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Abstract

This paper studies the basic properties of the Schrodinger equation defined on a bounded déhair>d® with partial
Dirichlet control and colocated observation. It is shown that the system is not only wellposed in the sense of D. Salamon
but also regular in the sense of G. Weiss. It is also shown that the corresponding feedthrough operator is zero.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction and main result sub-domains, or on a part of the boundary of the spa-
tial regions. More importantly, the studies have shown
In the last 15 years, extensive studies have been de-that this class of infinite-dimensional systems pos-
voted to a wide class of linear infinite-dimensional sys- sesses many properties that are parallel in many ways
tems calledvell-posed and regular linear systerfsee to those of finite-dimensional (see for instaf@2]).
the surveyg7,24]). Not only does this general frame- The concept of tegularity’ while very useful in this
work cover many partial differential equations with  framework, rarely appears in the literature on control
actuators and sensors supported on isolated points, orof partial differential equation systenf@]. In [2], the
_— well-posedness of a wave equation with Dirichlet in-
* This work was supported by the National Natural Science put and colocated output on the 2-D disk was proved
Foundation of China and the National Research Foundation of py the direct method. The well-posedness of the same
South Africa., equation on a bounded open domairf®t n >2 with
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and Neumann-type boundary controls is derivel®]n
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u=—ky with k > 0 (se€[10]). The main result of this

Other examples on the well-posedness and regularity paper is that system (1.1) is also regular.

of some multi-dimensional partial differential equation
systems can be found occasionally[16,25,3,4,23]
The regularity of a multi-dimensional wave equation
with Dirichlet control and colocated observation was
recently proved irf11].

The objective of this paper is to prove the regular-
ity of a multi-dimensional Schrédinger equation with
partial Dirichlet control and colocated observation de-
scribed by

wi(x, 1) +iAw(x, 1) =0, xeQ, >0,
wx,t)=0, xely, t=0,
w(x,t)=u(x,t), xelg, t=0,
oAt
y(x,t):lM x elg, t>0, (1.2)

I

whereQ C R", n>2 is an open bounded region with
smoothC3-boundarydQ = T'g U I'1. I'o, I'1 are dis-
joint parts of the boundary relatively opend® and
int(I'p) # @. v is the unit normal vector of p point-
ing towards the exterior af. u is the input function
(or control) andy is the output function (or output).
Let H=H~1(Q) be the state space abt=L?(I'g)
be the control (input) or observation (output) space.
The following well-posedness (see the definition for
instance in[15]) result follows from Proposition 4.2
of [13]. A slightly different proof (without using “lift-
ing theorem”) based on Proposition 4.2[d8] is pre-
sented as an Appendix at the end of this article.

Theorem 1.1. System(1.1) is well-posed More pre-
cisely let T > 0 be any constant and; be some pos-
itive constant depending only onOetw(-, 0)=wg €
H be any initial stateThen for any control inpui €
L?(0, T; U), there exists a unique solution to H@.1)
such thatw € C(0, T; H) and

lw(, TG + 1313 20.7:09

<Cr [lwolly + Nl 7.1 | (1.2)

Theorem 1.2. System(1.1) is regular, with feed-
through operator zeroMore precisely if the initial
statew(-,0) = 0 and u(-, ) = u(-) € U is a step
control input then the corresponding output satisfies

2

lim dx =0.

/ 1
a—0Jr,

ag
—/ y(x,t)dt
0 Jo

Theorems 1.1 and 1.2 ensure that system (1.1) is
a well-posed regular linear system in the sense of
[14,19] The definition in[15] is not the standard
one given by[19,7] but it is equivalent to Weiss'’s
definition. We recall that well-posed and regular
infinite-dimensional systems may have unbounded
input and output operators, they resemble linear finite-
dimensional systems in many ways (see {8f).

In Section 2, we formulate system (1.1) into a colo-
cated abstract setting. The proof of Theorem 1.2 will
be presented in Section 3. The proof of Theorem 1.1,
which follows from Proposition 4.2 of13], is given
in the Appendix.

(1.3)

2. Colocated formulation of system (1.1)

Many papers have been published in the last 15
years on infinite-dimensional well-posed regular sys-
tems. For this material, we refer {6,15] and[17-21]

It is well known thatH = H~1(Q) is the dual space
of the Sobolev spacHol(Q) with respect to the pivot
spaceL?(Q). Let A be the positive self-adjoint oper-
ator inH produced from the bilinear form(:, -) on
H(Q) defined by

(Af, 810 ni=alf, &)= /Q V£ (0 Vg0 d,
Vf, g € H}(Q). (2.1)

According to the Lax—Milgram theoremA is an
canonical isomorphism fromb(A) = H&(Q) ontoH.

The well-posedness claimed by Theorem 1.1 is a Considering the LaplaciarA : H2(Q) N H}(Q) —

very important property, which implies that the exact
controllability of system (1.1) in some finite time in-
terval is equivalent to the exponential stability of the

L2(Q), it is easy to show thattf = —A f whenever
f e H¥(Q) N H}(Q) and thatA~1g = (—A)1g for
anyg € L?(Q). HenceA is an extension of the usual

closed-loop system under the output feedback control Laplacian inL2(Q) to H.
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It is easily shown (see e.§12]) that D(AY/?) =
L?(Q) and AY2 is an canonical isomorphism of
L?(Q) onto H. Define the Dirichlet mapY €
L(L3(Ig), L2(Q)) ([2]), i.e., Tu = v that is unique
if and only if

Av=0 inQ,

vlr, =0, v, =u. (2.2)
Using the Dirichlet map, one can write (1.1) as

W —iA(w — Yu)=0. (2.3)

Identifying H with its dual H/, we have the following
diagram:
[D(A)] C [D(AY?)] = H

=H' < [D(AY?)] c [D(A)].
An extensionA € Z([D(AY?)], [D(AY?)]) of Ais
defined by

(Af, 8)pcav2)y x[D(A2)]

= (AY2f, AY2g) o, Yf, g € D(AY?)

and iA also generates &o-group on [D(AY2)].
Hence (2.3) can be written diD(A)]" as

W =iAw + Bu, (2.4)
whereB € £ (U, [D(AY?)]) is given by
Bu=—iATu, Vuel. (2.5)

Define B* € #(ID(AY?)], U), the adjoint ofB*, by

(B*fou)y xu = (fs Bu)[p(av2))x[pAV2))»
VfeDAY?, ueUl.

Then for anyf € D(A) andu € C3°(I'o), we have
(f, Bu)ip(av/2))x[D(AY2))

= (Af, A7 Bu) gy = Af, Yu)poon
= i<A1/2f, A_l/ZTM)Lz(Q)XLZ(Q)

= i(AA’lf, Tu)12(0)x12(Q)

_<i6(A‘1f) >
=\ Y
UxU

In the last step, we have used the fact that

f VoV =0, Ve HEHQ)
Q
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for any classical solutiow of (2.2). SinceCg°(I'p) is
dense inL2(I'p), we obtain

B* = iaA_1
T v

(2.6)
I'o

Now, we can formulate system (1.1) as an abstract
form of a first-order system in the state spade
as follows:

w() =1Aw(t) + Bu(t),

y(t) = B*w, (2.7)

whereB and B* are defined by (2.5) and (2.6), respec-
tively.

The main contribution of this paper is to show
that system (2.7) is regular with feedthrough operator
D =0.

3. Proof of Theorem 1.2

Since (according to Theorem 1.1) system (2.7) is
well-posed, it follows from the Appendix ¢f.0] that
the transfer function of system (2.7) is
H())=B*(—iA)"'B, (3.1)
where A, B and B* are given by (2.1), (2.5) and
(2.6), respectively. Moreover, from the well-posedness
claimed by Theorem 1.1, it follows that there exists a
positive number: > 0 such that (sef9])

sup |HWllgw)=M <oo.
ReiA>a

(3.2)

Proposition 2.1. Theoreml.2 is valid if for anyu €
C5°(I'o) and anye > 0, the solutionu, of

e lug(x) +iAuy(x) =0, x e Q,
ug(x) =0, xelnq,
us(x) =u(x), xe€lo (3.3)
satisfies

2
lim / RCTIC) RPYS (3.4)
¢—0 To v

Proof. We only need to show that (1)u converges
to zero in the strong topology &f along the positive
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real axis (se¢21]), that is, Now, multiply both sides of the first equation of
. _ (3.3) byh - Vu, and integrate ovef. After using the
iﬂTm H(Au=0 (3-5) Green’s formula and the fact théd./0v = Vu, - v on

2 , 0Q, we obtain
for anyu € L“(I'p) = U. Due to (3.2) and a density

argument, it suffices to show that (3.5) is satisfied for

all u € C(I'o). For anyu € C(I'g) and 2> 0, let  g— / eLu i - Vi d +i/ Augh - Virs dx
Q

=(l—iA)1Bu. du,
/ ugh - Vugdx—i—l'/ —(h - Vug)dr
Then along the line from (1.1) to (2.4), we find that Q oQ Ov
w,, satisfies 'f Vi, V(i - Vi) d
Aw;(x) +iAw,;(x)=0, xeQ, Q )
wy(x)=0, xely, 1/uﬁh Vubdx—f—l/ Qu dr
w)(x) =u(x), xe€lo. (3.6) Q 0Q
Along the line from (1.1) to (2.7), it has / Vug - V(h - Vi) dx.
oA 1w,
HOuw) =i S8 WD) o @)
ov Therefore

Sinceu € Cy°(I'o), there exists a unique classical

solution to (3.6). Take a function e H?(Q) such that Out 2 -

/ —| dI'= Re/ Vug-V(h-Vug) dx
—Av(x)=0, xeQ, ov Q
1) =0, xerly, - Img*1/ wh- Vipdx,  (3.11)
v(x) =u(x), xelb. (3.8) Q

Then (3.6) can be written as

A simpl i h h
20,() — Aw; () — b)) =0, x € Q, simple computation shows that

(w; — V)l =0 (3.9) Re(Vii, - V(h - VIID))

or n

FIA w; () = w; () — v(x), - Rezla""hj O 10y e
i,j=

Hence (3.7) becomes

10wy,(x) 10v(x)

v L ov

1
+3 div(h|Vugl?) — 2 div(h)|Vug . (3.12)

(H(Du)(x) =~ (3.10)

_ _ L Substitute (3.12) into (3.11) and make use of the
Letting u.(x) = w, (x) with ¢ = 2", we conclude the  divergence theorem to produce
required result. [

Proof of Theorem 1.2. Let us denote_ by =1(x) the / % dI = Re Z / 2, h]a 1,0, ugdx
tangential vector at € 0Q. SincedQ is of classC3, ov )
it follows from Lemma 2.1 on p. 18 df.2] that there 1
exists a vector fielth = (i1, ha, ..., hy) : @ > R” + Ef |Vug|?>drr
of classC? (for the regularity, we need only thhtis Q2
of classC?) such that _ %/ div(h) |V, | dx
Q

h(x)=v(x) onoQ and|h|<1,
, — s_llm/ ugh - Vigdx.  (3.13)
where| - | denotes the Euclidean norm &f'. Q
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Since|Vu,|? = |a“€ 12+ |a“‘ |2= |a“£ 12 4+ | “|2onTo Finally, since|k| <1, we have

and|Vu,|? = |a“’ |2 on Iy, it follows from (3.13) that
- 2£Im/ ugh - Vug dx
Q

ou,
/ ous* g 2Rez / 0,10, usd, iz dx ggl/zf a2 e +83/2/ - Vi dx
I'o ij=1 Q Q
+/ ou dF—/ du, |? ar <81/2/Q|u8|2dx +83/2fQIVu8|2dx. (3.18)
I'o ot I'1
_/ div(h)| Vs |2 dx Combining (3.14) and (3.16)—(3.18), we obtain
Q
Ou, 2
—2871|m/ ugh - Vug dx f e— | dI’
Q I'o ov
2 2
<C </Q |Vug|=dx + ||”||H1<ro>) <C (sZ/Q Vg |? dx +52||u||§ﬂ(ro)>
— 28_1|mf ugh - Vugdx, (3.14) — 2£Im/ ugh - Vg dx
Q Q
C
whereC > 0 is a constant independent of < (81/2 ) > u>dI’ + Cé? IIMIIHl(FO)
Next, multiply both sides of the first equation of I'o
(3.3) byu; and integrate oveR by parts, to obtain <1+ 1/2) 81/2/ b% ar. (3.9
2 I'o
o1
/"m dx_'/ [Virg| d This shows that
Ouy
7—dIr=0. (3.15) w12
/ro ov lim f e—| dr=o.
e=0t J g v
Compare the real part of Eq. (3.15) and multiply by
¢%/2 to give The result follows. O
12 f Ju|* dx
Q Acknowledgement
=—83/2Re< f %df) .
r, Oov The authors would like to thank the anonymous ref-
12 £5/2 ou, |2 erees for their careful reading, many helpful sugges-
S : lu|? dF+T i dar.  (3.16) tions, and careful corrections to the manuscript.
0 0

The same treatment to the imaginary part of Eq. (3.15)

gives Appendix. The proof of Theorem 1.1
83/2/ Ve | dx We use the notations of Section 2. For brevity, we
o shall denote byC7 a positive constant depending on
u gl/2 time T only, which may change its value from line to
3/2 P 2
=¢72Im ('/F U dF) S - lu|=dI line even though it is denoted by the same symbol.
5/2 g > ° First, we need to show th&is admissible for &",
LB HMel yr. (3.17)  theCo-group generated bylion H. Since the system
2 ov (2.7) is colocatedB is admissible for & if and only
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if B* is admissible for €4™ (see[18]). Therefore,
the admissibility means that

T .

f f|B*e('A) fwol2 dx dr < Cr|woll2,
0 Q

Ywo € D(A) = H}(Q)

for some (and hence for aff) > 0. Since & is aCo-
group, the above is also equivalent to saying that

T .
/ / | B4 wol2 dx dr < Cr woll2,
0 Q
Ywo € D(A) = HA(Q).
Let

(A.1)

Z = ALy,

Then instead of (2.7), we may consider equatiom of
in the spaceHol(Q), which is derived from (2.7), (2.5)
and (2.6):

ze(x, 1) = —iAz(x, 1) —I(Tu(-, 1) (x), xe€Q,
z(x,0) =zo(x), x €,
z(x,1) =0, x €0Q,
y(x,1) = B*w = B*AA 'w
=B*Az = —iw, e TIo. (A.2)

Let f =iTu. Then by definition of the Dirichlet
map, we have

T T
/ flflzdxdt<CT/ |u| dI dr. (A.3)
0 Q 0 I'o

Similar to (3.13), we have
2

d
f Eldr
I'o oy
2Re2n:/6 hi0. z0. 7d / azzdr
= P X — _—
oy Jo T Tt ry |0y

—/ div(h)|Vz|2dx—2Im/ zth - VZdx
Q Q
—2Im/ fh-Vzdx

Q

2 2
<c</Q|vZ| der/Qlfl dx)

—2Im/ zh - VZdx. (A.4)
Q
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Let us look at the term In)fQ z:h - Vzdx. From
(4.2), it follows that

div(z;zh) = z;zdiv(h) + z;h - VZ+Zh - Vz,
= (—inz — fHzdiv(h) +z,h - VZ

+ %(Ek -Vz) —z;h - Vz
= (—iAz — fHzdiv(h) + %(Zh - Vz)
+ 2ilm(z;h - VZ).
Hence
2ilm(z,h - VZ) = div(z,Zh) + (iAz + )z div(h)
— %(Zh -Vz)

Using the divergence theorem and Green’s formula
again, we obtain

2i|m/ zth - VZdx
Q
:/(iAz-i-f)Ediv(h)dx - E/ zh - Vzdx
Q dr Jo
=—if Vz~V(Zdiv(h))dx+/ fzdiv(h) dx
Q Q

d
- — .V .
dt/Zh zdx

Therefore,

T
2Im[ /z;h~Vdedt
o Ja

T
= —/ / Vz - V(zdiv(h)) dx dr
0 JQ

T
—i/ /deiV(h)dxdt
0o J@

T
+i/ zh - Vzdx (A.5)
Q

0

This together with (A.4) gives

A

2
<CT (”Z||L2(O,T;H1(Q)) + ”f”LZ(QX(O,T))

0z

2
drdr
ov

+||Z||ioo(0,T;Hl(.Q))) . (A6)
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Let f =iTu =0 in (A.2). Then since for anyp €
D(A),€4z9 € CY(0, T; D(A)), we have, particu-
larly from (A.6), that

T
/0 /Fo ov

Vzo € D(A) = H}(Q).

3(€4z0) |
drdr<Cr ||ZO||[2D(A)]’

(A7)

This gives in turn
o€ A~ Lwyg)

T
/(.) ,/;0 ov

Ywo = A" 1z0 € D(A).

2
dI" dr < Cr||wol|%,

(A.8)

(A.8) is the same as (A.1) by the definition Bf. The
admissibility follows.

Now we are in a position to show the boundedness
of the input—output map, that is, for some (and hence
forall) T > 0, the solution to (A.2) witlyo=0 satisfies

A

T
scrf / juGr. 2 drdr,
0 I'o
Yu € L?(0,T; U).

2
&0
ov

(A.9)

Notice that the solution to (A.2) withhg = 0 is

given by
d )= — /O 119 £, 100 ds
= i fol[éf‘“”m(-,s)](x)ds.
By the admissibility just verified, we hav§l{])

4 A ~
Az(x, 1) —i/ (€409 AT u(-, 5)](x) ds
0

[
= / (€409 By (., 5)](x)ds € C(0, T; H).
0

Hence

7€ C(0,T; H}(Q)). (A.10)

This together with (A.3) and (A.6) shows that the
solution to (A.2) withzp = 0 indeed satisfies (A.9).
The proof is complete. [
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