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Abstract

This paper reviews and meanwhile introduces several
new switching piecewise-linear controllers, which can
generate multi-scroll chaotic attractors from some
simple two-dimensional (2D) or three-dimensional
(3D) linear autonomous systems. The mechanism for
generating multi-scroll chaotic attractors via switch-
ing control is discussed.

1 Introduction

Exploiting chaotic dynamics in high-tech and indus-
trial engineering applications has attracted more and
more interest. In particular, attention has been fo-
cused on effectively generating chaos using some sim-
ple devices such as nonlinear circuits and switching
controllers [1]-[12].

It is well known that piecewise-linear functions can
easily create various chaotic attractors, typically the
n-scroll attractors of Chua’s circuits [2]-[3]. Nowa-
days, generating multi-scroll chaotic attractors is no
longer a very difficult task, and there have been some
successful results reported in the literature [1]-[12].
These methods can be classified as: (1) adding break-
points [1]-[6]; (2) switching manifold method [7]-[8];
(3) using hysteresis series switching [9]-[11]; (4) using
sine functions [12]. In the following, we review and
meanwhile introduce some approaches for generat-
ing multi-scroll chaotic attractors from simple linear
autonomous systems via switching control.

This paper is organized as follows: Chua’s circuit and
the generalized Chua’s circuit are first reviewed in
Section 2. Section 3 introduces the recently proposed
family of scroll grid chaotic attractors. A new switch-
ing control approach for generating chaotic attrac-
tors with multiple merged basins of attraction is then
introduced in Section 4. Section 5 presents a sys-

tematic method for generating multi-scroll chaotic
attractors via hysteresis switching. Conclusions are
finally given in Section 6.

2 The n−scroll Attractors of Chua’s Circuits

This section reviews the familiar Chua’s circuit and
the so-called generalized Chua’s circuit.

Chua’s circuit is a simple autonomous system, which
can exhibit a double-scroll chaotic attractor [1]. The
state equations of the circuit are described by







ẋ = α(−x + y − f(x)) ,
ẏ = x − y + z ,
ż = −β y ,

(1)

where

f(x) = m0 x +
1

2
(m1 − m0)(|x + 1| − |x − 1|) .

When α = 10, β = 14.87, m0 = −0.68, m1 = −1.27,
system (1) displays a double-scroll chaotic attractor.

Suykens et al [2] proposed a generalized Chua’s cir-
cuit, described by







ẋ = α (y − h(x)) ,
ẏ = x − y + z ,
ż = −β y ,

(2)

where the nonlinear function h(·) is given by the fol-
lowing switching piecewise-linear characteristic func-
tion with multiple breakpoints:

h(x) = m2q−1 x +
2q−1
∑

i=1

(mi−1 − mi)

× (|x + ci| − |x − ci|) ,

(3)

in which q is a positive integer, and α, β, q, mk and
cl are constant coefficients. System (2) becomes sys-
tem (1) if q = 1. System (2) can exhibit an even or



an old number of scrolls, e.g., when

α = 9, β = 14.286, q = 2, m0 = 9

70
, m1 = − 3

7
,

m2 = 1

2
, m3 = − 2.4

7
, c1 = 1, c2 = 2.15, c3 = 4 ,

system (2) exhibits a 3-scroll chaotic attractor as
shown in Figure 1.

Remarks 1:

(1) System (2)-(3) is continuous and can exhibit an
n-scroll chaotic attractor for any n ∈ N .

(2) Suykens and Vandewalle [3] introduced some
breakpoints in the piecewise-linear characteris-
tic of the nonlinear resistor of Chua’s circuit,
to obtain a maximum of six double-scrolls at-
tractors. Aziz-Alaoui [4] produced a 10-spiral
attractor from Chua’s circuit from a similar ap-
proach. Recently, Zhong et al [5] proposed a
systematic approach for generating n−scroll at-
tractors based on Chua’s circuit, which can gen-
erate e.g. a 10-scroll attractor on an oscilloscope
as shown in Figure 2.

Figure 1. The 3-scroll chaotic attractor.

Figure 2. The 10-scroll chaotic attractor on an
oscilloscope.

3 A Family of Scroll Grid Attractors

Recently, Yalcin et al [6] introduced a new family of
scroll grid attractors, which are classified into 1D,
2D, and 3D-grid scroll chaotic attractors, depending
on the location of the equilibrium points in the state
space. The state equation of this family of systems
is described by

Ẋ = AX + Bσ(C X) (4)

where

A =





0 1 0
0 0 1
−a −a −a



 , B =





by 0 0
0 bz 0
0 0 a



 ,

C =





0 1 0
0 0 1
1 0 0



 , X =





x
y
z



 .

There are three different cases:

• 1D-scroll grid attractors (n-scroll attractors):














by = bz = 0 ,

σ(·) =





0
0

f1(·)



 ,
(5)

where

f1(x) =

Mx
∑

i=1

g−2i+1

2

(x) +

Nx
∑

i=1

g 2i−1

2

(x) , (6)

and

gθ(ζ) =















1, ζ ≥ θ θ > 0 ,
0, ζ < θ θ > 0 ,
0, ζ ≥ θ θ < 0 ,
−1, ζ < θ θ < 0 ,

(7)

which belongs to the sector [0, 2].

• 2D-scroll grid attractors:














by = −1, bz = 0 ,

σ(·) =





f1(·)
0

f2(·)



 ,
(8)

where

f2(x) =

m−1
∑

i=1

β gpi
(x) , (9)

and

pi = My + 0.5 + (i − 1)(My + Ny + 1) ,
β = My + Ny + 1 ,

which belongs to the sector [0,
My + Ny + 1

My + 0.5
].



• 3D-scroll grid attractors:















by = −1, bz = −1 ,

σ(·) =





f1(·)
f1(·)
f3(·)



 ,
(10)

where

f3(x) =

k−1
∑

i=1

γ gnl
(x) , (11)

and

nl = ρ + 0.5 + (l − 1)(ρ + ζ + 1), γ = ρ + ζ + 1,

with

ρ =

∣

∣

∣

∣

min
i,j

{ueq,y
i + ueq,z

j }

∣

∣

∣

∣

,

ζ =

∣

∣

∣

∣

max
i,j

{ueq,y
i + ueq,z

j }

∣

∣

∣

∣

,

and ueq,y
i and ueq,z

j are the vectors for the y
and z variables related to the equilibrium points,
which belongs to the sector [0, ζ + ρ + 1

ρ + 0.5
].

Figure 3 (a) shows a 10-scroll chaotic attractor,
where Mx = 0, Nx = 1, a = 0.8, M = 4, N =
5, X0 = [0.6721 0.8381 0.0196]. Figure 3 (b) dis-
plays a 2 × 3-grid scroll attractor, where My =
0, Ny = 2, m = 2. Figure 3 (c) shows a 4 × 3 × 2-
grid scroll attractor, where My = 1, Ny = 1, Mx =
0, Nx = 1, k = 4.

Remarks 2:

(1) It is possible to generate chaotic attractors
whose scrolls are located in any position with
any orientation.

(2) System (4) is not continuous. However, the gen-
eralized Chua’s circuit (2) is continuous.

Figure 3. (a) 10-scroll attractor, (b) 2 × 3-grid
scroll attractor, (c) 4 × 3 × 2-grid scroll attractor.

4 Multiple Merged Basins of Attraction

Chaotic Attractors

This section introduces a new switching control ap-
proach for generating n-scroll chaotic attractors from
a 3D linear autonomous system.

Recently, Lü et al [7, 8] presented a systematic
switching piecewise-linear control method for creat-
ing strange attractors with multiple merged basins
of attraction, by the following 3D linear controlled
system:

Ẋ = AX + U , (12)

where X = (x , y , z)
T

and

A =





a b 0
−b a 0
0 0 c



 ,

with a switching piecewise-linear controller

U = f1(X) =















k





−x
−y
d



 , if z +
√

x2 + y2 > k,

0 , otherwise ,



where a, b, c, d, k are real parameters. Under the
controller U = f1(X), system (12) can create
strange attractors within a wide range of parameter
values.

To generate two chaotic attractors simultaneously
from system (12), we use the controller U as follows
[8]:

f2(X) =







































k





−x
−y
d



 , if
z > 0,

z +
√

x2 + y2 > k,

m





−x
−y
e



 , if
z < 0,

z −
√

x2 + y2 < −m,

0 , otherwise ,

where a, b, c, d, e, k, m are real parameters. Under
this controller U = f2(X), system (12) can simulta-
neously generate two chaotic attractors — an upper-
attractor and a lower-attractor. Note that z = 0 is
the invariant manifold of system (12) with the con-
troller U = f2(X). Figure 4 displays an upper and
a lower chaotic attractors, where a = 3, b = 20,
c = −20, d = 10, e = −10, k = 4, and m = 4.

Figure 4. The upper and lower chaotic attractors.

Remarks 3:

(1) Similarly, we can easily generate n different at-
tractors simultaneously with different initial val-
ues in the switching system (12) by two fun-
damental transforms: parallel displacement and
rotation. Since the chaotic attractor is bounded
by a finite sphere, we can partition the whole
space into n disjoint subspaces, and then dupli-
cate the original attractor — the upper attractor
or the lower-attractor — into every subspace.

(2) The above n attractors are independent of one
another. Moreover, there is no system orbit that
connects all attractors together.

To connect together the orbits of the upper- and
lower-attractors, so as to obtain a single chaotic at-
tractor, we can design a controller to force the or-
bit of the upper-attractor to go through the invari-
ant manifold z = 0 from above and then enter
into the subspace {(x, y, z)| z < 0}; at the same
time, this controller should force the orbit of the
lower-attractor to go through the invariant mani-
fold z = 0 from below and then return to the sub-
space {(x, y, z)| z > 0}. Based on this idea, we use
δ (0, 0, −sign(z))> to substitute for 0 in the con-
troller U = f2(X), therefore obtaining the following
new controller:

f3(X) =























































k





−x
−y
d



 , if
z > 0,

z +
√

x2 + y2 > k,

m





−x
−y
e



 , if
z < 0,

z −
√

x2 + y2 < −m,

δ





0
0

−sign(z)



 , otherwise ,

where a, b, c, d, e, k, m, δ are all real parameters.

Figure 5 shows that the chaotic attractor has two
merged basins of attraction: the upper basin of at-
traction and the lower basin of attraction.

Note that the controller U = f3(X) has three
switching planes: S1, S2, and z = 0, in which the
two switching planes S1 and S2 are responsible for
the generation of two chaotic attractors, the upper
chaotic attractor and the lower chaotic attractor;
while the switching plane z = 0 is responsible for
the connection of these two chaotic attractors.

Figure 5. The chaotic attractor with two merged
basins of attraction.

To generate a chaotic attractor with three merged
basins of attraction, we use δ (0, 0, −sign(z − h) −
ch/δ)> to substitute for 0 in the controller, resulting



in the following new controller:

f4(X) =






















































































































if z < h ,






















































k





−x
−y
d



 , if
z > 0 ,

z +
√

x2 + y2 > k ,

m





−x
−y
e



 , if
z < 0 ,

z −
√

x2 + y2 < −m,

δ





0
0

−sign(z)



 , otherwise ,

if z ≥ h ,






























k





−x
−y

d − ch
k



 , if z − h +
√

x2 + y2 > k ,

δ





0
0

−sign(z − h) − ch
δ



 , otherwise,

where a, b, c, d, e, k, m, h, δ are all real parameters.

Figure 6 displays that the chaotic attractor has three
merged basins of attraction: two upper basins of at-
traction and one lower basin of attraction.

Figure 6. The chaotic attractor with three merged
basins of attraction.

Similarly, we can create chaotic attractors with n
merged basins of attraction. The formalized design
approach is as follows:

(1) Partition the whole space into n subspaces. For
convenience, one may partition the space along
the z-axis.

(2) Duplicate the original attractors, the upper-
attractor and the lower-attractor, to every sub-
spaces.

(3) Use the switching controller to connect all the
n independent attractors, so as to form a single

chaotic attractor with multiple merged basins of
attraction, as depicted by Figure 7.

Note that the switching controller can be chosen as
δ sign(z − hi), where the height hi (between two
neighboring subspaces) should be smaller than the
height of a single chaotic attractor.

Figure 7. The illustrative sketch for the connection
of orbit.

5 Hysteresis Chaotic Attractors

This section presents several new hysteresis switch-
ing multi-dimensional scroll chaotic attractors [9]-
[11]. We consider two cases: the system to be con-
trolled is a two-dimensional linear autonomous sys-
tem, and is a three-dimensional linear autonomous
system.

5.1 Two-Dimensional Case

This subsection introduces a new systematic method
for generating multi-scroll chaotic attractors from
a two-dimensional linear autonomous system via
switching of hysteresis series [10]. It includes 1D
n−scroll and 2D n × m−grid scroll chaotic attrac-
tors.

The hysteresis switching chaotic system, which can
be regarded as a linear system with a hysteresis feed-
back nonlinearity, is described by

Ẋ = AX + B θ(C X) , (13)

where X = (x, y)
T

is the state vector, and

A =

(

0 1
−a b

)

, B =

(

−1 0
−b a

)

,

C =

(

0 1
1 0

)

.

There are three different cases as follows:



• 1D horizontal n−scroll chaotic attractor:

θ(·) =

(

0
h(x, p1, q1)

)

,

where

h(x, p1, q1) =

p1
∑

i = 1

h−i(x) +

q1
∑

i = 1

hi(x) , (14)

is called a hysteresis series, where p1 and q1 are
positive integers, and

hi(x) =

{

0 for x < i
1 for x > i − 1 ,

where hi(x) is switched from 1 to 0 if x hits the
threshold i− 1 from above and is switched from
0 to 1 if x hits i from below, and

h−i(x) =

{

0 for x > −i
−1 for x < −i + 1 ,

where h−i(x) is switched from 0 to −1 if x hits
the threshold −i from above and is switched
from −1 to 0 if x hits −i + 1 from below. Here,
the equilibria are located in the x−axis.

• 1D vertical n−scroll chaotic attractor:

θ(·) =

(

h(y, p2, q2)
0

)

,

where h(x, p2, q2) is similarly defined by (14),
whose equilibria are located in the y−axis.

• 2D n × m−grid scroll chaotic attractor:

θ(·) =

(

h(y, p2, q2)
h(x, p1, q1)

)

,

where h(x, p1, q1), h(x, p2, q2) are similarly de-
fined by (14), whose equilibria are integer points
in state space.

Figure 8 shows the hysteresis multi-scroll chaotic at-
tractors generated by system (13): (a) a horizon-
tal 7−scroll attractor, where a = 1, b = 0.125,
p = q = 3; (b) a vertical 7−scroll attractor, where
a = 1, b = 0.125, p = q = 3; (c) a 7× 3−grid scroll
attractor, where a = 1, b = 0.125, p1 = q1 = 3,
p2 = q2 = 1.

Figure 8. Hysteresis switching chaotic attractors
generated from a 2D linear autonomous system. (a)
horizontal 7−scroll attractor; (b) vertical 7−scroll

attractor; (c) 7 × 3−grid scroll attractor.

Remarks 4:

(1) System (13) is not continuous. Every subspace
corresponds to one equilibrium point of the hys-
teresis system (13), and every equilibrium point
corresponds to one scroll of the chaotic attractor
of the hysteresis system (13). Moreover, param-
eters p1, q1, p2, q2 determine the numbers of
the scrolls, and the hysteresis series h(x, p1, q1)



and h(y, p2, q2) determine the positions of the
scrolls. In fact, we can arbitrarily design the
number and also the position as well as the ori-
entation of the scrolls of the hysteresis chaotic
system (13).

(2) The trajectories of the hysteresis chaotic system
are spirally divergent in any subspace; that is,
the trajectories are stretched in every subspace.
When the trajectories reach the boundaries of
a subspace, they will be folded by the switch-
ing mechanism of the hysteresis series. Thus,
the trajectories will be repeatedly stretched and
folded inside a bounded set for infinitely many
times, leading to the appearance of bifurcations
and chaos.

5.2 Three-Dimensional Case

This subsection presents a new systematic method
— hysteresis series switching approach — for gen-
erating multi-dimensional scroll chaotic attractors
from a 3D linear autonomous system [11]. It in-
cludes 1D n−scroll, 2D n × m−grid scroll, and 3D
n × m × l−grid scroll chaotic attractors.

The 3D linear autonomous system with a hysteresis
series switching controller is described by

Ẋ = AX + B θ(C X) , (15)

where X = (x, y, z)
T

is the state vector, and

A =





0 1 0
0 0 1
−a −b −c



 , B =





0 −1 0
0 0 −1
a b c





C =





1 0 0
0 1 0
0 0 1



 .

It can be classified into three different cases as fol-
lows:

• 1D n−scroll hysteresis chaotic attractor:

θ(·) =





h(x, p1, q1)
0
0



 ,

where h(x, p1, q1) is similarly defined by (14),
whose equilibria are located in the x−axis.

• 2D n × m−grid scroll hysteresis chaotic attrac-
tor:

θ(·) =





h(x, p1, q1)
h(y, p2, q2)

0



 ,

where h(x, p1, q1), h(x, p2, q2) are similarly de-
fined by (14), whose equilibria are integer points
located in the x − y plane.

• 3D n × m × l−grid scroll hysteresis chaotic at-
tractor:

θ(·) =





h(x, p1, q1)
h(y, p2, q2)
h(z, p3, q3)



 ,

where h(x, p1, q1), h(x, p2, q2), h(x, p3, q3) are
similarly defined by (14), whose equilibria are
integer points in state space.

Figure 9 displays the hysteresis switching multi-scroll
chaotic attractors generated by the controlled system
(15): (a) a 1D 7−scroll chaotic attractor, where a =
0.8, b = 0.72, c = 0.6, p = q = 3; (b) a 2D
5 × 7−grid scroll chaotic attractor, where a = 0.8,
b = 0.7, c = 0.6, p1 = q1 = 2, p2 = q2 = 3;
(c), (d) a 3D 5 × 8 × 3−grid scroll chaotic attractor,
where a = 0.8, b = 0.72, c = 0.66, p1 = q1 = 2,
p2 = 3, q2 = 4, p3 = q3 = 1.



Figure 9. Hysteresis switching chaotic attractors
generated from a 3D linear autonomous system. (a)

1D 7−scroll attractor; (b) 2D 5 × 7−grid scroll
attractor; (c) x − y projection for 3D

5 × 8 × 3−grid scroll attractor; (d) y − z
projection for 3D 5 × 8 × 3−grid scroll attractor.

Remarks 5:

(1) Parameters pi, qi (1 ≤ i ≤ 3) of system
(15) determine the numbers of the scrolls in
x, y, z−directions. Moreover, the hysteresis se-
ries h(x, p1, q1), h(y, p2, q2), and h(z, p3, q3)
determine the positions of the scrolls. In fact,
one can arbitrarily design the number and also
the position as well as the orientation of the
scrolls of the hysteresis switching chaotic system
(15).

(2) Every subspace has one and only one equilib-
rium point, and every equilibrium point cor-
responds to one scroll of the chaotic attractor
of the hysteresis switching system (15). Obvi-
ously, the dynamical behaviors of system (15)
are rather simple and it has an exact analytic
solution in every subspace. However, the dy-
namical behaviors of assembled system (15) with
hysteresis switching are complex.

6 Conclusions

This paper has reviewed and also introduced several
new approaches for generating multi-scroll chaotic
attractors from some simple 2D or 3D linear au-
tonomous systems via switching control. These
chaotic systems are rather simple in terms of their
algebraic structures — they can be regarded as a
linear autonomous system with simple a piecewise
linear or piecewise constant switching controller. In
fact, all controlled systems discussed in this paper
are piecewise linear, and these controlled systems are
continuous or discontinuous. However, they can gen-
erate fairly complex multi-scroll chaotic attractors.

It has been verified that abundant complex dynam-
ical behaviors can be generated by piecewise-linear
functions if designed appropriately. There is great
potential to design some simple switching controlled
systems, particularly piecewise-linear systems, for
generating complex multi-scroll chaotic attractors
toward engineering applications.
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