.

Throughout the paper, we assume thatis absolutely
integrable, i.e.,

(2)

With this assumption and some minor conditions, we can prove
(see Appendix A)

(3)

Because is a continuous function of
on (see, e.g., [15, eq. 8.4.8]), from (2) and (3),

is bounded in

Definition 1:
is called a perturbation realization factor; the matrix

is called a realization matrix.
It is proved in Appendix C that for all

(this can also be proved by using the concept of-regularity
defined in [37] and [38]). From the definition, we have

or equivalently, is skew-symmetric

(4)

measures the effect of a change from stateto state
on the performance of the system. In the terminology of

perturbation analysis, we say that at the system state is
perturbed from to and at the perturbation is
realizedby the system (i.e., the perturbed sample path returns
back to the original one). This is similar to the realization of
infinitesimal perturbations in discrete-event systems [7].
can be written in a more convenient form as is given in the
following theorem.

Theorem 1: If then we have

From the point of view of coupling, the result is very
obvious. We give an intuitive explanation. First we have

Next, because by the Markov property,

we have Thus,

Since means compared with
the equation in Theorem 1, we need to prove that the order
of “E” and are exchangeable. A rigorous proof is
provided in Appendix D.

To estimate ’s by using two independent sample paths is
not convenient. The next theorem provides an easier approach
for estimating ’s based on a single sample path. We define
the first passage time from stateto state as follows:

is a stopping time of and is independent of
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Theorem 2: If and condition (3) holds, we
have

(5)

The proof involves many technical details so we again put
it in the Appendix. It is well known that the state probability
distribution at converges to as goes to infinity. The
condition required in the theorem is equivalent to
being uniformly integrable. In particular, this condition holds
when is bounded.

Equation (5) has an interesting explanation: the mean effect
of a state change fromto on the performance measure (the
realization factor ) equals the mean of the accumulation of
the deviation of from its mean in the transition
period from state to state From (5) and (4), we have

From Theorem 1, we have

(6)

This property is similar to that of the potential energy in
physics. In view of this, we may pick up any integer
and any real number and define a quantity, , called the
performance potential, or simply thepotential, of state as
follows:

and (7)

From (6), we can prove

for all

i.e., a realization factor is the difference of two potentials.
More about potentials will be discussed in the next subsection.
Now we have

(8)

where is called apotential vector. Let

Theorem 3: Suppose and (3) holds. The real-
ization matrix satisfies the Lyapunov equation

(9)

where The solution is unique in if the
Markov process is strong ergodic.

Proof: Let and
Then we have (see, e.g., [15]).

Thus, which is the th entry
of Let

(10)

and Then from Theorem 1

The integrand on the right-hand side of (10) equals the
difference between theth and th entries of
Therefore

Using we obtain

(11)

The last two terms are finite by (2) and (3); thus, all the
terms in (11) are meaningful. Note that ,
i.e., and

Letting in (11), we get

Next, we prove the uniqueness of the solution. Suppose
that (9) has two matrix solutions, and

Let with
Then Because we

have If the Markov process is strong
ergodic, then the group inverse of (see the next section),

, exists [34]. Multiplying both sides of this equation on the
left with and using and we
have Therefore

where is a constant. From this, we have
, i.e.,
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IV. POTENTIALS AND PERFORMANCE SENSITIVITIES

We first briefly review the concept of group inverse of a
matrix. Since one eigenvalue of is zero, its regular inverse
does not exist. We have to use a generalized inverse, i.e.,
the “group inverse” [36], which is related to thefundamental
matrix Reference [33] proved that if is of a
finite dimension, then its regular inverse exists. For matrices
with an infinite dimension, we have a similar result. We state
it as a lemma (for a proof, see [34, Th. 33]).

Lemma 1: If the Markov process is strong ergodic, then

(12)

where
Since we assume that the Markov process is normalized, i.e.,

for all we have
for all The matrix

is called thegroup inverseof [36]. In this paper, whenever
appears, we always assume that the Markov process is

strong ergodic. It is straightforward to prove

(13)

Theorem 4: The derivative of the steady-state probability is

(14)

Furthermore, if and the results of
all operators are finite, then the performance derivative can
be calculated by using the group inverse of or the
realization matrix or the potential vector

(15)

(16)

(17)

Proof: From and
we get

Multiplying both sides on the right with and using
we get

(18)

In the above equation, is bounded and converges.
Letting we get

(19)

Now we prove that is continuous, i.e.,
It is equivalent to show

(20)

Consider a Banach space of all bounded real sequences
The norm

of is defined as The norm of an operator
on is defined as Any infinite

dimensional matrix can be considered as an
operator on with norm

Let be any point in and and
Then, and

We have Note
that and are bounded (see [34] for the
boundedness of It can also be proved by observing
that is a linear, bounded, continuous, and one-to-one
onto mapping and applying the Banach theorem [43]). Thus,
we have This holds for any point in the Banach
space; thus (20) follows. From (19), we obtain

Equation (15) follows directly from (14) and the assumption

Now we prove

(21)

First, multiplying both sides of (9) on the right with and
using and we have

That is, Multiplying both sides on the left
with we get This directly
leads to (21), because and

for all

Finally, substituting (8) into (16) and using and
we obtain (17).

Remarks:

1) If the Markov process is finite, (14) can be simply
proved by differentiating in the direction of
Reference [44] studied the sensitivity problem of finite
Markov chains with discrete time by using the inverse
of the fundamental matrix.

2) If in particular if the Markov process
is finite, then multiplying both sides of (18) on the
right by and letting immediately leads to

and other assumptions are
not needed.

3) The supremum norm is used in the proof of Theorem 4.
If we assume that is continuous in a stronger norm,
i.e., the -norm defined in [38], then the interchange-
ability condition used in the theorem,

can be relaxed. See Appendix B for de-
tails. However, it seems difficult to determine which of
these two conditions is weaker.
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Theorem 4 has an intuitive explanation by using the concept
of realization. To see this, let us consider a simplified case
where and for or
For this case, (16) becomes

(22)

Thus, equals the expected value of
Next, (22) can be derived using the following intuitive

argument. Observe a sample path Among
the transitions on the sample path, the Markov chainvisits
state on the average, times. Because the probability that
a transition from to changes to a transition fromto is

on the sample path there are, on the average, times
when state changes to state Let Each
time the state changes fromto changes, on the average,
by the amount (see Definition 1). In addition, because
can be chosen arbitrarily small and is always finite, the
probability of two changes from to occurring within
state transitions is of order and is hence negligible. This
implies that the effect of each change can be treated separately.
Therefore, the total change ofdue to the change of is

Finally

which is the same as (22). Roughly speaking, this means that
the performance derivative equals the product of the effect
of one jump from state to and the probability of such a
jump. This is exactly the same as the performance realization
theory in IPA of queueing networks (see [7]). Thus, both IPA
and non-IPA approaches can be explained by using the same
concept.

As defined in the last section, is theperformance potential
of state and is called thepotential vector. From the
definition in (7), if is a potential vector, then for any constant

is also a potential vector. We say that is
equivalent to This is similar to the potential energy in
physics, where any point can be picked up as a reference
point, and the only important thing is the difference between
the potentials of any two points. This feature is reflected in
(17): the derivative depends only on the differences
of the components of because in (17) can be
replaced by with any constant

All performance potentials satisfy the following Poisson
equation:

(23)

This shows that the potential defined through realization
factors is in fact the same as the one defined by the Poisson
equation. In other words, our analysis reveals the connection
between the classical potential theory and PA, in particular,
the concept of the realization factor. There is a great deal of
literature on the Poisson equation, and many results, such as
the existence, the uniqueness (modulo an additive constant),
and the finiteness, and many other properties of its solution
exist (see, e.g., [15], [24], [27], [34], [35], and [37]). Espe-
cially, the concept of -regularity was used in [24] to prove
the uniqueness of the solution; [24] also gives an interpretation
of the solution to the Poisson equation that is similar to (7).

From Theorem 1, we have

(24)

This shows that although the values of
are infinite, their differences are finite and can be used as
realization factors. In particular, for any finite

(25)

can be used as estimates of the potentials. It is clear that for
any potential vector we have

Let Then

To relate to we need the
following lemma.

Lemma 2:

(26)

Proof: First, we have

From this, using we get

(27)

Furthermore, we can easily prove that
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Multiplying both sides of (27) on the left with we obtain
(26).

Let if and if Then from
(26), the th entry of is

The potentials are

In modern Markov theory [15], the potentialof a function
is defined as

Interestingly, our definition of potential is consistent with this
classic definition with Our results about realization and
sensitivity analysis provide a new explanation and application
for the Markov potential theory with

V. MARKOV CHAINS

The results about Markov processes can be easily translated
into those for Markov chains. Consider an irreducible and
aperiodic Markov chain on a state
space with transition probability matrix

and initial state This Markov
chain can be considered as a uniformized embedded Markov
chain in the Markov process with infinitesimal
generator [32].

Now we assume that changes to with
being a small real number and We wish to es-
timate the derivative of in the direction of

Because the change in is
also Therefore, the results in the previous sections can be
applied, with the same notations, to the corresponding Markov
process with infinitesimal generator These results translate
directly to the discrete version for the Markov chain with
transition matrix We list some of them for references

(28)

where The realization
matrix satisfies the discrete-time Lyapunov equation

(29)

In addition

and

VI. DISCUSSION

We proposed two fundamental concepts, realization factors
and performance potentials, for a Markov process. We showed
that they can be determined by the group inverse of the
infinitesimal generator of the Markov process and that the po-
tentials defined through realization factors are solutions to the
Poisson equation. The realization factors and the performance
potentials can be estimated by analyzing a single sample path
of a Markov process, and the sensitivity of the steady-state
performance with respect to the change of the infinitesimal
generator can be easily calculated by using either of these
quantities.

Based on these results, some algorithms for estimating
performance sensitivities on a single sample path of a Markov
process can be proposed; these algorithms are simple, accurate,
and widely applicable. The algorithms and simulation results
will be presented in a separate paper. The results in this
paper established a theoretical foundation for these practical
algorithms.

The results provide a uniform framework for IPA and
non-IPA approaches to the sensitivity analysis of steady-state
performance; the central piece of this framework is the concept
of perturbation realization, which, in the case of Markov
processes, is closely related to potentials. Note that in [23]
the Poisson equation for potentials was used to establish the
uniqueness of the equations for realization factors in queueing
networks; the problem is different from the one addressed in
this paper.

The concept of potentials creates a new research direction
in the area of single sample path based performance sensitivity
analysis. The potential of a state is a measure of the average
long-term performance of a Markov process starting from
that state. It is therefore natural to use potentials in Markov
decision problems where an action has to be taken at any state
so that a long term performance will be optimized. This is an
ongoing research topic.

APPENDIX

A. The Proof of (3)

We first review the concept of-norm defined in [38]. Let
be any signed measure on state spaceWe first assume
so that the results in [38] can be applied. Thus,
is an arbitrary function. For countable state space, we can
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define a row vector, also denoted assuch that is the
measure of state Let denote a column vector. Then, in our
notation, the -norm of is defined as

Let be any matrix whose components are all uniformly
bounded. maps any signed measure to anther signed
measure Thus, is an operator defined on the linear
space of the signed measures. The induced-norm of is
defined as

(30)

Next, let be a unit row vector with its th component
being one and all the other components being zero. We have

Writing it in a vector form, we have

(31)

From (31), we can easily prove

and

Recall that and
and we have

(32)

Now we assume that is finite. Thus, with (32) and
from [39, Th. 7.2], we conclude that the Markov

chain is -ergodic, i.e.,

for all

In our notation, this is the same as (3).
If all the components of are uniformly bounded, then

is finite. Another simple condition for to be finite
is where and is a constant. Since

the above condition is equivalent to
(recall that

Finally, if does not hold, we can set
such that and (Suppose and

then we can choose and
) We have proved that (3) holds and

it obviously holds for

B. Theorem 4 with -Norm

Any row in can be considered as a measure onNow
we assume that every such measure is continuous in-norm,
i.e.,

for all (33)

This implies

Thus, from (18), we obtain (15). That is, if for every row
is continuous in -norm, then (15) holds.

Next, as in Appendix A, can also be viewed as an
operator defined by and hence has an induced-norm.
Using the same argument as in Appendix A, we can prove
that if is continuous in this induced-norm, then it is also
continuous in the f-norm regarding every row, i.e., (33) holds.
Thus (15) also holds.

Finally, the interchangeability condition
follows directly from (15) and (14).

C. Some Boundedness Results

With and (3), we have

(34)

With we have

(35)

and

(36)

Proof:

1) First, with (3), is bounded in
Next, by the independence of and we have

2) Equation (34) is a direct consequence of the-regularity
defined in [37] and [38]. It is proved in [38] that an
irreducible Markov chain is -regular. Therefore, the
resolvent chain (see [37]) is-regular. From [37, Propo-
sition 4.3], the -regularity of a process is equivalent
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to the -regularity of the resolvent chain. Thus, an
irreducible Markov process is also-regular. This leads
to (34).

In the following, we provide an alternative proof that
is based on the basic probability theory. For simplicity,
we omit the tilde on Let be the
th transition epoch of Let

and

That is, ( respectively) is the first time that
transits to state ( respectively) after it transits to

state ( respectively) at ( respectively). From
the regenerative property and ergodicity, we have

(37)

In the above equation, for regular Markov processes,
we have and

as Furthermore, for positive
recurrent Markov processes, and

Thus, from (37)

3) Consider We apply the same
notation as those in 2) for thus, is
the first time that starting from reaches
Therefore

(38)

where Applying (35) to we get

(39)

From (38) and (39), we get (36).

D. The Proof of Theorem 1

Let be the indicator function of event For any fixed
value of we have

(40)

For the second term of the most right-hand side of (40), we
have

is measurable with respect to thus

Note that Since and have the
same infinitesimal generator, we have
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Therefore, the second term of the most right-hand side of (40)
is zero. For the last term in (40), we have

Note that w.p. 1. Thus, from (36)
and by the dominated convergence theorem, the last term in
(40) goes to zero as Finally, taking we get
Theorem 1.

E. The Proof of Theorem 2

Using the notations in Section III, we have

(41)

For the last term of (41), we have

which is integrable by (35). Note that
Then by the dominated convergence theorem, it is easy to

prove that

For the next to the last term in (41), we have

Again, by (34) we can apply the dominated convergence
theorem and obtain

Next, for the third term on the right-hand side of (41), we have

Since is measurable w.r.t. this equals

By the definition of we have

Therefore, by the independence of and we get

Thus, the third and the fourth terms on the right-hand side
of (41) cancel each other. Summarizing the above results by
taking on both sides of (41), we obtain

(42)

By the independence of and the last term in (42)
equals

(43)
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in which Next, we prove

w.p. 1. (44)

For any we first write

Then we have

By the dominated convergence theorem, the last term on the
right-hand side tends to zero as The first term on the
right-hand side is dominated by

(45)

Again, applying the dominated convergence theorem to (45)
and using (37) we have

Consequently, the first term also tends to zero as
again by the dominated convergence theorem. This proves
(44). Putting (42)–(44) together yields (5).
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