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Abstract

This paper studies the basic properties of the Schrödinger equation defined on a bounded domain ofRn, n�2 with partial
Dirichlet control and colocated observation. It is shown that the system is not only wellposed in the sense of D. Salamon
but also regular in the sense of G. Weiss. It is also shown that the corresponding feedthrough operator is zero.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction and main result

In the last 15 years, extensive studies have been de-
voted to a wide class of linear infinite-dimensional sys-
tems calledwell-posed and regular linear systems(see
the surveys[7,24]). Not only does this general frame-
work cover many partial differential equations with
actuators and sensors supported on isolated points, on
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sub-domains, or on a part of the boundary of the spa-
tial regions. More importantly, the studies have shown
that this class of infinite-dimensional systems pos-
sesses many properties that are parallel in many ways
to those of finite-dimensional (see for instance[8,22]).
The concept of “regularity” while very useful in this
framework, rarely appears in the literature on control
of partial differential equation systems[6]. In [2], the
well-posedness of a wave equation with Dirichlet in-
put and colocated output on the 2-D disk was proved
by the direct method. The well-posedness of the same
equation on a bounded open domain ofRn, n�2 with
smooth boundary was proved in[1] by the microlo-
cal analysis. The well-posedness and regularity of a
multi-dimensional heat equation with both Dirichlet
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and Neumann-type boundary controls is derived in[5].
Other examples on the well-posedness and regularity
of somemulti-dimensional partial differential equation
systems can be found occasionally in[16,25,3,4,23].
The regularity of a multi-dimensional wave equation
with Dirichlet control and colocated observation was
recently proved in[11].
The objective of this paper is to prove the regular-

ity of a multi-dimensional Schrödinger equation with
partial Dirichlet control and colocated observation de-
scribed by

wt(x, t) + i�w(x, t) = 0, x ∈ �, t >0,

w(x, t) = 0, x ∈ �1, t�0,

w(x, t) = u(x, t), x ∈ �0, t�0,

y(x, t) = i
�(�−1w)

��
, x ∈ �0, t�0, (1.1)

where� ⊂ Rn, n�2 is an open bounded region with
smoothC3-boundary�� = �0 ∪ �1. �0,�1 are dis-
joint parts of the boundary relatively open in�� and
int(�0) �= ∅. � is the unit normal vector of�0 point-
ing towards the exterior of�. u is the input function
(or control) andy is the output function (or output).
LetH =H−1(�) be the state space andU =L2(�0)

be the control (input) or observation (output) space.
The following well-posedness (see the definition for
instance in[15]) result follows from Proposition 4.2
of [13]. A slightly different proof (without using “lift-
ing theorem”) based on Proposition 4.2 of[13] is pre-
sented as an Appendix at the end of this article.

Theorem 1.1. System(1.1) is well-posed. More pre-
cisely, let T >0 be any constant andCT be some pos-
itive constant depending only on T. Letw(·,0)=w0 ∈
H be any initial state. Then for any control inputu ∈
L2(0, T ;U), there exists a unique solution to Eq.(1.1)
such thatw ∈ C(0, T ;H) and

‖w(·, T )‖2H + ‖y‖2
L2(0,T ;U)

�CT

[
‖w0‖2H + ‖u‖2

L2(0,T ;U)

]
. (1.2)

The well-posedness claimed by Theorem 1.1 is a
very important property, which implies that the exact
controllability of system (1.1) in some finite time in-
terval is equivalent to the exponential stability of the
closed-loop system under the output feedback control

u=−ky with k >0 (see[10]). The main result of this
paper is that system (1.1) is also regular.

Theorem 1.2. System(1.1) is regular, with feed-
through operator zero. More precisely, if the initial
statew(·,0) = 0 and u(·, t) = u(·) ∈ U is a step
control input, then the corresponding output satisfies

lim
�→0

∫
�0

∣∣∣∣1�
∫ �

0
y(x, t)dt

∣∣∣∣
2

dx = 0. (1.3)

Theorems 1.1 and 1.2 ensure that system (1.1) is
a well-posed regular linear system in the sense of
[14,19]. The definition in [15] is not the standard
one given by[19,7] but it is equivalent to Weiss’s
definition. We recall that well-posed and regular
infinite-dimensional systems may have unbounded
input and output operators, they resemble linear finite-
dimensional systems in many ways (see e.g.[8]).
In Section 2, we formulate system (1.1) into a colo-

cated abstract setting. The proof of Theorem 1.2 will
be presented in Section 3. The proof of Theorem 1.1,
which follows from Proposition 4.2 of[13], is given
in the Appendix.

2. Colocated formulation of system (1.1)

Many papers have been published in the last 15
years on infinite-dimensional well-posed regular sys-
tems. For this material, we refer to[7,15]and[17–21].
It is well known thatH =H−1(�) is the dual space

of the Sobolev spaceH 1
0 (�) with respect to the pivot

spaceL2(�). Let A be the positive self-adjoint oper-
ator inH produced from the bilinear forma(·, ·) on
H 1
0 (�) defined by

〈Af , g〉H−1(�)×H1
0 (�)=a(f, g)=

∫
�

∇f (x)∇g(x)dx,

∀f, g ∈ H 1
0 (�). (2.1)

According to the Lax–Milgram theorem,A is an
canonical isomorphism fromD(A) = H 1

0 (�) ontoH.
Considering the Laplacian−� : H 2(�) ∩ H 1

0 (�) →
L2(�), it is easy to show thatAf = −�f whenever
f ∈ H 2(�) ∩ H 1

0 (�) and thatA−1g = (−�)−1g for
anyg ∈ L2(�). HenceA is an extension of the usual
Laplacian inL2(�) to H.
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It is easily shown (see e.g.[12]) that D(A1/2) =
L2(�) and A1/2 is an canonical isomorphism of
L2(�) onto H. Define the Dirichlet mapΥ ∈
L(L2(�0), L

2(�)) ([2]), i.e.,Υ u = v that is unique
if and only if

�v = 0 in �,

v|�1 = 0, v|�0 = u. (2.2)

Using the Dirichlet map, one can write (1.1) as

ẇ − iA(w − Υ u) = 0. (2.3)

IdentifyingH with its dualH ′, we have the following
diagram:

[D(A)] ⊂ [D(A1/2)] ↪→ H

= H ′ ↪→ [D(A1/2)]′ ⊂ [D(A)]′.
An extensionÃ ∈ L([D(A1/2)], [D(A1/2)]′) of A is
defined by

〈Ãf, g〉[D(A1/2)]′×[D(A1/2)]
= 〈A1/2f,A1/2g〉H×H , ∀f, g ∈ D(A1/2)

and iÃ also generates aC0-group on [D(A1/2)]′.
Hence (2.3) can be written on[D(A)]′ as
ẇ = iÃw + Bu, (2.4)

whereB ∈ L(U, [D(A1/2)]′) is given by

Bu = −iÃΥ u, ∀u ∈ U . (2.5)

DefineB∗ ∈ L([D(A1/2)], U), the adjoint ofB∗, by

〈B∗f, u〉U×U = 〈f,Bu〉[D(A1/2)]×[D(A1/2)]′ ,
∀f ∈ D(A1/2), u ∈ U .

Then for anyf ∈ D(A) andu ∈ C∞
0 (�0), we have

〈f,Bu〉[D(A1/2)]×[D(A1/2)]′
= 〈Af , Ã−1Bu〉H×H = i〈Af ,Υ u〉H×H

= i〈A1/2f,A−1/2Υ u〉L2(�)×L2(�)

= i〈AA−1f, Υ u〉L2(�)×L2(�)

=
〈
i
�(�−1f )

��
, u

〉
U×U

.

In the last step, we have used the fact that∫
�

∇v∇� = 0, ∀� ∈ H 1
0 (�)

for any classical solutionv of (2.2). SinceC∞
0 (�0) is

dense inL2(�0), we obtain

B∗ = i
��−1

��

∣∣∣∣∣
�0

. (2.6)

Now, we can formulate system (1.1) as an abstract
form of a first-order system in the state spaceH
as follows:

ẇ(t) = iAw(t) + Bu(t),

y(t) = B∗w, (2.7)

whereB andB∗ are defined by (2.5) and (2.6), respec-
tively.
The main contribution of this paper is to show

that system (2.7) is regular with feedthrough operator
D = 0.

3. Proof of Theorem 1.2

Since (according to Theorem 1.1) system (2.7) is
well-posed, it follows from the Appendix of[10] that
the transfer function of system (2.7) is

H(�) = B∗(� − iA)−1B, (3.1)

where A, B and B∗ are given by (2.1), (2.5) and
(2.6), respectively. Moreover, from the well-posedness
claimed by Theorem 1.1, it follows that there exists a
positive number�>0 such that (see[9])

sup
Re���

‖H(�)‖L(U) = M <∞. (3.2)

Proposition 2.1. Theorem1.2 is valid if for anyu ∈
C∞
0 (�0) and any�>0, the solutionu� of

�−1u�(x) + i�u�(x) = 0, x ∈ �,

u�(x) = 0, x ∈ �1,

u�(x) = u(x), x ∈ �0 (3.3)

satisfies

lim
�→0

∫
�0

∣∣∣∣��u�(x)

��

∣∣∣∣
2

dx = 0. (3.4)

Proof. We only need to show thatH(�)u converges
to zero in the strong topology ofU along the positive
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real axis (see[21]), that is,

lim
�→+∞

H(�)u = 0 (3.5)

for any u ∈ L2(�0) = U. Due to (3.2) and a density
argument, it suffices to show that (3.5) is satisfied for
all u ∈ C∞

0 (�0). For anyu ∈ C∞
0 (�0) and�>0, let

w� = (� − iA)−1Bu.

Then along the line from (1.1) to (2.4), we find that
w� satisfies

�w�(x) + i�w�(x) = 0, x ∈ �,

w�(x) = 0, x ∈ �1,

w�(x) = u(x), x ∈ �0. (3.6)

Along the line from (1.1) to (2.7), it has

(H(�)u)(x) = i
�(�−1w�(x))

��
, ∀ x ∈ �0. (3.7)

Since u ∈ C∞
0 (�0), there exists a unique classical

solution to (3.6). Take a functionv ∈ H 2(�) such that

− �v(x) = 0, x ∈ �,

v(x) = 0, x ∈ �1,

v(x) = u(x), x ∈ �0. (3.8)

Then (3.6) can be written as

i�w�(x) − �(w�(x) − v(x)) = 0, x ∈ �,

(w� − v)|�� = 0 (3.9)

or

�i�−1w�(x) = w�(x) − v(x).

Hence (3.7) becomes

(H(�)u)(x) = 1

�

�w�(x)

��
− 1

�

�v(x)

��
. (3.10)

Letting u�(x) = w�(x) with � = �−1, we conclude the
required result. �

Proof of Theorem 1.2. Let us denote by	= 	(x) the
tangential vector atx ∈ ��. Since�� is of classC3,
it follows from Lemma 2.1 on p. 18 of[12] that there
exists a vector fieldh = (h1, h2, . . . , hn) : � → Rn

of classC2 (for the regularity, we need only thath is
of classC1) such that

h(x) = �(x) on �� and |h|�1,

where| · | denotes the Euclidean norm ofRn.

Now, multiply both sides of the first equation of
(3.3) byh · ∇u� and integrate over�. After using the
Green’s formula and the fact that�u�/�� = ∇u� · � on
��, we obtain

0=
∫
�

�−1u�h · ∇u� dx + i
∫
�

�u�h · ∇u� dx

= �−1
∫
�
u�h · ∇u� dx + i

∫
��

�u�

��
(h · ∇u�)d�

− i
∫
�

∇u� · ∇(h · ∇u�)dx

= �−1
∫
�
u�h · ∇u� dx + i

∫
��

∣∣∣∣�u�

��

∣∣∣∣
2

d�

− i
∫
�

∇u� · ∇(h · ∇u�)dx.

Therefore

∫
��

∣∣∣∣�u�

��

∣∣∣∣
2

d� = Re
∫
�

∇u� · ∇(h · ∇u�)dx

− Im �−1
∫
�
u�h · ∇u� dx. (3.11)

A simple computation shows that

Re(∇u� · ∇(h · ∇u�))

= Re
n∑

i,j=1

�xi
hj�xi

u��xj
u�

+ 1

2
div(h|∇u�|2) − 1

2 div(h)|∇u�|2. (3.12)

Substitute (3.12) into (3.11) and make use of the
divergence theorem to produce

∫
��

∣∣∣∣�u�

��

∣∣∣∣
2

d� = Re
n∑

i,j=1

∫
�

�xi
hj�xi

u��xj
u� dx

+ 1

2

∫
��

|∇u�|2 d�

− 1

2

∫
�
div(h)|∇u�|2 dx

− �−1 Im
∫
�
u�h · ∇u� dx. (3.13)
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Since|∇u�|2 = | �u�
�� |2 + | �u�

�	 |2 = | �u�
�� |2 + | �u�	 |2 on�0

and|∇u�|2 = | �u�
�� |2 on�1, it follows from (3.13) that

∫
�0

∣∣∣∣�u�

��

∣∣∣∣
2

d� = 2Re
n∑

i,j=1

∫
�

�xi
hj�xi

u��xj
u� dx

+
∫
�0

∣∣∣∣�u�	

∣∣∣∣
2

d� −
∫
�1

∣∣∣∣�u�

��

∣∣∣∣
2

d�

−
∫
�
div(h)|∇u�|2 dx

− 2�−1 Im
∫
�
u�h · ∇u� dx

�C

(∫
�

|∇u�|2 dx + ‖u‖2
H1(�0)

)

− 2�−1 Im
∫
�
u�h · ∇u� dx, (3.14)

whereC >0 is a constant independent of�.
Next, multiply both sides of the first equation of

(3.3) byu� and integrate over� by parts, to obtain

�−1
∫
�

|u�|2 dx − i
∫
�

|∇u�|2 dx

+ i
∫
�0

u
�u�

��
d� = 0. (3.15)

Compare the real part of Eq. (3.15) and multiply by
�3/2 to give

�1/2
∫
�

|u�|2 dx

= −�3/2Re

(
i
∫
�0

u
�u�

��
d�

)

� �1/2

2

∫
�0

|u|2 d� + �5/2

2

∫
�0

∣∣∣∣�u�

��

∣∣∣∣
2

d�. (3.16)

The same treatment to the imaginary part of Eq. (3.15)
gives

�3/2
∫
�

|∇u�|2 dx

= �3/2 Im

(
i
∫
�0

u
�u�

��
d�

)
� �1/2

2

∫
�0

|u|2 d�

+ �5/2

2

∫
�0

∣∣∣∣�u�

��

∣∣∣∣
2

d�. (3.17)

Finally, since|h|�1, we have

− 2� Im
∫
�
u�h · ∇u� dx

��1/2
∫
�

|u�|2 dx + �3/2
∫
�

|h · ∇u�|2 dx

��1/2
∫
�

|u�|2 dx + �3/2
∫
�

|∇u�|2 dx. (3.18)

Combining (3.14) and (3.16)–(3.18), we obtain

∫
�0

∣∣∣∣��u�

��

∣∣∣∣
2

d�

�C

(
�2

∫
�

|∇u�|2 dx + �2‖u‖2
H1(�0)

)

− 2� Im
∫
�
u�h · ∇u� dx

�
(

�1/2 + C

2
�

) ∫
�0

|u|2 d� + C�2‖u‖2
H1(�0)

+
(
1+ C

2
�1/2

)
�1/2

∫
�0

∣∣∣∣��u�

��

∣∣∣∣
2

d�. (3.19)

This shows that

lim
�→0+

∫
�0

∣∣∣∣��u�

��

∣∣∣∣
2

d� = 0.

The result follows. �
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Appendix. The proof of Theorem 1.1

We use the notations of Section 2. For brevity, we
shall denote byCT a positive constant depending on
timeT only, which may change its value from line to
line even though it is denoted by the same symbol.
First, we need to show thatB is admissible for eiA·,

theC0-group generated by iA onH. Since the system
(2.7) is colocated,B is admissible for eiA· if and only
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if B∗ is admissible for e−iA∗· (see[18]). Therefore,
the admissibility means that∫ T

0

∫
�

|B∗e(iA)∗tw0|2 dx dt�CT ‖w0‖2,
∀w0 ∈ D(A) = H 1

0 (�)

for some (and hence for all)T >0. Since eiA· is aC0-
group, the above is also equivalent to saying that∫ T

0

∫
�

|B∗eiAtw0|2 dx dt�CT ‖w0‖2,
∀w0 ∈ D(A) = H 1

0 (�). (A.1)

Let

z = A−1w.

Then instead of (2.7), we may consider equation ofz
in the spaceH 1

0 (�), which is derived from (2.7), (2.5)
and (2.6):

zt (x, t) = −i�z(x, t) − i(Υ u(·, t))(x), x ∈ �,

z(x,0) = z0(x), x ∈ �,

z(x, t) = 0, x ∈ ��,

y(x, t) = B∗w = B∗AA−1w

= B∗Az = −i
�z(x, t)

��
, x ∈ �0. (A.2)

Let f = iΥ u. Then by definition of the Dirichlet
map, we have∫ T

0

∫
�

|f |2 dx dt�CT

∫ T

0

∫
�0

|u|2 d�dt . (A.3)

Similar to (3.13), we have∫
�0

∣∣∣∣�z��

∣∣∣∣
2

d�

= 2Re
n∑

i,j=1

∫
�

�xi
hj�xi

z�xj
z dx −

∫
�1

∣∣∣∣�z��

∣∣∣∣
2

d�

−
∫
�
div(h)|∇z|2 dx − 2 Im

∫
�
zth · ∇z dx

− 2 Im
∫
�
f h · ∇z dx

�C

(∫
�

|∇z|2 dx +
∫
�

|f |2 dx
)

− 2 Im
∫
�
zth · ∇z dx. (A.4)

Let us look at the term Im
∫
� zth · ∇z dx. From

(4.2), it follows that

div(zt zh) = zt z div(h) + zth · ∇z + zh · ∇zt

= (−i�z − f )z div(h) + zth · ∇z

+ d

dt
(zh · ∇z) − zth · ∇z

= (−i�z − f )z div(h) + d

dt
(zh · ∇z)

+ 2i Im(zth · ∇z).

Hence

2i Im(zth · ∇z) = div(zt zh) + (i�z + f )z div(h)

− d

dt
(zh · ∇z)

Using the divergence theorem and Green’s formula
again, we obtain

2i Im
∫
�
zth · ∇z dx

=
∫
�
(i�z + f )z div(h)dx − d

dt

∫
�
zh · ∇z dx

= −i
∫
�

∇z · ∇(z div(h))dx +
∫
�
f z div(h)dx

− d

dt

∫
�
zh · ∇z dx.

Therefore,

2 Im
∫ T

0

∫
�
zth · ∇z dx dt

= −
∫ T

0

∫
�

∇z · ∇(z div(h))dx dt

− i
∫ T

0

∫
�
f z div(h)dx dt

+ i
∫
�
zh · ∇z dx

∣∣∣∣
T

0
. (A.5)

This together with (A.4) gives

∫ T

0

∫
�0

∣∣∣∣�z��

∣∣∣∣
2

d�dt

�CT

(
‖z‖2

L2(0,T ;H1(�))
+ ‖f ‖L2(�×(0,T ))

+‖z‖2
L∞(0,T ;H1(�))

)
. (A.6)
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Let f = iΥ u = 0 in (A.2). Then since for anyz0 ∈
D(A),eiAtz0 ∈ C1(0, T ;D(A)), we have, particu-
larly from (A.6), that

∫ T

0

∫
�0

∣∣∣∣�(eiAtz0)

��

∣∣∣∣
2

d�dt�CT ‖z0‖2[D(A)],

∀z0 ∈ D(A) = H 1
0 (�). (A.7)

This gives in turn

∫ T

0

∫
�0

∣∣∣∣�(eiAtA−1w0)

��

∣∣∣∣
2

d�dt�CT ‖w0‖2,
∀w0 = A−1z0 ∈ D(A). (A.8)

(A.8) is the same as (A.1) by the definition ofB∗. The
admissibility follows.
Now we are in a position to show the boundedness

of the input–output map, that is, for some (and hence
for all) T >0, the solution to (A.2) withz0=0 satisfies

∫ T

0

∫
�0

∣∣∣∣�z(x, t)��

∣∣∣∣
2

d�dt

�CT

∫ T

0

∫
�0

|u(x, t)|2 d�dt ,

∀u ∈ L2(0, T ;U). (A.9)

Notice that the solution to (A.2) withz0 = 0 is
given by

z(x, t) = −
∫ t

0
[eiÃ(t−s)f (·, s)](x)ds

= − i
∫ t

0
[eiÃ(t−s)Υ u(·, s)](x)ds.

By the admissibility just verified, we have ([17])

Ãz(x, t) = − i
∫ t

0
[eiÃ(t−s)ÃΥ u(·, s)](x)ds

=
∫ t

0
[eiÃ(t−s)Bu(·, s)](x)ds ∈ C(0, T ;H).

Hence

z ∈ C(0, T ;H 1
0 (�)). (A.10)

This together with (A.3) and (A.6) shows that the
solution to (A.2) withz0 = 0 indeed satisfies (A.9).
The proof is complete. �
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