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Abstract— In a multi-agent system (MAS), the agents are
often considered to be autonomous entities, such as robots or
software programs, each under the influence of a local rule,
representing its interaction with other agents. Over the past
few years, most research in the study of discrete-time MAS’s
concentrates on linear local rules. However, local interactions
between agents are more likely to be governed by nonlinear
rules with time-varying delays. This paper investigates the
consensus of discrete-time MAS’s with nonlinear local rules
and time-varying delays. Based on a representative model, we
obtain some basic criteria for the consensus of such MAS’s.
These results cover several existing results as special cases.
Moreover, the above criteria are applied to the consensus of
the classical Vicsek model with time-varying delays. Simulation
results are presented to validate the obtained criteria.

I. INTRODUCTION

A multi-agent system (MAS) is a system that is composed

of multiple interacting intelligent agents ([1]-[4]). Here, the

agents are often considered to be autonomous entities, such

as humans, robots, and software programs ([5]-[8]). Their

interactions can be either cooperative or selfish. These agents

may share a common goal, such as in a flock of nightingales,

or they may pursue their own interests, such as in the commu-

nity with free market economy. MAS’s can be used to solve

problems which are difficult or impossible for an individual

agent or a monolithic system to solve, such as disaster

response and Internet structure modeling. Topics of research

on MAS’s include cooperation and coordination, distributed

problem solving, multi-agent learning, and communication

([9]-[16]).

An MAS may often manifest self-organization and com-

plex collective behaviors even when the individual strategies

of all its agents are very simple ([1], [4], [5], [14], [15]).

Consensus or synchronization is one of typical collective

behaviors in an MAS. In fact, consensus is a fundamental

nature phenomenon. Hereafter, by consensus we mean a

general agreement among all members of a given group

or community, each of which exercises some discretion in
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decision making and its interactions other agents. A typical

example is that a number of autonomous vehicles align their

headings by using only the local information. To reveal

the inherent mechanism of consensus in an MAS, many

mathematical models have been introduced, including the

Vicsek model [1] and Couzin-Levin model [14]. Based on

these models, many interesting results have been obtained

on the consensus of MAS’s (see, for example, [2], [12], and

[16]). In particular, the constructive approach in [12] laid a

solid foundation for the theoretical analysis of consensus in

many recent works ([2], [7], [11]). The method in [12] can

also be used to establish the exponential convergence of an

MAS. There exist some other ways to reach a consensus for

all agents in an MAS (see, for example, [3] and [8]).

We observe that most of the above results are based on the

linear local rules that govern the interactions among agents

(see, for example, [2]-[4], [6], [7], and [10]). However, in

real-world applications, the local interactions among agents

are very often represented by nonlinear rules with time-

varying delays. Based on the work of [3] and [8], in this

paper, we aim to further study the consensus in a discrete-

time MAS with nonlinear local rules and time-varying de-

lays. In particular, we will deduce several basic consensus

criteria for such an MAS. These criteria are then extended

to establish the consensus of the classical Vicsek model [1]

with time-varying delays. Finally, simple simulation results

are given to validate the proposed criteria.

This paper is organized as follows. Section II describes

the background of consensus for the discrete-time MAS’s

with nonlinear local rules and time-varying delays. The main

theorems are then presented and proven in Section III. In

Section IV, the above criteria are applied to the consensus

of the classical Vicsek model with time-varying delays.

Simulation results are given in Section V. Finally, Section

VI concludes this paper.

II. DESCRIPTION OF THE PROBLEM

Consider a discrete-time MAS consisting of n autonomous

agents, labeled 1 to n. Denote all the agents by the set V =
{1, 2, · · · , n}. Let the state of agent i ∈ V be denoted by

xi(t) (t ≥ 0). There exist some communication connections

among these n agents. If agent i has access to the information

of agent j, then agent j is said to be a neighbor of agent i
and the set of all neighbors of agent i at time t is denoted

by Ni(t). Consequently, i ∈ Ni(t) if agent i has access to

the information of itself. Let graph G(t) = (V, E(t)) be the

communication topology at time t, where E(t) ⊆ V × V is

the set of edges and (i, j) ∈ E(t) if and only if agent j is
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one of the neighbors of agent i. For several different graphs

Gk = {V, Ek} with 1 ≤ k ≤ Γ, the union of these Γ graphs

is given by
⋃Γ

k=1 Gk = {V,
⋃Γ

k=1 Ek}.

For two nodes i, j in a graph G = {V, E}, if there

are k different nodes is(1 ≤ s ≤ k) in V such that

(i, i1), (is, is+1), (ik, j) ∈ V for 1 ≤ s ≤ k − 1, then there

is a path from i to j. If there are paths from any node i ∈ V
to any node j ∈ V (i 6= j), this graph is said to be strongly

connected.

Assume that time-delays in the channels of communication

among agents are not negligible. In this case, the evolution

of the states of these n agents will comply with the following

rules:

yi
j(t) = f(xj(t − τ i

j(t))), (1)

xi(t + 1) = F





1

ni(t)

∑

j∈Ni(t)

yi
j(t)



 , (2)

where ni(t) is the number of elements in set Ni(t) and i ∈
V . Here, the updating rule (1) is a temporary process which

means that agent i can get information yi
j(t) directly (no

time-delay, i.e., τ i
j(t) = 0) or indirectly (with time-delay,

i.e., τ i
j(t) > 0) from agent j. The updating rule (2) indicates

that there exists a process that transforms the information of

the neighboring agents into the state of agent i in the next

time after collecting the information from all its neighbors.

According to the updating rules (1) and (2), the overall

updating rule is described by

xi(t + 1) = F





1

ni(t)

∑

j∈Ni(t)

f
(

xj

(

t − τ i
j(t)

))



 , (3)

for all i ∈ V .

Note that {i} 6= Ni(t) if G(t) is strongly connected. In this

case, each agent must update its state at each time instant.

For the local interactions (3), the question of interest

is what kinds of functions f and F and communication

topology G(t) will guarantee the consensus of all the agents,

that is, |xi(t) − xj(t)| → 0 as t → ∞ for any i, j ∈ V .

Usually, we consider G(t) to be an undirected graph.

That is, neighbors exchange their information between each

other at any time instant, which is said to be agreeing syn-

chronously. However, in real-world applications, the reach-

ability of information channel from agent i to agent j only

guarantees that agent j gets the information from agent i but

does not guarantee that agent i gets the information from

j at the same time. This asymmetry in the communication

topology is said to be asynchronous. An asynchronous com-

munication topology can be described by a directed graph

G(t). In this paper, we will deal with the situation when

G(t) is a directed graph.

III. MAIN RESULTS

To begin with, let V , G(t), Π denote the set of agents, the

topology of communication at time t, and the local updating

rules, respectively. Then the triple (V, G(t),Π) describes an

MAS.

Let V = {1, 2, · · · , n} and Π = Equation (3). Then, the

MAS considered in this paper is denoted by (V, G(t), (3)).
In (3), let F be an invertible function and g = F−1, the

following assumptions are necessary in the discussions that

follow.

(A1) f and g are both continuous functions defined on [a, b]
and f(b) = g(b).

(A2) f is monotonically increasing and g is strictly mono-

tonically increasing.

(A3) f(x) ≥ g(x) for x ∈ [a, b].
(A4) There exists an integer Γ > 0 such that ∪Γ

s=1G(t + s)
is strongly connected for any t ≥ 0.

(A5) There exists an integer B > 0 such that 0 ≤ τ i
j(t) < B

for any i 6= j.

(A6) τ i
i (t) = 0 for ∀t ≥ 0 and i ∈ V .

Let

Mi(t) = max{xi(t), xi(t − 1), · · · , xi(t − B + 1)},

mi(t) = min{xi(t), xi(t − 1), · · · , xi(t − B + 1)},

Mi = limt→∞Mi(t),

mi = limt→∞mi(t),

m =
n

min
i=1

mi,

m(t) =
n

min
i=1

mi(t).

In what follows, we will state several lemmas, some of

which generalize the corresponding results in the absence of

time delays in [3]. The proofs of these lemmas are omitted

due to space limitation.

Lemma 1: Suppose that Assumptions (A1)-(A3), (A5),

and (A6) hold for the given MAS (V, G(t), (3)). If the initial

states xi(t) ∈ [a, b] with i ∈ V and −B < t ≤ 0, then

xi(t) ∈ [a, b] for any t > 0 and i ∈ V .

Lemma 1 indicates the validity of local rule (3).

Lemma 2: Suppose that Assumption (A1)-(A3), (A5) and

(A6) hold for the given MAS (V, G(t), (3)). Then there exists

an m′ such that limt→∞ m(t) = m′ and f(m′) = g(m′).
Lemma 3: Suppose that Assumptions (A1)-(A3), (A5)

and (A6) hold for the given MAS (V, G(t), (3)). Then m′ =
m, where m′ is as defined in Lemma 2.

Lemma 4: Assume that functions f and g satisfy Assump-

tions (A2) and (A3). Then, for any given l > m and any

positive integer N , there exist some ε > 0 and a sequence

{lp} with l0 = l such that

g(lp+1 − ε) <
1

k
((k − 1)f(m − ε) + f(lp − ε)),

m + ε < lp − ε,

lp+1 < lp,

hold for all k ∈ {1, 2, · · · , n} and p ∈ {0, 1, 2, · · · , N}.

Lemma 5: For the sequence of natural numbers {t} =
{1, 2, · · · }, there exists a subsequence {tk} of {t} satisfying

limtk→∞ mi(tk) = ri and m = minn
i=1 mi = minn

i=1 ri.

For a′ < b′, denote

Vt(a
′) = {i ∈ V : a′ < mi(t)},

Λt(a
′, b′) = {i ∈ V : a′ < mi(t) < b′}.
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Theorem 1: Suppose that Assumptions (A1)-(A6) hold for

the given MAS (V, G(t), (3)). Then, for any given initial

states xi(t) ∈ [a, b] with i ∈ V and −B < t ≤ 0, the states

of all agents reach consensus.

Proof. According to Lemma 5, for the natural number

series {t} = {1, 2, · · · }, there exists a subsequence {tk}
satisfying limk→∞ mi(tk) = ri and m = minn

i=1 ri. Let

R = maxn
i=1 ri.

If R 6= m, let l = min{ri|ri > m}. By Lemma 4, there

exists a sequence {lp} with l0 = l and ε > 0 such that

g(lp+1 − ε) <
1

k
((k − 1)f(m − ε) + f(lp − ε)),

m + ε < lp − ε,

lp+1 < lp,

holds for all k ∈ {1, 2, · · · , n}, p ∈ {0, 1, 2, · · · , n·(B+Γ)}.

By the definition of {tk}, there exists a tk∗ ∈ {tk} such

that Vtk
(l − ε) = {i ∈ V : ri > m} 6= V and Λtk

(m −
ε,m + ε) 6= Ø with tk > tk∗ . Select an interval [tk, tk+1)
satisfying tk > tk∗ and tk+1 − tk = T > n(B + Γ). (If

tk+1 − tk ≤ n(B + Γ), then one can use some tk+s to

replace tk+1 to obtain tk+s − tk > n(B + Γ)).
Let

Ap = Vtk+p(lp − ε), (4)

Cp = V − Ap. (5)

Since ∪Γ
s=1G(t + s) is strongly connected, if Ap+t and

Cp+t are nonempty and unchanged for 0 ≤ t < Γ, then

there exists at least one edge from Ap+t to Cp+t at some

time 0 ≤ t < Γ.

By using an induction procedure, one can prove that Ap ⊆
Ap+1 for p ∈ {0, 1, 2, · · · , n(B + Γ)}.

i) p = 0:

It is obvious that A0 6= Ø and C0 6= Ø. If i ∈ A0, then

mi(tk) > l − ε. That is,

xi(tk − B + 2) > l − ε > l1 − ε,

xi(tk − B + 3) > l − ε > l1 − ε,

...

xi(tk) > l − ε > l1 − ε.

For τ i
i = 0, by the definition of ε, one gets

xi(tk + 1) = g−1





1

ni(tk)

∑

j∈Ni(tk)

f
(

xj(tk − τ i
j(tk))

)





≥ g−1

(

1

ni(tk)
((ni(tk) − 1)f(m − ε)

+ f(l − ε))

)

> l1 − ε

> m + ε.

Hence,

mi(tk + 1) ≥ l1 − ε

and i ∈ A1. Therefore, A0 ⊆ A1.

ii) Suppose that the case of p− 1 holds, then for the case

of p:

If i ∈ Ap, similarly, one has i ∈ Ap+1. Thus, Ap ⊆ Ap+1

for p ∈ {0, 1, 2, · · · , n · (B + Γ)}. Therefore, Cp+1 ⊆ Cp.

If A0 = V , then Λtk
(m − ε,m + ε) = Ø and C0 = Ø.

Obviously, this is a contradiction. Therefore, A0 6= V .

In what follows, we prove that A0 ( AB+Γ:

Suppose that A0 = AB+Γ, then A0 = At = AB+Γ for any

0 ≤ t ≤ B + Γ. For A0 6= V and C0 6= Ø, if i ∈ Cs ⊆ C0

and Ni(tk +s)∩As 6= Ø for some 0 ≤ s < Γ, then one gets

xi(tk + s + 1)

= g−1





1

ni(tk + s)

∑

j∈Ni(tk+s)

f
(

xj(tk + s − τ i
j(tk + s))

)





≥ g−1

(

1

ni(tk + s)

(

(ni(tk + s) − 1)f(m − ε)

+ f(ls − ε)
)

)

> ls+1 − ε

> m + ε .

Here, the existence of i is guaranteed by the fact that

∪Γ
s=1G(t + s) is strongly connected and As ∩ Cs = Ø.

Similarly, one has

xi(tk + s + 2) > ls+2 − ε > m + ε,

xi(tk + s + 3) > ls+3 − ε > m + ε,

...

xi(tk + s + B) > ls+B − ε > m + ε.

For lp > lp+1, one gets mi(tk + s + B) > ls+B − ε
and i ∈ As+B . However, according to i ∈ Cs ⊆ C0 and

A0 ∩ C0 = Ø, then i /∈ A0. Since Ap ⊆ Ap+1, then A0 6=
AB+Γ. Thus, A0 ( AB+Γ.

Repeat the above process, there exists some ∆ satisfying

1 ≤ ∆ ≤ n − 1 and A0 ( AB+Γ ( A2(B+Γ) ( · · · (

A∆(B+Γ) = V .

Hence, C∆(B+Γ) = V − A∆(B+Γ) = Ø. For t > tk +
∆(B + Γ), one has

xi(t) ≥ g−1 ◦ f(l∆(B+Γ) − ε) ≥ l∆(B+Γ) − ε > m + ε.

Combining the above inequality with tk+1 > tk +n(B +Γ),
one gets Λtk+1

(m−ε,m+ε) = Ø. Obviously, it is contradicts

the fact of Λtk+1
(m − ε,m + ε) 6= Ø.

Hence, the above reasoning shows that it is impossible

that R 6= m.

If m = R, then one has ri = mi = m.

Moreover, if mi = Mi for any i ∈ {1, 2, · · · , n}, then

limt→∞ xi(t) = m. Therefore, the states of all agents can

reach consensus.

If there exists some i ∈ V satisfying limt→∞mi(t) 6= m,

then there exists a sequence {t′k} satisfying mi(t
′
k) → ri 6=

m and mj(t
′
k) → rj for ∀j ∈ V \{i}. Thus the proof of

this case is the same as that of the case m 6= R and is thus

omitted here.
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Beside the above two cases, one need to consider the

following case: there exists some j ∈ V satisfying mj 6= Mj

and limt→∞ mi(t) = m for any i ∈ V .

For some i satisfying mi 6= Mi, then one can select some

accumulation point η0 of {xi(t)} with η0 > m. According

to Lemma 4, there exists a sequence {ηp} and some ε > 0
such that

1

k
((k − 1)f(m − ε) + f(ηp − ε)) > g(ηp+1 − ε),

ηp − ε > m + ε,

where m < ηp+1 < ηp, k ∈ {1, 2, · · · , n}, and p ∈
{0, 1, 2, · · · , B}.

Therefore, for the above ε, there exists a sufficiently large

positive integer ξ satisfying xi(ξ) > η0 − ε and m − ε <
mj(t) < m + ε for ∀j ∈ V and t ≥ ξ.

For τ i
i = 0, by the definition of ε, one has

xi(ξ + 1) = g−1





1

ni(ξ)

∑

j∈Ni(ξ)

f
(

xj

(

ξ − τ i
j(ξ)

))





≥ g−1

(

1

ni(ξ)
((ni(ξ) − 1)f(m − ε)

+ f(η0 − ε))

)

> η1 − ε

> m + ε,

xi(ξ + 2) > η2 − ε > m + ε,

...

xi(ξ + B) > ηB − ε > m + ε.

Then, one gets

mi(ξ + B) > min{η0, η1, · · · , ηB} − ε = ηB − ε > m + ε.

Obviously, it contradicts the fact that m−ε < mj(t) < m+ε
holds for any j ∈ V and t ≥ ξ. Hence this case is impossible.

Therefore, the states of all agents can reach consensus. ¥

Remark 1: In Assumptions (A1) and (A3), if f(a) = g(a)
and f(x) ≤ g(x) in [a, b], similar result can also be obtained

for the MAS (V, G(t), (3)).
Remark 2: If the MAS can reach consensus for the local

rule (3), then one gets f(xss) = g(xss), where xss is

the ultimate state. In fact, Assumption (A1) can naturally

guarantee the nonempty of the set {x : f(x) = g(x)}. By

Lemmas 1-3, one gets f(b) = g(b) and f(m) = g(m). If b is

the unique point satisfying f(x) = g(x), then m = b = xss.

Remark 3: Consider the situation when a leader, denoted

by agent 0, is present within an MAS. In the neighborhood of

the leader, denoted by N0(t), agents can get the information

of the leader, but the leader always keeps its state at a fixed

location, denoted by x0, with f(x0) = g(x0). For all the

follower agents, they update their states according to the local

rules (3). It is thus interesting to know whether the MAS can

always reach consensus if the topology among the followers

is strongly connected and there always exist edges from the

leader to the followers. In general, for the MAS with linear

local rules, if the topology among the leader and followers

exists a spanning tree rooted at the leader, then the states

of all agents can reach consensus. However, it is not always

true for the MAS with nonlinear local rules, as the following

simple example shows.

Let f(x) = x and

g(x) =

{

1
2x 0 ≤ x ≤ 1,
2x − 3

2 1 ≤ x ≤ 3
2 .

Construct an MAS with two agents, denoted by 0 and 1.

Suppose that 0 is the group leader and 1 is the follower.

Moreover, there always exists an edge from the leader to the

follower. The initial states are given by x0(0) = 0, x1(0) =
1, and τ i

j(t) = 0. Then one has x1(1) = g(−1)( 1
2 (f(0) +

f(1))) = g(−1)( 1
2 ) = 1 and x1(t) = 1 for any t ≥ 1. That

is, the MAS cannot reach consensus.

Remark 4: If f(x) = g(x) = x and τ i
j = 0, then the

updating local rules (3) will degenerate into the following

linearized model ([2], [3], [7], [8]):

xi(t + 1) =
1

ni(t)

∑

j∈Ni(t)

xj(t).

Let

Ωm(t) =

{

i : mi(t) = min
j∈{1,2,··· ,n}

mj(t)

}

,

Ωm(t) =

{

i : mi(t) = max
j∈{1,2,··· ,n}

mj(t)

}

.

Then, according to the proof of Theorem 1, one can easily

deduce the following result.

Theorem 2: Suppose that Assumptions (A1)-(A3), (A5)

and (A6) hold for a given MAS (V, G(t), (3)). If there

exists a sequence {tk} and an integer λm > 0 such that

there exists a directed path from Ωm(tk) to Ωm(tk) and

0 < tk+1−tk < λm for ∀k > 0, then the MAS (V, G(t), (3))
can reach consensus.

From Theorem 2, it is easy to see that the agents in Ωm(t)
play an important role for the consensus of the MAS. If

there is a directed path from Ωm(tk) to Ωm(tk), then tk is

called the effective time. Generally speaking, if Assumptions

(A1)-(A3), (A5) and (A6) hold and there exist sufficiently

many effective times tk, then the MAS can reach consensus.

It indicates us that the MAS can reach consensus even if

one greatly reduces the other redundant edges among agents.

Therefore, it is very important for us to find all the effective

time tk in an MAS since it can help us to reduce the

redundant edges among agents.

Since G(t) is not necessary connected at all time, {i} (

Ni(t) does not always hold. If {i} ( Ni(t), then the updating

rule of xi(t) should follow (3). If {i} = Ni(t), according to

(3), then one has xi(t+1) = g−1 ◦f(xi(t)). That is, even if

an agent does not get any information from the other agents

except itself, its state should be updated at the same time.

In fact, for the case {i} = Ni(t), if the state xi(t) does not

follow the updating rule (3) but keep its state xi(t + 1) =
xi(t) unchanged, then the MAS can also reach consensus

under the conditions of Theorems 1 and 2.
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Moreover, Theorems 1 and 2 also hold even if the updating

rules (3) are generalized to the following form:

xi(t + 1) = F





∑

j∈Ni(t)

aij(t)f
(

xj

(

t − τ i
j(t)

))



 , (6)

where
∑

j∈Ni(t)
aij(t) = 1 and infj∈Ni(t) aij(t) ≥ α for

some α ∈ (0, 1).

IV. APPLICATION TO THE VICSEK MODEL

The Vicsek model is a typical discrete-time MAS model

of collective behaviors [1]. Consider n autonomous agents

moving on the plane. Denote the heading of agent i at

time t by θi(t). Also, assume that the velocity of each

agent is a constant, denoted by v. Then, the dynamics of

agent i can be described by the sequence {xi(t), yi(t), θi(t)},

where (xi(t), yi(t)) are the coordinates of agent i at time t,
xi(t), yi(t) ∈ R, θi(t) ∈ [0, 2π). If time delays are included,

then the dynamics of each agent can be updated according

to the following rules:

θi(t + 1) = arctan

(
∑

j∈Ni(t)
sin

(

θj(t − τ i
j(t))

)

∑

j∈Ni(t)
cos

(

θj(t − τ i
j(t))

)

)

, (7)

xi(t + 1) = xi(t) + v cos(θi(t + 1)), (8)

yi(t + 1) = yi(t) + v sin(θi(t + 1)), (9)

where t ∈ {0, 1, 2, · · · }, and

Ni(t) =

{

j∈V :
√

(xi(t)−xj(t))2+(yi(t)−yj(t))2 < r

}

,

with r > 0.

In each time t, agent i will exchange its information with

its neighboring agents in Ni(t). Here, i ∈ Ni(t) by the

definition of Ni(t). If two agents are both in some Ni(t), then

these two agents are neighbors. And the relation of neighbors

at time t can define the topology of communication, denoted

by G(t). It is obvious that G(t) is an undirected graph.

Denote

Gt =
T
⋃

s=1

G(t + s). (10)

Theorem 3: Suppose that Assumptions (A5) and (A6)

hold for the classical Vicsek model with time-varying delays

in the updating rules (7). Also, assume that the graph Gt

is connected for all t ≥ 0. If the initial headings θi(t) ∈
(−π

2 , π
2 ) for −B < t ≤ 0, then the headings of agents can

reach consensus.

Proof. The updating rules (7) can be rewritten as follows:

tan θi(t + 1) =
∑

j∈Ni(t)

cos θj(t − τ i
j(t)) tan θj(t − τ i

j(t))
∑

k∈Ni(t)
cos θk(t − τ i

k(t))
.

Let

aij(t) =
cos θj(t − τ i

j(t))
∑

k∈Ni(t)
cos θk(t − τ i

k(t))
,

xi(t) = tan θi(t),

then (7) can be recast in the following form:

xi(t + 1) =
∑

j∈Ni(t)

aij(t)xj(t − τ i
j(t)). (11)

For a given set of initial headings θi(t) ∈ (−π
2 , π

2 ) with

−B < t ≤ 0, one can prove that

min
−B<t′≤0,1≤j≤n

xj(t
′) ≤ xi(t) ≤ max

−B<t′≤0,1≤j≤n
xj(t

′),

for any t > 0. Hence,

min
−B<t′≤0,1≤j≤n

θj(t
′) ≤ θi(t) ≤ max

−B<t′≤0,1≤j≤n
θj(t

′),

for any t > 0. As a result, from the basic property of cos θ
on θ ∈ (−π

2 , π
2 ), there exists an α ∈ (0, 1) satisfying aij(t) ∈

[α, 1] or aij(t) = 0. This indicates that (11) is a special case

of Theorem 1, in view of (6) with f(x) = F (x) = x. ¥

V. SIMULATION RESULTS

To verify the effectiveness of the proposed consensus

criteria in Sections III and IV, a typical numerical simulation

is presented in this section to verify Theorem 2.

Let f and g be two piecewise linear functions, described

respectively by

f(x) =















x + 1 0 ≤ x ≤ 1,
2x 1 ≤ x ≤ 2,
x + 2 2 ≤ x ≤ 3,
1
3x + 4 3 ≤ x ≤ 6,

and

g(x) =

{

2x 0 ≤ x ≤ 2,
1
2x + 3 2 ≤ x ≤ 6.

It is easy to verify that

Sa = {x : f(x) = g(x)} = {x : 1 ≤ x ≤ 2, x = 6}

and the inverse function F (x) of g(x) is given by

F (x) = g−1(x) =

{

1
2x 0 ≤ x ≤ 4,
2x − 6 4 ≤ x ≤ 6.

The functions f and F are shown in Fig. 1.
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6

x

 

 

f(x)

F(x)

Fig. 1. The functions f(x) and F (x).
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Consider a discrete-time MAS (V, G(t), (3)) consisting of

8 agents. For simplicity, let λm = 2 and 0 ≤ τ i
j < B = 2.

Then, randomly generate two sets of initial states as follows.

The first set of initial states are described by

x(−1) = (1.12, 1.52, 0.58, 1.65, 0.17, 0.17, 0.76, 2.06)T ,

x(0) = (0.60, 0.98, 0.16, 2.08, 0.00, 1.59, 0.65, 2.39)T .

Fig. 2 shows the evolving phase trajectories from the these

initial states.

0 5 10 15 20
0

0.5

1

1.5

2

2.5

t

x
i(t

)

Fig. 2. Phase trajectories from the first set of initial states.

The second set of initial states are given by

x(−1) = (0.30, 5.87, 0.71, 3.70, 0.94, 0.05, 4.45, 4.66)T ,

x(0) = (4.82, 0.04, 0.59, 4.91, 1.17, 1.75, 5.63, 0.82)T .

The evolving phase trajectories from the second set of initial

states are shown in Fig. 3.
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Fig. 3. Phase trajectories from the second set of initial states.

To satisfy the conditions in Theorem 2, G(t) is generated

in all simulations in the following way: For each time instant

t, choose two agents xm and xm from Ωm(t) and Ωm(t),
respectively, then generate a directed path from xm to xm

in G(t), and finally, some random edges are added to G(t).
With 0 ≤ τ i

j < B = 2, then τ i
j(t) = 0 or 1 in all simulations.

Moreover, all values of τ i
j are randomly chosen from the set

{0, 1} except τ i
i = 0.

From Figs. 2 and 3, it is obvious that all ultimate states

xss will certainly converge to the set S1 = {x : 1 ≤ x ≤ 2}
if the initial states are not too large. However, consensus of

the MAS will certainly be reached at the point S2 = {6} if

the initial states are too large. Here, Sa = S1 ∪ S2.

VI. CONCLUDING REMARKS

In this paper, we have further explored the consensus of

discrete-time MAS’s with nonlinear local rules and time-

varying delays. Some basic consensus criteria are obtained

for such MAS’s. Our results include several well-known

results as special cases. Also, these consensus criteria are

applied to the consensus of the classical Vicsek model with

time-varying delays. Simulation results were presented to

validate the proposed criteria. The rate of convergence for the

discrete-time MAS with time-varying delays will be further

investigated in the near future.
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[14] J. Lü, J. Liu, I.D. Couzin, and S.A. Levin, “Emerging collective
behaviors of animal groups,” Proc. the 7th World Congr. Contr.

Automation, Chongqing, China, pp. 1060-1065, 2008.
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