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Abstract

This paper proposes a new switching control method
— saturated function series approach — for gener-
ating multi-scroll chaotic attractors. The systematic
methodology developed here can create multi-scroll
chaotic attractors from a given 3-D linear autonomous
system with a saturated function series controller. It
includes 1-D n−scroll, 2-D n × m−grid scroll, and 3-D
n × m × l−grid scroll chaotic attractors. The chaos
generation mechanism in multi-scroll systems is briefly
discussed by analyzing the system equilibria.

1 Introduction

Chaos is useful and has great potential in many real-
world engineering fields such as in encryption and com-
munications, biomedical engineering, flow dynamics
and liquid mixing, power systems protection, etc [1-
2]. Recently, we have found that multi-scroll chaotic
signals provide the best liquid mixing quality (to be
reported soon). Today, the generation of multi-scroll
chaotic attractors is no longer a very difficult task [3-
16]. Suykens et al. introduced several methods for
generating n−scroll chaotic attractors using simple cir-
cuits [3-6,8-9] such as the generalized Chua’s circuit
[4] and CNN [5]. The essence of these methods is
adding breakpoints in the piecewise-linear character-
istic of the nonlinear resistor of Chua’s circuit [17,18].
They also proposed a stair function method for creat-
ing 3-D grid-scroll chaotic attractors [9]. Ozoguz et al.

presented a nonlinear transconductor approach for gen-
erating n−scroll attractors [10]. Tang et al. introduced
a sine-function method for creating n−scroll chaotic
attractors, with a systematical circuit realization that
can physically produce as many as ten scrolls visible
on the oscilloscope [7,11]. Lü et al. proposed a switch-
ing manifold approach for generating chaotic attractors
with multiple-merged basins of attraction [12,13]. Hys-
teresis can also generate chaos [19-25]. Recently, Lü et
al. presented a hysteresis series method for creating 3-
D multi-scroll chaotic attractors [14,15]. Cafagna and
Grassi produced a ring of Chua’s circuits for generating
3D-scroll chaotic attractors [16]. Elwakil and Kennedy
constructed a class of circuit-independent chaotic os-
cillators [19,20]. They also proposed some hysteresis
chaotic oscillators [24]. Note that hysteresis circuit,
stair circuit, and saturated circuit are the three kinds
of basic circuits. It has been reported that stair cir-
cuit and hysteresis circuit can generate 3-D multi-scroll
chaotic attractors [9,14,15]. It is interesting to ask
whether saturated circuit can also create 3-D multi-
scroll chaotic attractors. This paper will give a positive
answer to this question.

This paper introduces a new switching control method
— saturated function series approach — for gener-
ating multi-scroll chaotic attractors, including one-
dimensional (1-D) n−scroll, two-dimensional (2-D) n×
m−grid scroll, and three-dimensional (3-D) n × m ×
l−grid scroll chaotic attractors. The chaos generation
mechanism in the multi-scroll systems is briefly dis-
cussed by analyzing their equilibria. It is noticed that
the saturated function series approach developed here
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is different from all methods reported before, such as
the stair function method [9] and the hysteresis series
approach [14,15]. Firstly, the basic generators are dif-
ferent, which means they have different forming mech-
anisms. Secondly, the saturated function series is con-
tinuous, yet the stair function and hysteresis series are
not continuous at some switching points.

This paper is organized as follows. In Section 2, the
concept of saturated function series is proposed and
some fundamental limited conditions of chaos gener-
ation are given for a 3-D linear autonomous system.
The saturated function series approach is introduced
in Section 3 for creating multi-scroll chaotic attractors,
including 1-D n−scroll, 2-D n×m−grid scroll, and 3-D
n × m × l−grid scroll attractors, and the chaos gen-
eration mechanics of the multi-scroll systems is briefly
discussed. Conclusions are finally given in Section 4.

2 Saturated function series

This section reviews the saturated function series con-
cept and presents some fundamental conditions for
generating multi-scroll chaotic attractors from a 3-D
linear autonomous system using a saturated function
series controller.

2.1 Saturated circuit

It is well known that saturated circuit is one of the
basic piecewise-linear circuits. The piecewise-linear
models for operational amplifiers (op amps) and op-
erational transconductance amplifiers (OTA’s) can be
well characterized by saturated circuits [26]. Figure 1
shows that the piecewise-linear approximations for op
amps and OTA’s are quite accurate [26]. It leads to
the following representation for op amp, which is in
the linear region for −Esat ≤ v0 ≤ Esat with voltage
amplification Av, positive saturation Esat, and nega-
tive saturation −Esat

{

v0 = Av

2

(

|vi +
Esat
Av

| − |vi − Esat
Av

|
)

i− = i+ = 0 .
(1)

It is called the op amp finite-gain model. In each of
the three regions the op amp can be characterized by
a linear circuit.

Similarly, for the OTA, in the linear region −Isat ≤
i0 ≤ Isat with transconductance gain gm, positive sat-
uration Isat, and negative saturation −Isat, one has

{

i0 = gm

2

(

|vi +
Isat
gm

| − |vi − Isat
gm

|
)

i− = i+ = 0 .
(2)

2.2 Saturated function series

Consider the following saturated function:

f0(x) =







k , if x > 1
kx , if |x| ≤ 1
−k , if x < −1 ,

(3)

where k > 0 is the slope of the middle segment, the
upper radial {f0(x) = k |x ≥ 1} and the lower radial
{f0(x) = −k |x ≤ −1} are called saturated plateaus,
and the segment {f0(x) = kx | |x| ≤ 1} between the
two saturated plateaus is called the saturated slope. Fig-
ure 2 shows the phase portrait of the saturated function
f0(x).

Definition 1: The following piecewise-linear function:

f(x; k, h, p, q) =

q
∑

i =−p

fi(x; k, h) (4)

is called a saturated function series, where k > 0 is
the slope of saturated function series, h > 2 is the
saturated delay time of the saturated function series, p

and q are positive integers, and

fi(x; k, h) =







2k , if x > ih + 1
k(x − ih) + k , if |x − ih| ≤ 1
0 , if x < ih − 1 ,

and

f−i(x; k, h) =







0 , if x > −ih + 1
k(x + ih) − k , if |x + ih| ≤ 1
−2k , if x < −ih − 1 .

One can recast the saturated function series
f(x; k, h, p, q) as follows:

f(x; k, h, p, q) =






















(2q + 1)k, if x > qh + 1
k(x − ih) + 2ik, if |x − ih| ≤ 1, −p ≤ i ≤ q

(2i + 1)k, if
ih + 1 < x < (i + 1)h − 1
−p ≤ i ≤ q − 1

−(2p + 1)k, if x < −ph − 1 .

(5)
Figure 3 shows the phase portrait of this saturated
function series with k = 1, h = 4. It is noticed
that saturated function series (5) is a piecewise-linear
continuous function and has better analytical property.
However, the stair function in [9] and the hysteresis
series in [14,15] are not continuous in switching points.

2.3 Some fundamental limited conditions for

chaos generation

Consider the following 3-D linear autonomous system:







ẋ = y

ẏ = z

ż = −a x − b y − c z ,

(6)
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Figure 1. (a) Op amp and its piecewise-linear model; (b) OTA and its piecewise-linear model.

where x, y, z are state variables, and a, b, c are posi-
tive real constants. To guide the linear system (6) to
generate chaotic behavior, it needs to add a nonlin-
ear controller to stretch and fold the trajectories of the
system repeatedly. Note that the piecewise-linear con-
troller is the simplest nonlinear continuous controller.
Here, we choose the saturated function series (5) as the
controller.

Figure 2. Saturated function f0(x).

System (6) has a unique equilibrium point (0, 0, 0) and
its corresponding characteristic equation is

λ3 + c λ2 + b λ + a = 0 . (7)

Denote p̂ = b − 1
3c2, q̂ = 2

27c3 − 1
3bc + a, and ∆ =

ac3

27 − b2c2

108 − abc
6 + b3

27 + a2

4 . Solving Eq. (7) gives

λ1 = − c

3
+

3

√

− q̂

2
+

√
∆ +

3

√

− q̂

2
−

√
∆ , (8)

Figure 3. Saturated function series with
k = 1, h = 4.

and

λ2,3 = − c
3 − 1

2

(

3

√

− q̂
2 +

√
∆ + 3

√

− q̂
2 −

√
∆

)

±
√

3
2 i

(

3

√

− q̂
2 +

√
∆ − 3

√

− q̂
2 −

√
∆

)

≡ α ± β i .

(9)

Numerical calculations show that linear system (6)
with a saturated function series controller will pro-
duce chaotic behavior under the conditions of λ1 < 0,
α > 0, and β 6= 0. That is, Eq. (7) has a negative
eigenvalue and a pair of complex conjugate eigenval-
ues with positive real parts. Moreover, the equilibrium
point (0, 0, 0) is a two-dimensionally unstable saddle,
called a saddle point of index 2 [16,17]. In the follow-
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ing, assume that

∆ = ac3

27 − b2c2

108 − abc
6 + b3

27 + a2

4 > 0,

λ1 = − c
3 + 3

√

− q̂
2 +

√
∆ + 3

√

− q̂
2 −

√
∆ < 0,

α = − c
3 − 1

2

(

3

√

− q̂
2 +

√
∆ + 3

√

− q̂
2 −

√
∆

)

> 0.

(10)

3 Generating multi-scroll chaotic

attractors via switching control

This section introduces a new systematic method —
saturated function series approach — for generating
multi-scroll chaotic attractors, including 1-D n−scroll,
2-D n × m−grid scroll, and 3-D n × m × l−grid scroll
chaotic attractors, from the linear autonomous system
(6).

3.1 A new double-scroll chaotic attractors

In this subsection, the saturated function f0(x) is cho-
sen as controller to guide system (6) to create chaos.
The controlled system is described by







ẋ = y

ẏ = z

ż = −a x − b y − c z + d1 f0(x) ,

(11)

where f0(x) is defined by (3). When a = b = c =
d1 = 0.7, k = 10, system (11) has a double-scroll
chaotic attractor as shown in Figure 4. Figure 4 (a)
shows the x-y plane projection of the double-scroll at-
tractor; Figure 4 (b) shows that the variable x(t) spi-
rals around two values: ± 10, making random excur-
sions between these two values which correspond to the
centers of the two scrolls in the attractor.

Obviously, system (11) has three equilibria,
S± (±10, 0, 0) and S0 (0, 0, 0), which correspond to
the three piecewise-linear parts of the saturated func-
tion f0(x) in Figure 2, respectively. Equilibria S± has
eigenvalues λ1 = −0.8480, λ2,3 = 0.0740 ± 0.9055i,
which are called saddle points of index 2 since the
two complex conjugate eigenvalues have positive real
parts [16,17]. Equilibrium point S0 has eigenvalues
λ1 = 1.5309, λ2,3 = −1.1154 ± 1.6944i, which is
called saddle point of index 1 since the real eigenvalue
is positive [16]. It is noticed that the scrolls are
generated only around the equilibria of saddle points
of index 2 [16,17]. Moreover, equilibria S± correspond
to the two saturated plateaus, which are responsible
for generating the two scrolls in the double-scroll
attractor. However, the equilibrium point S0 corre-
sponds to the saturated slope and is responsible for
connecting these two symmetrical scrolls. The Lya-
punov exponent spectrum and Lyapunov dimension
can be calculated by the numerical methods described
in [27], which are given by LE1 = 0.1042, LE2 = 0,

LE3 = −0.8043, and LD = 2.1297. According
to above analysis, this new double-scroll attractor
is similar to but different from Chua’s double-scroll
attractor [17] since Chua’s double-scroll attractor is
created by using Chua’s circuit.
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Figure 4. Double-scroll chaotic attractor. (a) x-y
plane projection; (b) variable x(t).

3.2 Creating n−scroll chaotic attractors

In the following, to create n−scroll chaotic attractors
(n ≥ 3), a saturated function series controller is added
to system (6), yielding to







ẋ = y

ẏ = z

ż = −a x − b y − c z + d1 f(x; k1, h1, p1, q1) ,

(12)
where f(x; k1, h1, p1, q1) is defined by (5), and
a, b, c, d1 are positive constants.

Assume that

d1k1 > a, 2d1k1 ≥ ah1, max{p1, q1} |ah1−2k1d1|
d1k1−a

≤ 1,

(2d1k1 − ah1)(q1 − 1) < ah1 − d1k1 − a.

(13)
Obviously, all 2(p1 + q1) + 3 equilibrium points of
system (12) are located along the x-axis, and can be
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classified into two different sets:

Ax =
{

− (2p1+1)d1k1

a
,

(−2p1+1)d1k1

a

, · · · , (2q1 + 1)d1 k1

a

} (14)

and

Bx =
{

− p1k1d1(h1−2)
k1d1−a

,
(−p1+1)k1d1(h1−2)

k1d1−a

, · · · , q1k1d1(h1 − 2)
k1d1 − a

}

.
(15)

For all equilibria in set Ax, the characteristic equations
are Eq. (7) and the corresponding eigenvalues satisfy
λ1 < 0 and λ2,3 = α ± β i with α > 0 and β 6= 0
from assumption (10). That is, all equilibria in set Ax

are saddle points of index 2. For all equilibria in set
Bx, the corresponding characteristic equations are

λ3 + c λ2 + b λ + a − d1k1 = 0 . (16)

Since λ1 + λ2 + λ3 = −c < 0 and λ1λ2λ3 =
−(a − d1k1) > 0, Eq. (16) has one positive eigen-
value and two negative eigenvalues, or one positive
eigenvalue and a pair of complex conjugate eigenval-
ues with negative real parts. To generate chaos from
system (12), one may assume that Eq. (16) has a posi-
tive eigenvalue and a pair of complex eigenvalues with
negative real parts. It means that all equilibria in set
Bx are saddle points of index 1. Since the scrolls are
generated only around saddle points of index 2 [16,17],
system (12) has the potential to create a maximum of
(p1 + q1 + 2)−scroll chaotic attractor for some suitable
parameters a, b, c, d1, k1, h1. It should be emphasized
that the p1 + q1 + 2 equilibria in set Ax are responsi-
ble for generating p1 + q1 + 2 scrolls of the attractor.
However, the p1 + q1 + 1 equilibria in set Bx are re-
sponsible for connecting these p1 + q1 + 2 scrolls to
form a whole chaotic attractor. Moreover, each equi-
librium point in set Ax corresponds to a unique satu-
rated plateau of saturated function series (5) and also
corresponds to a unique scroll of the whole attractor.
Furthermore, each equilibrium point in set Bx corre-
sponds to a unique saturated slope of the saturated
function series (5) and also corresponds to a unique
connection between two neighboring scrolls.

Figure 6 displays a 6−scroll chaotic attractor of sys-
tem (12), where a = b = c = d1 = 0.7, k1 = 9,
h1 = 18, p1 = 2, q1 = 2. The Lyapunov expo-
nent spectrum of this 6−scroll chaotic attractor in-
cludes LE1 = 0.1486, LE2 = 0, LE3 = −0.8457.
In fact, system (12) can create an n−scroll chaotic at-
tractor (n ≥ 3), including odd and even scroll chaotic
attractor, by adjusting suitable parameters.

3.3 Creating 2D n × m−grid scroll chaotic at-

tractors

In this subsection, a saturated function series controller
is added to system (6) for generating n×m−grid scroll
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10
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Figure 5. 6−scroll chaotic attractor.

chaotic attractors. The controlled system is described
by















ẋ = y − d2

b
f(y; k2, h2, p2, q2)

ẏ = z

ż = −a x − b y − c z + d1 f(x; k1, h1, p1, q1)
+ d2 f(y; k2, h2, p2, q2) ,

(17)
where f(x; k1, h1, p1, q1) and f(y; k2, h2, p2, q2) are
defined by (5), and a, b, c, d1, d2 are positive con-
stants.

Denote, in addition to (14) and (15), the following:

Ay =
{

− (2p2 + 1)d2k2

b
,

(−2p2 +1)d2k2

b
, · · · ,

(2q2 +1)d2k2

b

} (18)

and

By =
{

− p2k2d2(h2−2)
k2d2−b

,
(−p2+1)k2d2(h2−2)

k2d2−b

, · · · ,
q2k2d2(h2 − 2)

k2d2 − b

}

.
(19)

Assume that (13) holds and

d2k2 > b, 2d2k2 ≥ bh2, max{p2, q2} |bh2−2k2d2|
d2k2−b

≤ 1,

(2d2k2 − bh2)(q2 − 1) < bh2 − d2k2 − b .

(20)
Then system (17) has (2p1 + 2q1 + 3) ×
(2p2 + 2q2 + 3) equilibrium points, which are
located on the x-y plane and given by

Oxy = { (x∗, y∗) |x∗ ∈ Ax ∪ Bx , y∗ ∈ Ay ∪ By } .

(21)
It is noticed that all equilibria can be classified into
four different sets:

A1 = { (x∗, y∗) |x∗ ∈ Ax , y∗ ∈ Ay } ,

A2 = { (x∗, y∗) |x∗ ∈ Ax , y∗ ∈ By } ,

A3 = { (x∗, y∗) |x∗ ∈ Bx , y∗ ∈ Ay } ,

A4 = { (x∗, y∗) |x∗ ∈ Bx , y∗ ∈ By } .
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Obviously, the characteristic equations of the lin-
earized system evaluated at the equilibria in set A1

are Eq. (7) and the corresponding eigenvalues satisfy
λ1 < 0 and λ2,3 = α ± β i with α > 0 and β 6= 0
by assumption (10). It means that all equilibria in set
A1 are saddle points of index 2. For all equilibria in
set A2, the corresponding characteristic equations are

λ3 + c λ2 + (b − k2d2)λ + a

(

1 − k2d2

b

)

= 0 . (22)

Since λ1 + λ2 + λ3 = −c < 0 and λ1λ2λ3 =
−a(1 − k2d2

b
) > 0, Eq. (22) has one positive eigen-

value and two negative eigenvalues, or one positive
eigenvalue and a pair of complex conjugate eigenval-
ues with negative real parts. Moreover, all equilibria
in A2 are saddle points of index 1. For all equilibria in
A3, the corresponding characteristic equations are Eq.
(16) and these equilibria are saddle points of index 1.
Similarly, for all equilibria in A4, the corresponding
characteristic equations are

λ3+cλ2+(b−k2d2)λ+(a−dk1)

(

1 − k2d2

b

)

= 0. (23)

Since λ1 + λ2 + λ3 = −c < 0 and λ1λ2λ3 =
−(a − dk1)(1 − k2d2

b
) < 0, Eq. (23) has one neg-

ative eigenvalue and two positive eigenvalues, or three
negative eigenvalues, or one negative eigenvalue and a
pair of complex conjugate eigenvalues. To create chaos
from system (17), one may assume that Eq. (23) has
one negative eigenvalue and a pair of complex conju-
gate eigenvalues with positive real parts. Thus, the
equilibria in A4 are saddle points of index 2. Since the
scrolls can be generated only around saddle points of
index 2 [16,17], the equilibria in A1 and A4 may cre-
ate scrolls. However, our numerical simulations show
that only the equilibria in A1 can generate scrolls. In
fact, having a saddle point of index 2 is only a neces-
sary condition, but not a sufficient condition for gen-
erating scrolls. According to the Homoclinic S̆ilnikov
Theorem [18], it needs a condition — existence of a
homoclinic orbit in the neighboring region of the equi-
librium point — for generating scrolls. Therefore, sys-
tem (17) has the potential to create a maximum of 2D
(p1 + q1 + 2)×(p2 + q2 + 2)−grid scroll chaotic attrac-
tor, called 2-D n × m−grid scroll chaotic attractor,
for suitable parameters a, b, c, d1, d2, k1, h1, k2, h2.
Note that each equilibrium point in A1 corresponds
to a unique 2D saturated plateau and also corresponds
to a unique scroll in the whole attractor. Moreover,
other equilibria in A2, A3, A4 correspond to the sat-
urated slopes and are responsible for connecting these
(p1 + q1 + 2) × (p2 + q2 + 2) scrolls.

Figure 6 shows a 6 × 6−grid scroll chaotic attractor,
where a = b = c = d1 = d2 = 0.7, k1 = k2 = 50,
h1 = h2 = 100, p1 = q1 = p2, = q2 = 2. Clearly,
there are 6 scrolls in the x−direction and 6 scrolls in
the y−direction, as shown in Figure 6. The Lyapunov

exponent spectrum of this 6 × 6−grid scroll attractor
includes LE1 = 0.1599, LE2 = 0, LE3 = −0.8622.
Note that these 2-D n × m−grid scroll chaotic attrac-
tors are generated in exactly the same way as the 1-D
case discussed in the last subsection, except that the
directions of the system trajectories are more vertical
here. Similarly, one can design 2-D n × m−grid scroll
attractors in x-z or y-z directions.
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Figure 6. 2-D 6 × 6−grid scroll chaotic attractors.

3.4 Creating 3-D n × m × l−grid scroll chaotic

attractors

In this subsection, a saturated function series controller
is added to system (6) for creating 3-D n × m × l−grid
scroll chaotic attractors. The controlled system is















ẋ = y − d2

b
f(y; k2, h2, p2, q2)

ẏ = z − d3

c
f(z; k3, h3, p3, q3)

ż = −ax − by − cz + d1f(x; k1, h1, p1, q1)
+d2f(y; k2, h2, p2, q2) + d3f(z; k3, h3, p3, q3),

(24)
where f(x; k1, h1, p1, q1), f(y; k2, h2, p2, q2),
and f(z; k3, h3, p3, q3) are defined by (5), and
a, b, c, d1, d2, d3 are positive constants.

Denote, in addition to (14), (15), (18), and (19), the
following:

Az =
{

− (2p3 +1)d3k3

c
,

(−2p3 + 1)d3k3

c
, · · · ,

(2q3 +1)d3k3

c

} (25)

and

Bz =
{

− p3k3d3(h3−2)
k3d3−c

,
(−p3+1)k3d3(h3−2)

k3d3−c

, · · · , q3k3d3(h3 − 2)
k3d3 − c

}

.
(26)

Assume that (13) and (20) hold and

d3k3 > c, 2d3k3 ≥ ch3, max{p3, q3} |ch3−2k3d3|
d3k3−c

≤ 1,

(2d3k3 − ch3)(q3 − 1) < ch3 − d3k3 − c .

(27)
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Then system (24) has (2p1 + 2q1 + 3) ×
(2p2 + 2q2 + 3) × (2p3 + 2q3 + 3) equilibrium
points, which are given by

Oxyz = { (x∗, y∗, z∗)|x∗ ∈ Ax ∪ Bx,

y∗ ∈ Ay ∪ By, z∗ ∈ Az ∪ Bz} .
(28)

Note that all equilibria can be classified into eight dif-
ferent sets:

Ā1 = { (x∗, y∗, z∗) |x∗ ∈ Ax , y∗ ∈ Ay , z∗ ∈ Az } ,

Ā2 = { (x∗, y∗, z∗) |x∗ ∈ Ax , y∗ ∈ Ay , z∗ ∈ Bz } ,

Ā3 = { (x∗, y∗, z∗) |x∗ ∈ Ax , y∗ ∈ By , z∗ ∈ Az } ,

Ā4 = { (x∗, y∗, z∗) |x∗ ∈ Ax , y∗ ∈ By , z∗ ∈ Bz } ,

Ā5 = { (x∗, y∗, z∗) |x∗ ∈ Bx , y∗ ∈ Ay , z∗ ∈ Az } ,

Ā6 = { (x∗, y∗, z∗) |x∗ ∈ Bx , y∗ ∈ Ay , z∗ ∈ Bz } ,

Ā7 = { (x∗, y∗, z∗) |x∗ ∈ Bx , y∗ ∈ By , z∗ ∈ Az } ,

Ā8 = { (x∗, y∗, z∗) |x∗ ∈ Bx , y∗ ∈ By , z∗ ∈ Bz } .

For all equilibria in A1, the corresponding characteris-
tic equations are Eq. (7). From assumption (10), all
equilibria in A1 are saddle points of index 2. For the
equilibrium points in A2, the corresponding character-
istic equations are

λ3 + (c − d3k3)λ
2 + b

(

1 − k3d3

c

)

λ

+ a
(

1 − k3d3

c

)

= 0 .
(29)

Since λ1 + λ2 + λ3 = −(c− d3k3) > 0 and λ1λ2λ3 =
−a(1 − k3d3

c
) > 0, Eq. (29) has three positive eigen-

values, or one positive eigenvalue and two negative
eigenvalues, or one positive eigenvalue and a pair of
complex conjugate eigenvalues. Based on numerical
observations, one may assume that Eq. (29) has one
positive eigenvalue and a pair of complex conjugate
eigenvalues with negative real parts. Thus, all equilib-
ria in A2 are saddle points of index 1. For all equilibria
in A3, the corresponding characteristic equations are
(22). According to the assumption in the last subsec-
tion, the equilibria in A3 are saddle points of index 1.
For the equilibria in A4, the corresponding character-
istic equations are

λ3 + (c − d3k3)λ2 + (b − d2k2)
(

1 − k3d3

c

)

λ

+ a
(

1 − k2d2

b

) (

1 − k3d3

c

)

= 0 .
(30)

Since λ1 + λ2 + λ3 = −(c − d3k3) > 0 and
λ1λ2λ3 = −a(1 − k2d2

b
)(1 − k3d3

c
) < 0, Eq. (30)

has one negative eigenvalue and two positive eigenval-
ues, or one negative eigenvalue and a pair of complex
conjugate eigenvalues with positive real parts. Our
numerical observations show that Eq. (30) has one
negative eigenvalue and a pair of conjugately complex
eigenvalues with positive real parts. Thus, the equilib-
ria in A4 are saddle points of index 2. For all equilibria
in A5, the corresponding characteristic equations are
(16). According to the assumption in Subsection B,
all equilibria in A5 are saddle points of index 1. For
the equilibria in A6, the corresponding characteristic
equations are

λ3 + (c − d3k3)λ2 + b
(

1 − k3d3

c

)

λ

+ (a − k1d1)
(

1 − k3d3

c

)

= 0 .
(31)

Since λ1 + λ2 + λ3 = −(c − d3k3) > 0 and λ1λ2λ3 =
−(a − k1d1)(1 − k3d3

c
) < 0, Eq. (31) has one neg-

ative eigenvalue and two positive eigenvalues, or one
negative eigenvalue and a pair of complex conjugate
eigenvalues with positive real parts. Our numerical
simulations show that Eq. (31) has one negative eigen-
value and two positive eigenvalues. So the equilibria
in A6 are saddle points of index 1. For all equilibria in
A7, the corresponding characteristic equations are Eq.
(23). From the assumption in the last subsection, all
equilibria in A7 are saddle points of index 2. Finally,
for all equilibria in A8, the corresponding characteristic
equations are

λ3 + (c − d3k3)λ
2 + (b − d2k2)

(

1 − k3d3

c

)

λ

+(a − k1d1)
(

1 − k2d2

b

) (

1 − k3d3

c

)

= 0 .
(32)

Since λ1 + λ2 + λ3 = −(c − d3k3) > 0 and
λ1λ2λ3 = −(a − d1k1)(1 − k2d2

b
)(1 − k3d3

c
) > 0,

Eq. (32) has three positive eigenvalues, or one positive
eigenvalue and two negative eigenvalues, or one posi-
tive eigenvalue and a pair of complex conjugate eigen-
values. Our numerical observations show that Eq. (32)
has one positive eigenvalue and a pair of complex con-
jugate eigenvalues with negative real parts. Then, the
equilibria in A8 are saddle points of index 1.

It should be pointed out that the scrolls can be gen-
erated only around saddle points of index 2 [16,17].
Therefore, only the equilibria in A1, A4, and A7

may create scrolls. However, our numerical observa-
tions reveal that only the equilibria in A1 can gen-
erate scrolls. In fact, having a saddle point of in-
dex 2 is only a necessary condition, but not a suf-
ficient condition for generating scrolls. That is, sys-
tem (24) has the potential to create a maximum of 3D
(p1 + q1 + 2) × (p2 + q2 + 2) × (p3 + q3 + 2)−grid
scroll chaotic attractor, called 3-D n × m × l−grid
scroll chaotic attractor, for some suitable param-
eters a, b, c, d1, d2, d3, k1, h1, k2, h2, k3, h3. Espe-
cially, each equilibrium point in A1 corresponds to a
unique 3D saturated plateau and also corresponds to
a unique scroll in the whole attractor. Furthermore,
other equilibria in Ai (2 ≤ i ≤ 8) correspond to the
saturated slopes and are responsible for connecting the
(p1 + q1 + 2)× (p2 + q2 + 2)× (p3 + q3 + 2) scrolls.

Figure 7 shows a 6 × 6 × 6−grid scroll chaotic at-
tractor, where a = d1 = 0.7, b = c = d2 =
d3 = 0.8, k1 = 100, h1 = 200, k2 = k3 = 40,
h2 = h3 = 80, p1 = p2 = p3 = q1 = q2 =
q3 = 2. Obviously, there are 6 scrolls in each di-
rection of the state space, as shown in Figure 7 (a)
and (b), respectively. The Lyapunov exponent spec-
trum of this 6 × 6 × 6−grid scroll attractor includes
LE1 = 0.0885, LE2 = 0, LE3 = −0.7157. Note that
these 3-D n × m × l−grid scroll chaotic attractors are
generated in exactly the same way as the 1-D and 2-D
cases discussed before, except that the directions of the
system trajectories are three here.

073-40-3016-9 © 2004 ASCC



−800 −600 −400 −200 0 200 400 600 800
−500

−400

−300

−200

−100

0

100

200

300

400

500

y

x 
(b) 

−500 −400 −300 −200 −100 0 100 200 300 400 500
−500

−400

−300

−200

−100

0

100

200

300

400

500

z

y 

(d) 

Figure 7. 3-D 6 × 6 × 6−grid scroll chaotic
attractors. (a) x-y plane projection; (b) y-z plane

projection.

4 Conclusions

This paper has proposed a switching control method
— saturated function series approach — for generating
multi-scroll chaotic attractors, including 1-D n−scroll,
2-D n × m−grid scroll, and 3-D n × m × l−grid scroll
attractors, from a given 3-D linear autonomous system
with a saturated function series controller. The chaos
generation mechanism of multi-scroll systems has also
been briefly discussed by analyzing the system equilib-
ria. It should be pointed out that one can arbitrarily
design a desired number of scrolls and their spatial
positions and orientations by using this developed sys-
tematic methodology. Moreover, it is relatively easy
to design physical electronic circuits to experimentally
verify these multi-scroll chaotic attractors since the
saturated circuit is a basic electrical circuit. As one
typical application, we recently have found that multi-
scroll chaotic signals provide the best liquid mixing
quality, which will be reported in a forthcoming pa-
per. Various related bifurcation phenomena also de-
serve further investigation in the near future.
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