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Perturbation Realization, Potentials, and
Sensitivity Analysis of Markov Processes

Xi-Ren Cao,Fellow, IEEE and Han-Fu Chenrkellow, IEEE

Abstract—Two fundamental concepts and quantities, realiza- this formulation, it became clear that the simple PA algorithms
tion factors and performance potentials, are introduced for developed earlier (called infinitesimal perturbation analysis

Markov processes. The relations among these two quantities and |p) - hereafter) in fact yield “sample derivatives”; although
the group inverse of the infinitesimal generator are studied. It is ’ !

shown that the sensitivity of the steady-state performance with these sample derivatives are unbiased or strongly consistent
respect to the change of the infinitesimal generator can be easily for many systems, it is not true for many others [6], [28].
calculated by using either of these three quantities and that This insight has set up two fundamental research directions:
these quantities can be estimated by analyzing a single samplet0 establish IPA theory, including the proof of convergence

path of a Markov process. Based on these results, algorithms f IPA alqorith f . di d
for estimating performance sensitivities on a single sample 0 algorithms for various discrete-event systems, an

path of a Markov process can be proposed. The potentials t0 develop new algorithms for systems where IPA does not
in this paper are defined through realization factors and are work well. After the hard work of many researchers in more
shown to be the same as those defined by Poisson equationshan one decade, fundamental results have been obtained for

The results provide a uniform framework of perturbation
realization for infinitesimal perturbation analysis (IPA) and IPA [29], [22], [7], [12], [14], [47]-{49], and many useful

non-IPA approaches to the sensitivity analysis of steady-state techniques that apply to different cases where IPA fails have
performance; they also provide a theoretical background for the been proposed [1], [13], [17], [19], [21], [25], [30], [31], [50].

PA algorithms developed in recent years. By and large, the theory for IPA is relatively mature, but the
Index Terms—PRerturbation analysis, Poisson equations, sample- works beyond IPA still seem exploratory; a general approach
path analysis. that is simple and applies to a wide class of problems has yet

to be developed.
Besides the fundamental works in developing theory and

algorithms, PA has been successfully applied in a number of

T HE SII.\IGLE.sampIe path-based performance Sen_SitiViBfactical engineering problems [2], [11], [26], [51], [52].
analysis of discrete-event system has become an increass, this paper, we study the sensitivity of the steady-state

ingly important area. The main objective of this research arﬁ@rformance of a Markov process with respect to its in-

is to obtain performance sensitivities with respect to systefitesimal generator. It is well known that IPA yields an

parameters by analyzmg.a smglglsample path of.a d'scr%g'imate of zero for the performance sensitivity (see, e.g., [6],
event system. The area is promising because of its practi

ful . he sindl I h-based hni ], and [29]), which is apparently useless. Our goal is to
usefulness. First, the single sample path-based tec n'q38§elop a simple approach that provides accurate estimates.

save a gTeat amount of computation in Sf'mUIat'On for SYstefihe approach is widely applicable because a Markov process is

opt|m|za_1t|on; secqnd and perhaps more _|mp_ortant|y, they C# most fundamental model for many discrete-event systems.

be applied to on-line performance optimization of regl wor_l he work was motivated by some recent developments in the

systems where changlng the v.aluesiof pgrametgrs is mfeas.lgt%a [16], [17], [9]; it may be also related to [19] and [20].
One'of the major research f|elds.|n th.|s area I perturbquwe first introduce a concepperturbation realization and

analysis (PA), Whlc.h takes ac}ynamw point of view in StUdyIn8efine a quantityrealization factor for studying the effect

the system behavior. The history of the development of P, state changes in a Markov process on its performance.

resembles those of many other scientific fields; after an initii:\ is can be considered as an extension of the perturbation
period of exploration of the common nature of some practic alization theory [7] from infinitesimal perturbations to finite

problems, a mathematical formulation was developed [5]. W'Blerturbations. We prove that under some minor conditions the

realization factors can be determined uniquely by a Lyapunov
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that the potentials defined in this paper through realizatioasults are listed for Markov chains. The paper concludes with
factors are in fact the same as those defined by Poissoishort discussion in Section VI.

equations in the literature (see, e.g., [24], [27], [34], [35],

[37]-[39], and [41]). The results for Markov chains are briefly 1
stated as special cases.

We emphasize the main contributions of this paper with theConS|der a positive recurrent aqd irreducible (ergodic)
following points. Markov processX = {X;,t > 0} with a countable state

: . . spacef = {1,2,---} and an infinitesimal generatet = [a;;],
1) We_ developed some alg_orlthms for finite per_turbatloqlé?]ere 4y > 0,i # j,as; <0. We assume that;, i, j € £,
which are almost as simple as IPA yet yield ver

Yre bounded, i.e., there & < oo such that/a;;| < K for all
: i , e, i

accurate estlmatgs. .AS shown 'in (16) and (17), t_tze, € £. Thus, the Markov process is regular. (The condition
performance derivatives can be calculated by usi

1 at|a;;|,4,7 € £, are bounded is stronger th larity. F
: L ) il 47 , ger than regularity. For
poter?;gls or reilzatl(?[!’] fatctgrsb, fror; (5) and. (2;5)’ thes ample, the M/Méo queue is regular, but the corresponding
guantities can be estimated based on a single sam’%iej| are not bounded.) Denote by = (71,75, -- ) the row

pg;[jh Thef Ca:\;“'it'on |L1v_olved '3 tlhe est_lmat|0n_|s ofnl ector representing the steady-state probabilities of the Markov
addition for Markov chains and finear integration ok, ,cess | e = (1,1,---)', where the prime represents the

Markov processes; thu;, the computatio_ns require_d anspose. We havee — 1 and

comparable to IPA estimates. The detailed algorithms

are worked out in another paper [10]. Ae =0, 7A = 0. (1)
Since a Markov process is the basic model for many

discrete-event systems, it is conceivable that similar al-Let M = [m;;] with m;; being the mean first passage time

gorithms can be developed for many other systems suighm state: to statej. A Markov process is said to b&trong

as queueing networks and generalized semi-Markov p@¥godic if 7/ is finite [34]. In Section IV, we require the

cesses. Thus, the results may be viewed as one importil@trkov process be strong ergodic.

step toward a solution to the long standing problem: We first normalize the Markov process (see, e.g., [18]). Let

finding a simple and generally applicable technique that = (1/K)A, ie, @; = a;/K, for all i,5 € £ Then

provides accurate estimates for performance sensitiviti@s;| <1. We haveAe = 0,74 = 0. That is, the Markov

when IPA fails. process with infinitesimal generatoet has the same steady-

2) The concept of perturbation realization, which was sugtate probability as the Markov process with infinitesimal
cessfully used in IPA to study the sensitivity of steadydeneratorA. Therefore, without loss of generality, we can
state performance, is extended beyond IPA, where@gsume thatl is normalized, i.e.ja;;| < 1 forall i, € €.
small change in parameter may result in a big changelet f: &€ — R, where R = (—o0,00) represents the
in the system’s sample paths. This provides a unifi&gace of real numberg: is called aperformance functian
framework for both IPA and non-IPA approaches (see tHhe performance measure of the Markov process is defined
discussion after Theorem 4 for an explanation). It als®s its expected value
provides a theoretical background for the PA algorithms .
developed earlier in [16], [17], [19], and [20]. n=Ex(f)= me(z) =nf

3) The results contribute to the modern Markov theory iee
by relating the potentials (with discount rate = 0) where f = (f(1), f(2),--)" is a column vector, and,. de-
to perturbation realization and the single sample pathotes the expectation with respect to the steady-state measure
based sensitivity analysis. Theorem 3 provides a nige (We use the same notatiofi for both a function and a
interpretation of the solutions to Poisson equations, anédctor, with theith componentf; = f(i),i € &)
our results relate the potentials to realization factors Now suppose thatt changes tads = [as,;] = A + 6Q,
that can be interpreted as the fundamental elementswith 6 > 0 being a small real numbe® = [¢;;], andQe = 0.
sensitivity analysis. Let Xs be the Markov process with infinitesimal generator

We discuss Markov processes with a countable state spade; For As to be an infinitesimal generator we require that

the performance functions are not required to be boundes; > 0, if a;; = 0,¢ # j. Itis clear that with this requirement

In Section I, the sensitivity analysis problem is describeds is also irreducible. Letrs = (751,752, -) be the vector

In Section llI, the realization factor is defined, the Lyapunoof steady-state probabilities of;s.

equation that uniquely determines realization factors is de-The performance measure &f; is 75 = 1 + An. We shall
rived, and two theorems for estimating the realization factoéudy the derivative ofj in the direction of), defined as

are proved. In Section 1V, the group inverse of a matrix is first
reviewed, the concept of performance potentials are formally
introduced by using realization factors, and the sensitivity for-
mula is obtained by using group inverse, realization factors, 8imilar definitions will be used for other quantities, e.g.,
performance potentials. The relations among these quantities/dQ = lims_o(ms — 7/6) and 3A/IQ = lims_o(As —
and the Poisson equation are discussed. In Section V, simifé) = Q.

. THE PROBLEM

on i =1
- 1 ——F—.

8Q - 6—0 6



1384 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 42, NO. 10, OCTOBER 1997

ll. THE REALIZATION MATRIX Definition 1: di; = E{/T" " [f(Xh - p(x ™) dt} s,
The concept of perturbation realization plays an importate € is called a perturbation realization factor; the matrix
role in sensitivity analysis. The essential idea is that the effelt = [di;] is called a realization matrix.
of a parameter change can be decomposed into a sum of thé is proved in Appendix C thatl; ; < oo for all ¢,j € £
effects of many individual changes on a sample path; this can also be proved by using the concepyfegularity
average effect of each individual change can be measureddgfined in [37] and [38]). From the definition, we have
a quantity called the realization factor. To apply this approach

to study the sensitivity of a performance measure with respect dij = —dj;, i,] €E
to the infinitesimal generator, we first study the effect of the
system changing from one state to another. or equivalently,D is skew-symmetric
Recall thatX = {X,,¢ > 0} is a Markov process with
infinitesimal generatorl and state spacg. Let X = {X,,t > D —_D. ()

0} be another Markov process, independentXof with the
same state spa¢kand the same infinitesimal generatbrThe

initial states of these two processes are, however, dlfferentd“ measures the effect of a change from state state
Denote them byX, = i, X, = j,i,j € &. DefineY; = 7 on the performance of the system. In the terminology of
- ) - R N

(X X ),t > 0. ThenY = {Y;,t > 0} is a Markov process perturbation analysis, we say thattat 0 the system state is
Wit;; stta{e gpa'cef £ b= perturbed from; to j, and att = 7} the perturbation is

We use superscriplg}, {7}, and{i, j} to indicate the initial realizedby the system (i.e., the perturbed sample path returns

states of the processes. Thus, the three Markov processes GRS to.the original ope). This _is similar to the realization of
denoted asy ("}, X17} andY'{i-i}, respectively. We use the " initesimal perturbations in discrete-event systems {7].

same superscripts to represent quantities associated with t be written in a more convenient form as is given in the

f X{J} dtl —

any0 < t < oo, ]—"{”} {J—"{} Fity, e, ]—"{”} is the
dij= lim { fX{} dt]}
Y {43} is regular, irreducible, and positive recurrent since

i} ; { ing theorem.
Markov processes. Thug} "} = o{ X1 0 < s < ¢}, £l = 101OWING Thec
X 0 < s < 1), and]__{zyj} _ a{Y{”} 0< s <t} For Theorem 1:1f E.(|f]) <oc, then we have

o-field generated by7-" and J—“t it Furthermorefio} and

Fl are independent. Lt be the expectations with respect

to £} andp be the probability measure AL}, i,j €E.

X1} andX {7} are. Thus, the first passage time from any state From the point of view of coupling, the result is very
to any other state has a finite mean. ket= {(k,k): k € £}. obvious. We give an intuitive explanation. First we have
Define

U} = int{t: t > 0, 7,17 € K} / PP = ) ae
0
T} is a stopping time oF 1%}, At 7145} Y 1%} reachesC _ T{w}[f(X{j}) e
for the first time andE[T1%7}] is finite. After 7147}, the two o t t

processes\ and X are still independent; however, because o - U} i
Xy = Xpi.5, they will behave similarly probabilistically + /T{z-,j}[f(Xt ) — FX)] dt.
afterwards.7{%7} is just the coupling time of the two inde-
pendent Markov processes with different initial distributionN
ul

{5} {é}
Readers are referred to [38] for a survey of the relevant res xt, becauseX =X by the Markov property,

T3y T T{:5}7

about coupling. we have E{ /775 [f(X‘{J}) A {dt]; = 0. Thus,
Throughout the paper, we assume thatis absolutely E{/;" [f FEXUH - pxlh) an = E{fT & -
integrable, i.e., f(X] x4 )] dt}. Since [5° meanslimy_. o, [7 , compared with
the equatlon in Theorem 1, we need to prove that the order
E-(|f)) =D mil f(i)] < . (2) of “E” and limy—_.. are exchangeable. A rigorous proof is
ieg provided in Appendix D.

With this assumption and some minor conditions, we can prove'© estimate;;’s by using two independent sample paths is

(see Appendix A) not convenient. The next theorem provides an easier approach
for estimatingd;;'s based on a single sample path. We define

lim E[|f(X D[ = E-(|f), i€é&. (3) the first passage time from statéo statei, S/} (i), as follows:
t—oo
Because E[|f(X7)|] is a continuous function oft SUYi) = inf{t:t > 0, X1 =i}

on [0,0¢) (see, e.g., [15, eq. 8.4.8]), from (2) and (3),
E[|f(x )| is bounded int € [0,0). sli}(4) is a stopping time o 1/} and is independent ot (%},
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Theorem 2:If E,(|f|) < oo and condition (3) holds, we Proof: Let p;;(t) = P{Xt{i} = j} and P(t) =

have pi;(t)]s jee. Then we haveP(t) = exp{ At} (see, e.g., [15]).
509 (4 ' Thus,E[f(Xt{i})] = Yree f(k)pir(t), which is theith entry
dij =E / JEE de| - B[SV @y of exp{At}/. Let
0
{j}(i) ) T s i
:E{ / T — dt}, Ljes (5 diy(T) :E{ / LX) = pxih) dt}

0 0

T . .
The proof involves many technical details so we again put = / (BIAEY - By ae (20)

0

it in the Appendix. It is well known that the state probability
distribution att¢ converges tor ast goes to infinity. The and D(T) = [d
condition required in the theorem is equwalentﬁQX )
being uniformly integrable. In particular, this condition holds D = lim D(T).
when f is bounded. T—oo
Equation (5) has an interesting explanation: the mean eff%%c
of a state change fromto j on the performance measure (the
realization factord“) equals the mean of the accumulation
the deviation of f(X {J}) from its meann in the transition
period from state to statei. From (5) and (4), we have

;;(1)]. Then from Theorem 1

e integrand on the right-hand side of (10) equals the
ifference between thgth and ith entries of exp{At}f.
herefore

D(T) = / (e lexp{At)] — [exp{At}] <) dt

S{j}(l) )
E x9N -
{/0 LX) =] dt} Using Ae = 0, we obtain
s , ,
=-F / FOy =] at . AD(T) + D(T)A
0 T
— [ (el lexptanya’ - Alexp{ate) di
From Theorem 1, we have 0 )
T
0
This property is similar to that of the potential energy in T )
physics. In view of this, we may pick up any integer € £ - / [exp{At}]A dt | fe
and any real numbet and define a quantityy;, called the , ,
performance potentialor simply thepotential of state:, as = cf'[exp{AT} — exp{0}]
follows: — [exp{ AT} — exp{0}]f¢’. (11)

gre =c and gi=gp +dpi,  i#FK. (7)) The last two terms are finite by (2) and (3); thus, all the
terms in (11) are meaningful. Note tHat; . p;; (1) = 7},
i.e., limy_ oo exp{AT} = em,exp{0} = I, andef'(en) =
(rf)ee’ = enfe'. Letting T — oo in (11), we get

From (6), we can prove

di; = 9; — 9i, forall¢,j €&

i.e., a realization factor is the difference of two potentials. AD+ DA = fd —ef =~
More about potentials will be discussed in the next subsection.
Now we have Next, we prove the uniqueness of the solution. Suppose
that (9) has two matrix solutionsD; = eg; — g1¢/ and
D =cg — g (8) Dy = egh—goc. Let W = Dy — Dy = ew’ — we', with
w = g1 — go. Then AW + W A" = 0. Becausede = 0, we
whereg = (g1,92,--+)" is called apotential vector Let have cw’ A’ — Awe’ = 0. If the Markov process is strong

ergodic, then the group inverse df (see the next section),
A#, exists [34]. Multiplying both sides of this equation on the

# #A=7T_ #
Theorem 3: Suppose,(|f]) < oo and (3) holds. The real- Iheft with A7, and _usmg#] Af I —emandA7e = 0, we
ization matrix D satisfies the Lyapunov equation ave (I - m)we 0. Therefore

V={ex' —zc: z € R™}.

AD+ DA = —-F (9) we' = erwe’ = (mTw)ed

where F' = ef’ — fe'. The solution is unique iV, if the whererw is a constant. From this, we haW¥ = (we') —
Markov process is strong ergodic. we' =0, i.e.,D; = D». O
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IV. POTENTIALS AND PERFORMANCE SENSITIVITIES of v is defined ag|u|| = sup;> |u;|. The norm of an operator

We first briefly review the concept of group inverse of 4 ON ¢ is defined as||T|[ = supjuj=:[|7ul|. Any infinite
matrix. Since one eigenvalue of is zero, its regular inverse dimensional matrixit = [ri;; jee can be considered as an
does not exist. We have to use a generalized inverse, |@Perator orf with norm [|R|| = sup; X732, |rij|-
the “group inverse” [36], which is related to ttiendamental Letf’ be any point i/, and(A — er) ™tz =y and (As —
matrix (A — er)~!. Reference [33] proved that ifi is of a ems) " x = ys. Then,x = (A — er)y andx = (A5 — ems)ys.
finite dimension, then its regular inverse exists. For matricd4e havey —ys = (4 - em) "M [6Qys + e(r — m5)ys]. Note

with an infinite dimension, we have a similar result. We staffat @ ¥s, and (4 — em)™! are bounded (see [34] for the
it as a lemma (for a proof, see [34, Th. 33)]). boundedness d¢fA—ecr) 1. It can also be proved by observing

Lemma 1: If the Markov process is strong ergodic, then that(A —em) is a linear, bounded, continuous, and one-to-one
- onto mapping and applying the Banach theorem [43]). Thus,
A—er)l = — P —en¥ 1) Wwe havdims_.o ys = y. This holds for any point in the Banach
( er) kz=o( er) (12) space; thus (20) follows. From (19), we obtain

whereP =1 + A. O or
Since we assume that the Markov process is normalized, i.e., % = —-TQA¥.
lai;| < 1,a;; > 0,1 %# j,a; <0 forall i,j € £, we have0 <
pij < 1,foralli,j € £ The matrix A% = (A~ em) b —er Equation (15) follows directly from (14) and the assumption
is called thegroup inverseof A [36]. In this paper, whenever (@1 /0Q)f = (9/9Q)(x f).
A# appears, we always assume that the Markov process' |

strong ergodic. It is straightforward to prove

AA" = A% A =1 —er. (13) A* f = Dr'. (21)

?\lOW we prove

Theorem 4: The derivative of the steady-state probability is o ) ) )
First, multiplying both sides of (9) on the right with’ and

g_g = —1QA¥. (14) usingrmA = 0 andwe = 1, we have
Furthermore, if(0r/0Q)f = (0/0Q)(r f) and the results of ADr' = fdr' —ef'n’ = f -7 fe
all operators are finite, then the performance derivative can =( —em)f.

be calculated by using the group inverse 4fA#, or the

realization matrixD, or the potential vectoy That is, AD7’ = AA¥ f. Multiplying both sides on the left

on _ _rQA* f (15) With A%, we get(I — er)Dr’ = (I — ex)A# f. This directly
00 leads to (21), becauseAd* = 0 and

=7QD'7’ (16)

=71Qg. (A7) 7D7’ =n(eg — g )n' = g7’ —7wg =0, for all D € V.

Proof: From nsAs = 0,4s = A+ 6Q, andwA = 0
Tesls = B2 +0Q, andr " Finally, substituting (8) into (16) and usinge = 0 and

we get me = 1, we obtain (17). O
s 6_ T ps = —7Q). Remarks:
1) If the Markov process is finite, (14) can be simply
Multiplying both sides on the right withAjf and using proved by differentiatingr4 = 0 in the direction of().
A(SA? = (I —ens),me = mse = 1, we get Reference [44] studied the sensitivity problem of finite
rs— T . Markov chains with discrete time by using the inverse
—5 = —TQAY . (18) of the fundamental matrix.

2) If sup;c¢ | fi] < oo, in particular if the Markov process
is finite, then multiplying both sides of (18) on the
right by f and lettingé — 0 immediately leads to
(07 /0Q)f = (8/0Q)(x f), and other assumptions are
not needed.

3) The supremum norm is used in the proof of Theorem 4.
If we assume thatt¥ is continuous in a stronger norm,
i.e., the f-norm defined in [38], then the interchange-

lim (As — ems) ™t = (A — em)™L. (20) ability condition used in the theoren{or/0Q)f =
=0 (0/0Q)(n f), can be relaxed. See Appendix B for de-
Consider a Banach space of all bounded real sequences tails. However, it seems difficult to determine which of
U = {u = (ug,ug,--);u; € R,4 = 1,2,---}. The norm these two conditions is weaker.

In the above equatior) is bounded and:; w; converges.
Letting 6 — 0, we get

an . #
Now we prove thatA¥ is continuous, i.elims_o A7 = A#.
It is equivalent to show
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Theorem 4 has an intuitive explanation by using the concephis shows that the potential defined through realization
of realization. To see this, let us consider a simplified ca$actors is in fact the same as the one defined by the Poisson

whereq;s = —1,q;: = 1, andgq;; = 0for< # [ or j #¢,s equation. In other words, our analysis reveals the connection
For this case, (16) becomes between the classical potential theory and PA, in particular,
P M M the concept of the realization factor. There is a great deal of
8_77 = ZZ%’(M djk literature on the Poisson equation, and many results, such as
Q J=1k=1 the existence, the uniqueness (modulo an additive constant),
M and the finiteness, and many other properties of its solution
:WIZWJ(QIS djs + que djt) exist (see, e.g., [15], [24], [27], [34], [35], and [37]). Espe-
j=1 cially, the concept off-regularity was used in [24] to prove
M the uniqueness of the solution; [24] also gives an interpretation
=m Z?rj(djt —djs) of the solution to the Poisson equation that is similar to (7).
j=1 From Theorem 1, we have
=17 dst- (22) T )
Thus, 817/0Q equals the expected value @f;. 9; = g9i= lm {E /0 X dt]
Next, (22) can be derived using the following intuitive r
argument. Observe a sample pdth,,;0 < n < L}. Among _E / f(Xt{Z}) dt] } (24)
0

the L transitions on the sample path, the Markov ch&iwisits
statel, on the averagelm; times. Because the probability that )
a transition fromi to s changes to a transition fromto ¢ is  1his shows that although the values bf[;* A di
5, on the sample path there are, on the averdge§ times are infinite, their differences are finite and can be used as
when states changes to state Let F, = ¥£Z! f(X,,). Each realization factors. In particular, for any finité
time the state changes frasrto ¢, F, changes, on the average, T ‘

| e dt] (25)

0

by the amountd,; (see Definition 1). In addition, because g(T)=E
can be chosen arbitrarily small afith**} is always finite, the

probability of two changes from to ¢ occurring withinZ't=t}  can be used as estimates of the potentials. It is clear that for
state transitions is of ordei® and is hence negligible. Thisany potential vectoy, we have

implies that the effect of each change can be treated separately.
Therefore, the total change gfdue to the change aP is

An = %AFL = %{Lmé Ao} = m6 da. Let g(T) = (g1(T), g2(T),- -+, gre(T))'. Then
D = lim {elg(T)]' = [o(D)]e'}

9; = 9i = Hm {g;(T) - gi(T)}.

Finally
o _.on=n_ To relate E[fT f(X) dt] to g = —A#f, we need the
— = lim ——— = dg .
9Q s-0 6 following lemma.
which is the same as (22). Roughly speaking, this means thak€émma 2:
the performance derivative equals the product of the effect A# = / =~ A
=_ t} — dt
of one jump from states to ¢t and the probability of such a 0 (exp{At} — em)
jump. This is exactly the same as the performance realization _ T
theory in IPA of queueing networks (see [7]). Thus, both IPA = lim / exp{At} dt — Ter 5. (26)
and non-IPA approaches can be explained by using the same 0
concept. Proof: First, we have
As defined in the last sectiop, is theperformance potential 0
of statei, and ¢ is called thepotential vector From the /0 exp{At}A dt = —(I — em).

definition in (7), ifg is a potential vector, then for any constant . i
¢, g+ ce is also a potential vector. We say that+ ce is oM this, usingde = 74 = 0, we get
equivalent tog. This is similar to the potential energy in A[/Oo(exp{At} —en) dt}
physics, where any point can be picked up as a reference o
point, and the only important thing is the difference between o
the potentials of any two points. This feature is reflected in = [/0 (exp{At} — er) dt}A =-—( —em). (27)
(17): the derivativedrn /() depends only on the differences )
of the components off becausee = 0,g in (17) can be Furthermore, we can easily prove that
replaced byg + ce with any constant. =~

All performance potentials satisfy the following Poisson WUO (exp{At} - em) dt}
equation:

Ag=—f+nfe (23) = [/Ooo(eXP{At} —em) dt} e=0.
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Multiplying both sides of (27) on the left witd#, we obtain In addition

(26). O n
Letef(n) = 1if n = k ande®(n) = 0 if n # k. Then from A% = lim {Z(evr - P’“)}
(26), the (i, k)th entry of A# is "% k=0
n—1
T #__ 1 Eoylithy| _
af’i =— lim {/ pik(t) dt — Tﬂk} Fik = nh_I)Iolo {E Z ¢ (Xl )] n’]rk}
T—o00 0 =0
T ‘ and
= — lim {E / Fx iy at| - ka}. o1
0 g = lim {E Zf(Xl{Z})] —nn}.
The potentials are =0
gi==Y_ aih VI. DISCUSSION
ke& We proposed two fundamental concepts, realization factors
] T (i} and performance potentials, for a Markov process. We showed
= TIEEO E /0 J(XT) dt| =T that they can be determined by the group inverse of the

infinitesimal generator of the Markov process and that the po-
In modern Markov theory [15], the potentialof a function tentials defined through realization factors are solutions to the

f is defined as Poisson equation. The realization factors and the performance
0o ‘ potentials can be estimated by analyzing a single sample path
gi(f) = EU exp{—at}f(Xt{Z}) dt} of a Markov process, and the sensitivity of the steady-state

0

performance with respect to the change of the infinitesimal

Interestingly, our definition of potential is consistent with thigenerator can be easily calculated by using either of these
classic definition withv = 0. Our results about realization andquantities.

sensitivity analysis provide a new explanation and applicationBased on these results, some algorithms for estimating
for the Markov potential theory witly = 0. performance sensitivities on a single sample path of a Markov

process can be proposed; these algorithms are simple, accurate,

and widely applicable. The algorithms and simulation results

will be presented in a separate paper. The results in this
The results about Markov processes can be easily translgiggher established a theoretical foundation for these practical

into those for Markov chains. Consider an irreducible a”&igorithms.

aperiodic Markov chainY{} = {X{";n > 0} on a state  The results provide a uniform framework for IPA and

space& = {1,2,.--} with transition probability matrix® = non-|PA approaches to the sensitivity analysis of steady-state

[pislijee; Pe = ¢, and initial stateXo = 4. This Markov performance; the central piece of this framework is the concept
chain can be considered as a uniformized embedded Markgvperturbation realization, which, in the case of Markov
chain in the Markov procesgX(}; ¢ > 0} with infinitesimal processes, is closely related to potentials. Note that in [23]
generatord = P — I, Ae = 0 [32]. _ the Poisson equation for potentials was used to establish the
Now we assume thaP’ changes toP + 6Q, with 6>0  ynjqueness of the equations for realization factors in queueing
being a small real number an@c = 0. We wish t0 es- petworks; the problem is different from the one addressed in
timate the derivative ofy in the direction of@Q,dn/0Q = this paper.
lims_o(An/é). BecauseAd = P — I, the change inA is  The concept of potentials creates a new research direction
alsoé(). Therefore, the results in the previous sections can Rethe area of single sample path based performance sensitivity
applied, W[th t.he. same notations, to the corresponding MarkgMalysis. The potential of a state is a measure of the average
process with infinitesimal generatar. These results translate|ong_term performance of a Markov process starting from
directly to the discrete version for the Markov chain withhat state. It is therefore natural to use potentials in Markov
transition matrixP. We list some of them for references  gecision problems where an action has to be taken at any state

V. MARKOV CHAINS

oo, n ‘ so that a long term performance will be optimized. This is an
dij = nli_xgo {E Zf(X,‘EJ}) -E Z f(X,‘EZ})] } ongoing research topic.
k=0 k=0
L ()—1 ) APPENDIX
=E¢ > XY -] (28)
k=0 A. The Proof of (3)

where LU} (i) = min{n: n > O,X,{ﬂ} = i}. The realization We first review the concept gf-norm defined in [38]. Letr
matrix D = [d;;] satisfies the discrete-time Lyapunov equatioR® any signed measure on state sgadé/e first assumgf > 1
so that the results in [38] can be applied. Thfisf — [1, 00)

-D+ PDP = -F. (29) is an arbitrary function. For countable state space, we can
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define a row vector, also denoted assuch thaty; is the |a| <1, then we can choos¢®) = sign(a)(1 + |a|) and
measure of staté Let g denote a column vector. Then, in ourf) = —sign(«).) We have proved that (3) holdg?|, and

notation, thef-norm of » is defined as it obviously holds forf(®,
14 = su rqgl. .
I g:|g|2f| gl B. Theorem 4 withf-Norm

. . i # i
Let A be any matrix whose components are all uniformly Any row 'n;l can be cohnS|dered asa me:.;lsure‘,‘o.mow
bounded.A maps any signed measureto anther signed we assume that every such measure is continuoysriarm,

measurerA. Thus, A is an operator defined on the linear®
space of the signed measures. The indug¢etbrm of A is lim ||A6#i~ —A*|; =0, for all 3. (33)
defined as 6—0 7 T ’

Al This implies

4l = ot o,
vivf <oo ||V||f gur(l)[Aéi. _Az]f:()
sup,. VA -0 7
~  sup Pg.|g|§f{| qgl} (30)

Thus, from (18), we obtain (15). That is, if for every ro«l\?

Next. let I b i . ith itsth ) is continuous inf-norm, then (15) holds.
ext, let I, be a unit row vector with itgth componen i ; # i
p Next, as in Appendix A,A7 can also be viewed as an

being one and all the other components being zero. We haxserator defined bVAf and hence has an inducgénorm.

vivf<oo Supg:|g|§f{|l/g|} '

LAf < sup {|I;Ag|} Using the same argument as in Appendix A, we can prove
g:lgl<f that if Ajf is continuous in this inducegdl-norm, then it is also
B Supg:lglﬁfﬂIiAgH I continuous in the f-norm regarding every row, i.e., (33) holds.
-\ supg <11 igl} _Tufgfﬂ igl} Thus (15) also holds.
sHoi= s Finally, the interchangeability conditiofdr/d0Q)f =
supy. o< {|vAgl} (8/0Q)(x f) follows directly from (15) and (14). O
<| su sup {|Lig|}
vivf < oo Supg:|g|§f{|l/g|} glgl<f
=|All; sup {|Lgl} C. Some Boundedness Results
g:lgl<f With E-(|f]) <oc and (3), we have
SHAHffz s
Writing it in a vector form, we have E{/ A dt} < 00. (34)
0
< . 31 i
Af < llAllsf G Wit E(|f]) <00, we have
From (31), we can easily prove s
v{i}
AT <AL, k=12 E{/ T dt} DR
and and
exp(A)}f < exp{|lA . Tt ;
Recall thatp;;(t) = P{X}"} = j} and P(t) = [pi;(1)]; jee 0
= exp{At}, and we have Proof:
P(t)f < cap{||All st} 1. (32) 1) First, with (3),E[|f(Xt{Z})|] is bounded inl? € [0,00).

Next, by the independence 617} (i) and X"}, we have
Now we assume thatA||; is finite. Thus, with (32) and S0
nf < oo, from [39, Th. 7.2], we conclude that the Markov E{/ |f(X{i})| dt}
chain is f-ergodic, i.e., 0 ¢

lim ||p;..(¢t) — 7| =0, foralli e &. SO i
i e 0 =l - E{ | e
In our notation, this is the same as (3). 0 ) )
If all the components of f| are uniformly bounded, then < SI;P{EHf(Xi{Z})”}E[S{]}(i)] < 00.
t>0

|| All s is finite. Another simple condition fofA||; to be finite
is |Alf £ K f, where|A| = [|a;;|] and K is a constant. Since  2) Equation (34) is a direct consequence of faeegularity

A = P — I, the above condition is equivalent #8f < K f defined in [37] and [38]. It is proved in [38] that an
(recall thatf > 1). irreducible Markov chain isf-regular. Therefore, the
Finally, if f > 1 does not hold, we can s¢t= f() 4 f(2 resolvent chain (see [37]) i&regular. From [37, Propo-

such that|f| > 1 and|f®| < 1. (Supposef; = « and sition 4.3], the f-regularity of a process is equivalent
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to the f-regularity of the resolvent chain. Thus, arD. The Proof of Theorem 1

irreducible Markov process is alsregular. This leads | ¢ Iy be the indicator function of everit. For any fixed

to (34). _ _ _ value of ', we have
In the following, we provide an alternative proof that

is based on the basic probability theory. For simplicity, T - (i}
we omit the tilde onX. Let Ty, k = 0,1,2,---, be the £ / [FX7) = f(X)] dt
kth transition epoch ofX. Let 7 = 0, X = 4,79 = 0,

T , ‘
and - E{ [ RO = i e ‘”}
v = min{n > 7, X7, =i} :
: : T ‘
Thyl = mln{n Z UkaXTn = j} +E{/ [f(Xt{J}) _ f(Xt{Z})]I[T{i,j}>T1 dt}
0

That is, T, (I-,,,, respectively) is the first time that
X transits to staté (j, respectively) after it transits to —E
statej (i, respectively) afl’;, (73, , respectively). From

the regenerative property and ergodicity, we have

sH @) o SO o
E{/ FCEh] dt+/ FED)| dt}
0 0

1 L—-1 T, )
= lim —{ / (X)) at
L—oo L T
k=0 Tk
-1

i}

J f}] S

+E{

7iid} g} )
|- ] L)
0 T

— XN e dt}

L T )
+> /T ) dt} ron |
e - E{ | @) -ty dt}
~ fim 1 / (X I) dt
L=ee L Tm Jo Lo (i}
-1 L1 + LB /T{_ _}[f(Xt ) = J( XD i<y dt
Z(Tvk T‘f'k) + (T‘f'k+1 TUk) ] .
7iid}
T k=0 k=0 _yy i
= [fim I —E{/T AP - fxd })]I[T{f,j»T} dt}-
TR j
[ ar (40)
= {E[S{j}(i)] + E[S{i}(j)]}ﬂﬂ_ (37) For the second term of the most right-hand side of (40), we
have
In the above equation, for regular Markov processes, T
we haveX;Z; (T, = Tr,) — o0 and X2y (Tr,,., = E / &I = FX N e <y dt
T, ) — o as L — oo. Furthermore, for positive RN
recurrent Markov processesE[SU}(i)] < oo and T L
E[S}(5)} < oc. Thus, from (37) = E{E{/T{ _}[f(Xt{’})
S{j}(i) o ‘ o
E{/o |F(X)] dt} < oo. —f(Xt{Z})]I[T{M}gT} dt“?{ﬁ}}}-

3) ConsiderY = {(X;,X;),t > 0}. We apply the same 7{i.i} is measurable with respect B4/} : thus

notation as those in 2) foX; thus, S149} ({k,k}) is o
the first time thatt” starting from{:, 5} reaches(k, k}. T iy ; i
Therefore b /T{i -}[f(Xt{J}) = PO DM o ) AP
T3} = min{SY9} ({k, k}), k € K 38 g i N
S G = [ BUED) - ek,

whereK = {(k,k); k € £}. Applying (35) toY, we get i

S5 (kD) . ¢ ince X U i
E / (XN d b < oo, kee. (39) NotethatXpin = Xpin. Since X9} and X1} have the
same infinitesimal generator, we have

From (38) and (39), we get (36). O E{[f(XP - pxih sy =0, ¢> 1l
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Therefore, the second term of the most right-hand side of (4@yain, by (34) we can apply the dominated convergence

is zero. For the last term in (40), we have theorem and obtain
e i T
v U % . i
J AT R SR T ™ E{ [ s dt} _o.
i} ) piig} ]
< / (XU at +/ IF(x )| dt. Next, for the third term on the right-hand side of (41), we have
0 0

Note thatlimy_, ., I[T{i,j}>T1 =0, w.p. 1. Thus, from (36) {5}
and by the dominated convergence theorem, the last term f /S{j}(i) F D st y<ry dt

(40) goes to zero a8 — oco. Finally, takingZ — oo, we get -
Theorem 1. - = E{E /S{_}(‘) FEI D st y<r dt|f§]{3}-}<i>] }
E. The Proof of Theorem 2 '
Using the notations in Section Ill, we have Since $17}(4) is measurable W-r-ﬂ:éj{j}(i)v this equals
T
E XUy - px ) ar * N
{/0 [f( t ) f( t )] B /S{.}(‘) E[f(Xt{J})LFéi_};}(i)]I[S{j}(i)§T1 dt
T .
- E xUh _ pxlityy A dt T-513 (i) g .
{/0 P = HXTD s < =E /0 B o )IFE )]
L (i)
FE XYY = AXYN st dt
+ {/0 [F(X) = FX D sy > } R dt}.
S{j}(i) U
_ J .
= { /0 X sy )< dt} By the definition ofS%) (i), we have

T ) atl; {J} _ vlity — {i}
el e dt} B[ (X 0 WFED o) = B = B

T ' Therefore, by the independence &f*} and S17}(4), we get
/ f(Xt{]})I[S{j}(i)gT} dt}

N E
T—5173(3) ) {
/0 FXE ) 150y y<ry dt

S{j}(i) .
+E{/O f(Xt{J})I[S{j}(i)>T} dt}
{ T

s{j}(i)

T—5%43(3) )
= E{/O Elf(X ) st 6y<m dt}

T—5%43(3) -
= E{/O f()(tZ )I[S{j}(i)§T1 dt}

Thus, the third and the fourth terms on the right-hand side

T .
/ f(Xt{]})I[S{j}(i)gT} dt}

sUYG) - () of (41) cancel each other. Summarizing the above results by
-k / F D sw@srdtp (A1) qaking T — oo on both sides of (41), we obtain

T
For the last term of (41), we have ) T - () @
5033 (i) ' sUY (i) ' dij = TIE,EOE /0 [FX) = FX)] dt
/T f(Xt{]})I[S{j}(i)>T1 dt} </0 A5 at

T—o0

S{j}(i) o
o , E / A dt S - lim
which is integrable by (35). Note théing_., Iistyys1) = 0

0. Then by the dominated convergence theorem, it is easy to
prove that E{

S{j}(i) y
lin E / FEIN g0 ysry dt p = 0.

T—o0 T

Téj} (1)

T B
/ FEIN st iy <y dt}. (42)

By the independence of (i} and X5}, the last term in (42)

For the next to the last term in (41), we have equals

5193 (i) ‘ T ‘
< / P dt. lim E{ /T {j}(‘)[EﬂXf}>1I[S{j}<i>gﬂ dt} (43)
0 5 (e

T—o0

T .
‘/o FED st sy
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in which E[f(x[")] = E[f(x ! FU, ) Next, we prove  [7]
T ‘ [8]
lim F /{_} [Ef(Xt{Z})]I[S{J}(z)ﬁT] dt
T—oo TSJ (@) [9]
=E[SY (@), wp L (44)
For any T, we first write [10]
SU &) = SUH) s oy<ry + SYH O Is00 )51y [11]
Then we have
[12]
T ] '
By [ B Mg dt p - BSD @ 03
T G)
. [14]
= E/ B = nHstrgy<r) 9
@) [15]
[16]

—E{SUN i) 501y Y|

. 17
By the dominated convergence theorem, the last term on the]
right-hand side tends to zero @s— oco. The first term on the

right-hand side is dominated by 18]

max [19]

U Z 1 SUN D Lo
{T—S{j}(i)§t§T|E[f(Xt )] 77|S (L)I[S{J(z)§T1}.

(45) g

Again, applying the dominated convergence theorem to (4@&}]
and using (37) we have

G} [22]
lim E : E[f(x}\

Jim {T_s{lﬁl?ff - STI [FXE)] 23]

_ 77|S{j}(i)1[s{j}(i)§T1} =0. [24]

[25]

Consequently, the first term also tends to zerdlas+ oo,
again by the dominated convergence theorem. This Provss
(44). Putting (42)—(44) together yields (5).
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