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Abstract—This paper introduces a novel complex network
model to evaluate the reputation of virtual organizations. By using
the Lyapunov function and linear matrix inequality approaches,
the local synchronization of the proposed model is further inves-
tigated. Here, the local synchronization is defined by the inner
synchronization within a group which does not mean the synchro-
nization between different groups. Moreover, several sufficient
conditions are derived to ensure the local synchronization of the
proposed network model. Finally, several representative examples
are given to show the effectiveness of the proposed methods and
theories.

Index Terms—Complex network, linear matrix inequality, local
synchronization, Lyapunov functional, reputation computation,
trust, virtual organization.

I. INTRODUCTION

THE SEMANTIC Web [32]–[34] strives for an intelligent
Web searching and linking structures based on the meta-

data available in the Web. The Semantic Web may be viewed
as an approach to distributed artificial intelligence, with tools
to generate the metadata attached to Web pages and to reason
about their significance, particularly when different resources
can be combined and individual metadata can guide what to
combine, as well as the significance of their combinations.
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Combining services becomes more complex as one tries to
match precise input and output service ports corresponding
to a message-based remote procedure, called implementation
in the Web or Grid service model. The Semantic Grid [24],
[29] is similar to the Semantic Web, with the only difference
is that the former shares resources in accordance with certain
architectures and standard Grid infrastructures. The Semantic
Grid allows anyone around the world to develop their own
tools to interact with the Semantic Grid resources easily. Virtual
Organizations [26], [27], which allow access to large computing
resources, have become increasingly popular. The real and
specific problem that underlies the Grid concept is coordinated
with resource sharing and problem solving dynamically among
multiinstitutional organizations. The sharing that we are con-
cerned with is not primarily files exchange but rather direct
access to computers, software, data, and other resources, as
is required by a range of collaborative problem-solving and
resource-brokering strategies emerging from industries, engi-
neering, and technologies.

Authentication and authorization, i.e., deciding whether a
user can have access to a certain resource, are essential in
distributed applications. The Grid computing field can be char-
acterized as a collection of heterogeneous computing resources
that is shared by many individuals and organizations. This has
given rise to the concept of Virtual Organization [26], [27]. A
Virtual Organization is a collection of people in some adminis-
trative domain. The user can be a member of any internal group
in an organization and has multiple roles in many organizations.
The main problem in Virtual Organizations is the security,
which includes how to identify a user and how to evaluate the
functions that a user can perform.

In order to implement secure and reliable high-performance
computing services, we study how to support the security
infrastructure for Virtual Organizations. Security on Virtual
Organizations [25], [28], [31] has attracted increasing attentions
from various research communities in recent years, due to the
unique ability of marshalling collections of heterogeneous com-
puters and resources, enabling easy access to diverse resources
and services that otherwise could not be possible without a good
computational model. However, the concept of Virtual Organi-
zation introduces its own set of security challenges, as users and
resource providers can come from mutually distributed admin-
istrative domains and any participant can behave maliciously.

Recently, reputation [31] has been recognized as an impor-
tant factor for Virtual Organization security. However, no mod-
els have been proposed for integrating computational systems
into Virtual Organizations. In this paper, we introduce a new
complex network model for computing the reputation degrees
of Virtual Organizations.
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Complex networks exist in all fields of sciences and humani-
ties and have been intensively studied over the last few years
[1]–[3], [35]–[50]. Among these are computer networks, the
World Wide Web (WWW), telephone call graphs, food webs,
biological neural networks, electrical power grids, coauthorship
and citation networks of scientists, cellular and metabolic net-
works, etc. Many properties of real-world complex networks
can be well understood by considering the network’s internal
interactions. It is now known that the basic properties of very
large networks are mainly determined by the way the con-
nections among the nodes are made. This motivates us to use
a complex network model to study the reputation degrees of
Virtual Organizations.

In the recent network studies to describe the transition from
a regular to a random network, Watts and Strogatz [2], [30] in-
troduced the so-called small-world network model. This model
exhibits a high degree of clustering as in the regular networks
and a small average distance among nodes as in the random
networks. A common feature of such models is that the degree
distribution P (k) (defined as the probability that a randomly
selected node has degree k, i.e., a node has k connections) of
the network peaks at an average value and decays exponentially.
Such an exponential network is homogeneous in nature; each
node has roughly the same number of connections.

On the other hand, it was discovered that many complex
networks, such as the Internet, the WWW, and the metabolic
network, are scale-free. This means that the degree distrib-
ution of these complex networks follow a power law form,
P (k) ∼ k−γ for a large k, where γ is a positive constant
determined by the network topology. Scale-free networks are
inhomogeneous in nature, i.e., most nodes have very few con-
nections but a small number of particular nodes have many
connections. Interestingly, many complex networks are small-
world and also scale-free networks.

Many large-scale systems in nature and human societies,
such as biological neural networks, ecosystems, metabolic
pathways, the Internet, the WWW, electrical power grids, etc.,
can be described by networks, with the nodes representing
individuals in the system and the edges representing the connec-
tions among them. A node in the network is a fundamental unit
with detailed contents that can present an entity in the Semantic
Grid. Very recently, Wang and Chen [3], [4] discussed a dynam-
ical complex network model and also investigated its synchro-
nization. A lot of research papers [7]–[17], [37]–[39], [44], [45]
have been published based on this same model, mainly on the
concerned issue of synchronization. In [35], we proposed a new
complex network model for reputation computation in Virtual
Organizations and also investigated its convergence dynamics.
In this paper, we will further study this model and consider
its local synchronization based on the results in [44] and the
references therein. Here, the local synchronization is defined
by the inner synchronization within a group where some nodes
in the network can be synchronized while synchronization in
the whole network cannot be achieved. The so-called local
synchronization has rarely been investigated elsewhere and is
still a challenging problem nowadays. The designed principles
behind this phenomenon are very useful for theoretical works
and future applications.

II. BACKGROUND AND MODEL FORMULATION

In order to derive a new model for reputation computation
for Virtual Organizations, the concept of reputation [23] is
introduced first.

When making trust-based decisions, an entity can rely on
others with the information pertaining to them. For example, if
entity x wants to make a decision whether to have a transaction
with entity y, which is unknown to x, then x relies on the
reputation of y. The definition of reputation that we will use
was introduced in [23], as follows.

Definition 1: The reputation of an entity is an expectation
of its behavior based on other entities’ observations or the
collective information about the entity’s past behavior within
a specific context at a given time.

In the following, we establish a new complex network model
to study the reputation computation for Virtual Organizations
to evaluate their reputations.

First, we review the coupled complex network model used in
[3], [4], [7]–[20].

Consider a complex dynamical network consisting of
N linearly and diffusively coupled identical nodes, with each
node being an n-dimensional dynamical system. The state
equations of the network are

ẋi(t) = f (xi(t)) + c

N∑
j=1,j �=i

GijΓ (xj(t) − xi(t))

i = 1, 2, . . . , N (1)

where xi(t) = (xi1(t), xi2(t), . . . , xin(t))T ∈ Rn represents
the state vectors of node i, i = 1, 2, . . . , N ; f : Rn −→ Rn

is continuously differentiable; the constant c > 0 represents
the coupling strength; Γ = diag(γ1, γ2, . . . , γn) ∈ Rn×n is
a constant 0 − 1 matrix linking the coupled variables; and
G = (Gij)N×N is the coupling configuration matrix represent-
ing the topological structure of the network, in which Gij is
defined as follows: If there is a connection between the nodes i
and j (j �= i), then the coupling strength Gij = Gji = 1; oth-
erwise, Gij = Gji = 0 (j �= i), and the diagonal elements of
matrix G are defined by

Gii = −
N∑

j=1,j �=i

Gij = −
N∑

j=1,j �=i

Gji. (2)

In this case, the network (1) can be written as

ẋi(t)=f (xi(t))+ c
N∑
j=1

GijΓxj(t), i=1, 2, . . . , N. (3)

Hereafter, suppose that the network (3) is connected in the
sense that there are no isolate clusters; hence, the coupling
configuration matrix G is an irreducible matrix.

The synchronization of complex networks has been inten-
sively investigated [7]–[17], [37]–[39] based on the model (1)
or (3). Although the model (3) reflects the complexity from the
network structure, it is a simple uniform dynamical network
without time-varying or delayed coupling. Considering that
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there are usually some time delays in influence and response
due to the finite speeds of transmission and spreading, as well
as traffic congestions, time delays should be modeled in order
to simulate more realistic networks. Li and Chen [15] discussed
the following complex dynamical network model with delayed
coupling:

ẋi(t) = f (xi(t)) + c

N∑
j=1

GijΓxj(t − τ), i = 1, 2, . . . , N

(4)

where τ is the time delay. In [7], [8], and [11], the following
system was studied:

ẋi(t) = −Cxi(t) + Af (xi(t)) + Bf (xi(t − τ))

+I(t) + c
N∑

j=1

GijΓxj(t), i = 1, 2, . . . , N (5)

where C = diag(c1, c2, . . . , cn) ∈ Rn×n is a diagonal matrix
with positive diagonal entries ci > 0; i = 1, 2, . . . , n; A =
(aij)n×n and B = (bij)n×n are the weight and delayed weight
matrices, respectively; I(t) = (I1(t), I2(t), . . . , In(t))T ∈ Rn

is an external input vector; Γ = diag(γ1, γ2, . . . , γn) ∈ Rn×n;
and f(xi(t))=(f1(xi1(t)), f2(xi2(t)), . . . , fn(xin(t)))T∈Rn

corresponds to the activation functions of the nodes. Equiva-
lently, the system (5) can be written as

ẋik(t) = −ckxik(t) +
n∑

l=1

aklfl (xil(t))

+
n∑

l=1

bklfl (xil(t − τ)) + Ik(t)

+ c
N∑

j=1

Gijγkxjk(t)

i = 1, 2, . . . , N ; k = 1, 2, . . . , n. (6)

In this paper, the proposed complex network model in the
reputation computation for Virtual Organizations [35] is further
investigated. Consider an array of N linearly connected com-
plex network model in the following form:

ẋi(t) = −Cxi(t) + Af (xi(t))

+ B

t∫
−∞

K(t − s)f (xi(s)) ds + Ii(t)

+
N∑

j=1,j �=i

Gij

⎡
⎣Γ (xj(t) − xi(t))

+ Λ

⎛
⎝ t∫

−∞

K(t − s)xj(s)ds

−
t∫

−∞

K(t − s)xi(s)ds

⎞
⎠

⎤
⎦

i = 1, 2, . . . , N (7)

or, equivalently

ẋik(t) = −ckxik(t) +
n∑

l=1

aklfl (xil(t))

+
n∑

l=1

bkl

t∫
−∞

Kl(t − s)fl (xil(s)) ds + Iik(t)

+
N∑

j=1

Gij

⎡
⎣γk (xjk(t) − xik(t))

+ λk

⎛
⎝ t∫
−∞

Kk(t − s)xjk(s)ds

−
t∫

−∞

Kk(t − s)xik(s)ds

⎞
⎠

⎤
⎦

i = 1, 2, . . . , N ; k = 1, 2, . . . , n (8)

where xi(t) = (xi1(t), xi2(t), . . . , xin(t))T ∈ Rn is the
state vector of the ith node of the network; i = 1, 2, . . . , N ;
C = diag(c1, c2, . . . , cn) ∈ Rn×n is a diagonal matrix with
positive diagonal entries ci > 0; i = 1, 2, . . . , n; A =
(aij)n×n and B = (bij)n×n are the weight and delayed
weight matrices, respectively; f(xi(t)) = (f1(xi1(t)),
f2(xi2(t)), . . . , fn(xin(t)))T ∈ Rn represents the output
of the node i; Ii(t) = (Ii1(t), Ii2(t), . . . , Iin(t))T ∈ Rn is
the external input vector; Γ = diag(γ1, γ2, . . . , γn) ∈ Rn

and Λ = diag(λ1, λ2, . . . , λn) ∈ Rn are diagonal matrices,
which implies that the rth state variable of the ith node
of the network is only affected by the rth state variables
of the other nodes of the network; the weight function
K(t) = diag(K1(t),K2(t), . . . ,Kn(t)) ∈ Rn×n is a non-
negative bounded function defined on [0,+∞) that reflects
the influence of the past states on the current dynamics;
and G = (Gij)N×N is the coupling configuration matrix
representing the coupling strengths and topological structure
of the network, in which Gij is defined as follows: If there
is a connection between the nodes i and j (j �= i), then
the coupling strength Gij > 0; otherwise, Gij = 0, and the
diagonal elements of matrix G are defined similarly as (2) by

Gii = −
N∑

j=1,j �=i

Gij . (9)

The coupled complex network model (7) can be rewritten as

ẋi(t) = −Cxi(t) + Af (xi(t))

+ B

t∫
−∞

K(t − s)f (xi(s)) ds + Ii(t)

+
N∑

j=1

Gij

⎡
⎣Γxj(t) + Λ

t∫
−∞

K(t − s)xj(s)ds

⎤
⎦

i = 1, 2, . . . , N (10)
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or, equivalently

ẋik(t) = −ckxik(t) +
n∑

l=1

aklfl (xil(t))

+
n∑

l=1

bkl

t∫
−∞

Kl(t − s)fl(xil(s))ds + Iik(t)

+
N∑

j=1

Gij

⎡
⎣γkxjk(t) + λk

t∫
−∞

Kk(t − s)xjk(s)ds

⎤
⎦

i = 1, 2, . . . , N ; k = 1, 2, . . . , n. (11)

Next, we show that the complex model (7) can describe the
dynamical evolution of the reputation for Virtual Organizations.

Let xi(t) denote the reputation degree of the ith entity at
time t; xij(t) (j = 1, 2, . . . , n) be the jth index of the repu-
tation degree xi(t); and C, A, and B be the inner coupling
matrices, where C is the restraint of the reputation degree, A
is the weight matrix representing the influence of the present
reputation degree, and B is the weight matrix representing the
influence of the past reputation degree. Moreover, let I be the
external influence, the coupling configuration G describe the in-
teractions between pairs of entities, Γ be the weight matrix
of the influence of other entities’ reputation degrees compared
with a certain entity’s own reputation degree at the present time,
and Λ be the weight matrix of the influence of other entities’
past reputation degrees compared with a certain entity’s own
past reputation degree; assume that Γ and Λ are diagonal
matrices for simplicity, which implies that each entity is mostly
influenced by the other entities with the same indexes.

From the model (7), it is easy to see that the reputation degree
that the entity i holds is based on its own present and past
reputation degrees and the relationships with other entities, as
well as their present and past reputation degrees.

Now, define some special kernel matrix function K(·). If

Ki(s) = δ(s − τ), τ > 0, i = 1, 2, . . . , n (12)

where δ(·) is the Dirac function, then the system (10) can be
written as

ẋi(t) = −Cxi(t) + Af (xi(t)) + Bf (xi(t − τ))

+ Ii(t) +
N∑

j=1

Gij [Γxj(t) + Λxj(t − τ)]

i = 1, 2, . . . , N (13)

which is a model of delayed diffusively coupled complex
networks. If

Ki(s) =
{

0, s ≥ τ
1, s < τ ,

i = 1, 2, . . . , n (14)

where τ is a positive constant, then the system (10) can be
written as

ẋi(t) = −Cxi(t) + Af (xi(t))

+ B

t∫
t−τ

K(t − s)f (xi(s)) ds + Ii(t)

+
N∑

j=1

Gij

⎡
⎣Γxj(t) + Λ

t∫
t−τ

K(t − s)xj(s)ds

⎤
⎦

i = 1, 2, . . . , N (15)

which means that the long-term reputation degree of an entity is
not considered. Moreover, Ki(·) could be a decaying function,
which is decreasing with time, as

Ki(s) = αe−αs, α > 0, i = 1, 2, . . . , n (16)

which satisfies

+∞∫
o

Ki(s)ds = 1, i = 1, 2, . . . , n (17)

and it indicates that the reputation degree of the entity is mostly
influenced by the more recent reputation degree.

Remark 1: In this paper, we study the reputation computa-
tion model (15) that satisfies (16). There are a lot of dynamical
phenomena emerging from the complex model (15), such as
stability, synchronization, bifurcation, and chaos. As a start on
this new model, we only consider some simple phenomena
in this paper. The stability of the model (15) implies that all
the reputation degrees of entities tend to converge to some
constants, which was studied in [35]. On the other hand, chaos
means that the reputation degrees of entities are random and
changeable, which will be studied elsewhere. In this paper, we
investigate the local synchronization of the coupled complex
network model (15). The local synchronization here means that
each group of reputation degrees synchronizes with one another
but that the whole network may not synchronize globally.

If the coupled system involves more than two nodes (chaotic
oscillators), a variety of new phenomena can occur, including
partial synchronization [18]–[20], which is referred to as local
synchronization in this paper. A state of local synchronization
is said to occur when the interacting oscillators synchronize
with one another in each group; however, there may not be
synchrony among the groups. When the coupling matrix G is
irreducible and symmetric, with all the off-diagonal elements
being nonnegative and satisfying (2), a complete synchroniza-
tion analysis has been studied, e.g., in [7]–[17]. Much less is
understood, however, on local synchronization that occurs in
diffusively coupled networks. In [18]–[20], some simple low
dimensional coupled models without discrete or distributed
time delays were considered. The method used in those papers
cannot be used to study the model (15) here. In this paper, we
study the local synchronization of the model (15) based on the
synchronization manifold method proposed mainly in our paper
[44] and the references therein.
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First, the following assumptions are imposed.
A1: fi(xi) (i = 1, 2, . . . , n) is monotonically nondecreasing

on R.
A2: fi(·) (i = 1, 2, . . . , n) is Lipschitz continuous, i.e., there

exist constants Fi, such that

|fi(x) − fi(y)| ≤ Fi|x − y| ∀x, y ∈ R. (18)

A3: The coupling matrix G is symmetric and diffusive,
namely, satisfying

Gij ≥ 0, i �= j

Gii = −
N∑

j=1,j �=i

Gij , i = 1, 2, . . . , N. (19)

A4: Let m ≤ N and the coupling matrix G =
(

N1 N2

NT
2 N3

)
,

where N1 ∈ Rm×m; N2 ∈ Rm×(N−m); N3 ∈
R(N−m)×(N−m); and assume that all rows in N2

are the same, i.e., N2 = (u, u, . . . , u)T, and that
u = (u1, u2, . . . , uN−m)T is a vector. Moreover,
I1(t) = I2(t) = · · · = Im(t).

Remark 2: In this paper, we study the local synchronization
of the first m nodes in the coupled network model (15) for
simplicity. For a general case, we can use a transformation to
convert the study to the local synchronization of the first m
nodes. Note that when Assumption A4 is satisfied, it indicates
that the first m nodes of the coupled network have the same
connections with the other N − m nodes. They more likely
belong to the same group and have the same evolvement of rep-
utation degrees. Thus, without loss of generality, we only study
the local synchronization of the first m nodes in the model (15).

Assume that the system (15) satisfies the following initial
conditions. xi(t) = φi(t) ∈ C([−τ, 0], R) (i = 1, 2, . . . , N),
where C([−τ, 0], R) denotes the set of all continuous functions
from [−τ, 0] to R.

Next, some basic definitions and lemmas are needed, which
are very much the same as those given in [5], [7]–[9], and [11].

Definition 2: The set S = {x = (x1(s), x2(s), . . . , xN (s)) :
xi(s) ∈ C([−τ, 0], R), xi(s) = xj(s), i, j = 1, 2, . . . , N} is
called the global synchronization manifold.

Definition 2A: The set S′ = {x = (x1(s), x2(s), . . . ,
xN (s)) : xi(s) ∈ C ([−τ, 0], R), xi (s) = xj(s), i, j = 1, 2,
. . . ,m} is called the local synchronization manifold.

Definition 3: The local synchronization manifold S′ is said
to be locally asymptotically stable, or equivalently, the coupled
system (15) is locally asymptotically synchronized if, for all
ε > 0, there exists δ > 0, such that if sups∈[−τ,0] ‖φi(s) −
φj(s)‖ ≤ δ, then for a sufficiently large T > 0, there holds

‖xi(t) − xj(t)‖ ≤ ε (20)

for all t > T, i, j = 1, 2, . . . ,m.
Definition 4: Let R̂ denote a ring, and define T (R̂,K) =

{the set of matrices with entries R̂ such that the sum of the
entries in each row is equal to K for some K ∈ R̂}.

Definition 5: The set of MN
1 (1): MN

1 (1) is composed of
matrices with N columns; each row (for instance, the ith row)

of M̃ ∈ MN
1 (1) has exactly one entry of αi and one entry of

−αi, where αi �= 0 and all other entries are zeros.
Definition 5A: The set of MN,m

1 (1): MN
1 (1) is composed of

matrices with N columns; each row (for instance, the ith row)
of M̃ ∈ MN

1 (1) has exactly one entry of αi and one entry of
−αi in the first m columns, where αi �= 0 and all other entries
are zeros.

Definition 6: The set of MN
1 (n) are matrices M obtained

by replacing entry mij in M̃ ∈ MN
1 (1) with mijEn, where

En is the n-dimensional identity matrix, i.e., MN
1 (n) =

{M = M̃ ⊗ En : M̃ ∈ MN
1 (1) and En is the n-dimensional

identity matrix}, where ⊗ is the Kronecker product.
Definition 6A: The set of MN,m

1 (n) represents the
matrices M obtained by replacing the entry mij in
M̃ ∈ MN,m

1 (1) with mijEn, where En is the n-dimensional
identity matrix, i.e., MN

1 (n) = {M = M̃ ⊗ En : M̃ ∈
MN,m

1 (1) and En is the n-dimensional identity matrix}, where
⊗ is the Kronecker product.

Definition 7: MN
2 (n) ⊂ MN

1 (n). If M ∈ MN
2 (n), then for

any pair of indices i and j, there exist indices j1, j2, . . . , jl,
where j1 = i and jl = j, and p1, p2, . . . , pl−1, such that
Mpq,jq

�= 0 and Mpq,jq+1 �= 0 for all 1 ≤ q < l.

Definition 7A: MN,m
2 (n) ⊂ MN,m

1 (n). If M ∈ MN,m
2 (n),

then for any pair of indices i and j (i, j ≤ m), there
exist indices j1, j2, . . . , jl, where j1 = i and jl = j, and
p1, p2, . . . , pl−1, such that Mpq,iq

�= 0 and Mpq,iq+1 �= 0 for all
1 ≤ q < l.

Lemma 1 [5]: Let G be an N × N matrix in T (R̂,K).
Then, the (N − 1) × (N − 1) matrix H defined by H = MGJ
satisfying MG = HM is the (N − 1) × N matrix

M =

⎛
⎜⎜⎝

1 −1
1 −1

. . .
1 −1

⎞
⎟⎟⎠ (21)

where J is the N × (N − 1) matrix

J =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1
0 1 1 · · · 1

. . . 1
· · · 1 1

0 0 · · · 0 1
0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(22)

in which 1 is the multiplicative identity of R̂. The matrix H
can be written explicitly as H(i,j) = Σj

k=1G(i,k) − G(i+1,k),
for i, j ∈ {1, 2, . . . , N − 1}.

Lemma 2: Under Assumption A4, the (m − 1) × (m − 1)
matrix H̃ defined by H̃ = MN1J satisfying M̃G = H̃M̃ is
the (m − 1) × N matrix

M̃ =

⎛
⎜⎜⎝

1 −1 0 · · · 0
1 −1 0 · · · 0

. . . 0 · · · 0
1 −1 0 · · · 0

⎞
⎟⎟⎠ = (M O )

(23)
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where M ∈ R(m−1)×m, O ∈ R(m−1)×(N−m), and each entry of
O is zero and where J̃ is the N × (m − 1) matrix

J̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1
0 1 1 · · · 1

. . . 1
· · · 1 1

0 0 · · · 0 1
0 0 0 · · · 0
· · · · · · · · · 0
0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
(

J
OT

)
(24)

where J ∈ Rm×(m−1). Moreover, M and J are similar, as
defined in (21) and (22).

Proof:

M̃G = (M O)
(

N1 N2

NT
2 N3

)
= (MN1 MN2).

Under Assumption A4, each row in N2 is the same; thus, we
obtain

MN2 = O.

Moreover, N1 is an m × m matrix in T (R̂,K). From
Lemma 1, we have

MN1 = MN1JM

thus

M̃G = (MN1JM O) = MN1J(M O) = MN1JM̃.

This completes the proof.
Lemma 3 [5]: Let x = (x1, x2, . . . , xN )T, where xi ∈ Rn,

i = 1, 2, . . . , N . Then, x ∈ S if and only if

‖Mx‖ = 0

holds for some M ∈ MN
2 (n).

We use d(x) to denote a nonnegative real-valued function
that measures the distance between two nodes. In particular, we
define d(x) to be in the following form:

d(x) = ‖Mx‖2 = xTMTMx, M ∈ MN
2 (n). (25)

Considering the assumptions on M, a crucial property of
d(x) is that d(x) −→ 0 if and only if ‖xi(t) − xj(t)‖ −→ 0
for all i, j = 1, 2, . . . , N .

Lemma 4: Let x = (x1, x2, . . . , xN )T, where xi ∈ Rn,
i = 1, 2, . . . , N . Then, x ∈ S′ if and only if

‖Mx‖ = 0 (26)

holds for some M ∈ MN,m
2 (n). We use d(x) to denote a

nonnegative real-valued function that measures the distance
between two nodes. In particular, we define d(x) to be in the
following form:

d(x) = ‖Mx‖2 = xTMTMx, M ∈ MN,m
2 (n). (27)

Considering the assumptions on M, the crucial property of d(x)
is that d(x) −→ 0 if and only if ‖xi(t) − xj(t)‖ −→ 0 for all
i, j = 1, 2, . . . ,m.

Lemma 5 [21]: By the definition of the Kronecker prod-
uct, the following properties are satisfied in appropriate
dimensions.

1) (αA) ⊗ B = A ⊗ (αB).
2) (A + B) ⊗ C = A ⊗ C + B ⊗ C.
3) (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD).
Lemma 6 (Jensen Inequality [22]): For any constant

matrix W ∈ Rm×m satisfying W = WT, scalar r > 0, and
vector function ω : [0, r] ∈ Rm×m such that the integrations
concerned are well defined, we have

r

r∫
0

ω(s)TWω(s)ds ≥

⎛
⎝ r∫

0

ω(s)ds

⎞
⎠

T

W

⎛
⎝ r∫

0

ω(s)ds

⎞
⎠ .

Throughout this paper, for real symmetric matrices P and Q,
the notation P ≥ Q (respectively, P > Q) means that the
matrix P − Q is positive semidefinite (respectively, positive
definite).

III. LOCAL SYNCHRONIZATION OF THE

COMPLEX NETWORK MODEL

In this section, new criteria are derived for the local synchro-
nization of the first m nodes in the coupled system (15).

Let

C =EN ⊗ C, C1 = Em−1 ⊗ C

A =EN ⊗ A, A1 = Em−1 ⊗ A

Γ =G ⊗ Γ
B =EN ⊗ B, B1 = Em−1 ⊗ B

K =EN ⊗ K, K1 = Em−1 ⊗ K

Λ =G ⊗ Λ
xi(t) = (xi1(t), xi2(t), . . . , xin(t))T ∀i = 1, 2, . . . , N

x(t) =
(
xT

1 (t), xT
2 (t), . . . , xT

N (t)
)T

f (x(t)) =
(
fT (x1(t)) , fT (x2(t)) , . . . , fT (xN (t))

)T

I(t) =
(
IT
1 (t), IT

2 (t), . . . , IT
N (t)

)T
. (28)

The linearly coupled dynamical system (15) can be rewritten as

ẋ(t) = −Cx(t) + Af (x(t)) + B

t∫
t−τ

K(t − s)f (x(s)) ds

+ I(t) + Γx(t) + Λ

t∫
t−τ

K(t − s)x(s)ds

i = 1, 2, . . . , N. (29)

Theorem 1: Under Assumptions A2−A4, the dynamical
system (29) is locally synchronized if there are positive
definite matrices P = (pij) ∈ R(m−1)n×(m−1)n, Q = (qij) ∈
R(m−1)n×(m−1)n, and R = (rij) ∈ R(m−1)n×(m−1)n and
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a positive definite diagonal matrix Σ = diag(Σ1,Σ2, . . . ,
Σ(m−1)n) ∈ R(m−1)n×(m−1)n, such that

Ω=

⎛
⎜⎜⎝

Ξ PH PA1 PB1

H
T
P −R 0 0

A1T
P 0 τ2K1T

(0)QK1(0) − Σ 0
B1T

P 0 0 −Q

⎞
⎟⎟⎠<0

(30)

where Ξ = −PC1 − C1T
P + PH + HTP + FΣF +

τ2K1T
(0)RK1(0), F = diag(F1, F2, . . . , Fn) ∈ Rn×n,

F = Em−1 ⊗ F , H = (MN1J) ⊗ Γ, H = (MN1J) ⊗ Λ,
M ∈ R(m−1)×m, and J ∈ Rm×(m−1) have the same structures
as those in (22) and (23).

Proof: Consider the following Lyapunov functional:

V (t) =
3∑

i=1

Vi(t) (31)

where

V1(t) =xT(t)MTPMx(t) (32)

V2(t) = τ

0∫
−τ

t∫
t+s

(MK(t − θ)f (x(θ)))T Q

× (MK(t − θ)f (x(θ))) dθds (33)

V3(t) = τ

0∫
−τ

t∫
t+s

(MK(t − θ)x(θ))T R

× (MK(t − θ)x(θ)) dθds. (34)

By calculating its derivative along the positive half trajectory
of the system (29), we obtain

V̇1(t)
∣∣∣
(29)

= 2xT(t)MTPMẋ(t)

≤ 2xT(t)MTPM

×

⎡
⎣−Cx(t) + Af (x(t))

+ B

t∫
t−τ

K(t − s)f (x(s)) ds + I(t)

+ Γx(t) + Λ

t∫
t−τ

K(t − s)x(s)ds

⎤
⎦ . (35)

By the structure of M and Assumption A4, the following
equalities are easy to verify:

MC =C1M, MA = A1M, MB = B1M

MK =K1M, MI(t) = 0.

Therefore, we obtain

V̇1(t)|(29) ≤ 2xT(t)MTP

×

⎡
⎣−C1Mx(t) + A1Mf (x(t))

+ B1M

t∫
t−τ

K(t − s)f (x(s)) ds + MΓx(t)

+ MΛ

t∫
t−τ

K(t − s)x(s)ds

⎤
⎦ . (36)

Moreover, based on Lemma 6, we have

V̇2(t)|(29) = τ

0∫
−τ

(MK(0)f (x(t)))T Q (MK(0)f (x(t))) ds

− τ

0∫
−τ

(MK(−s)f (x(t + s)))T

× Q (MK(−s)f (x(t + s))) ds

+ 2τ

0∫
−τ

t∫
t+s

(
M

dK
dt

(t − θ)f (x(θ))
)T

× Q (MK(t − θ)f (x(θ))) dθds

= τ

0∫
−τ

(MK(0)f (x(t)))T Q (MK(0)f (x(t))) ds

− τ

t∫
t−τ

(MK(t − s)f (x(s)))T

× Q (MK(t − s)f (x(s))) ds

− 2ατ

0∫
−τ

t∫
t+s

(MK(t − θ)f (x(θ)))T

× Q (MK(t − θ)f (x(θ))) dθds

≤ τ2 (Mf (x(t)))T K1T
(0)QK1(0)Mf (x(t))

−

⎛
⎝ t∫

t−τ

MK(t − s)f (x(s)) ds

⎞
⎠

T

× Q

⎛
⎝ t∫

t−τ

MK(t − s)f (x(s)) ds

⎞
⎠ . (37)

Similarly

V̇3(t)|(29) ≤ τ2 (Mx(t))T K1T
(0)RK1(0) (Mx(t))

−

⎛
⎝ t∫

t−τ

MK(t − s)x(s)ds

⎞
⎠

T

R

×

⎛
⎝ t∫

t−τ

MK(t − s)x(s)ds

⎞
⎠ . (38)
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By Assumption A2, it follows that

fT (x(t))MTΣMf (x(t))

=
m−1∑
j=1

[f (xj(t)) − f (xj+1(t))]
T

× Σj [f (xj(t)) − f (xj+1(t))]

≤
m−1∑
j=1

[xj(t) − xj+1(t)]
T FΣjF [xj(t) − xj+1(t)]

= xT(t)MTFΣFMx(t) (39)

where Σj = diag(Σ(j−1)n+1, . . . ,Σjn).
Using Lemmas 2 and 5, we obtain

MΓ = (M̃ ⊗ In)(G ⊗ Γ) = M̃G ⊗ Γ

= H̃M̃ ⊗ Γ = (H̃ ⊗ Γ)(M̃ ⊗ In) = HM (40)

MΛ = (M̃ ⊗ In)(G ⊗ Λ) = M̃G ⊗ Λ

= H̃M̃ ⊗ Λ = (H̃ ⊗ Λ)(M̃ ⊗ In) = HM (41)

where H̃ = MN1J , H = H̃ ⊗ Γ, H = H̃ ⊗ Λ, M , and J have
the same structures as those defined in (22) and (23).

Combining (36)–(41), we obtain

V̇ (t)|(29) ≤ −2xT(t)MTPC1Mx(t)

+ 2xT(t)MTPA1Mf (x(t))

+ 2xT(t)MTPB1M

t∫
t−τ

K(t − s)f (x(s)) ds

+ 2xT(t)MTPHMx(t)

+ 2xT(t)MTPHM

t∫
t−τ

K(t − s)x(s)ds

+ τ2 (Mf (x(t)))T K1T
(0)QK1(0) (Mf (x(t)))

−

⎛
⎝ t∫

t−τ

MK(t − s)f (x(s)) ds

⎞
⎠

T

× Q

⎛
⎝ t∫

t−τ

MK(t − s)f (x(s)) ds

⎞
⎠

+ τ2 (Mx(t))T K1T
(0)RK1(0) (Mx(t))

−

⎛
⎝ t∫

t−τ

MK(t − s)x(s)ds

⎞
⎠

T

× R

⎛
⎝ t∫

t−τ

MK(t − s)x(s)ds

⎞
⎠

+ xT(t)MTFΣFMx(t)

− fT (x(t))MTΣMf (x(t))

= ξTΩξ, (42)

where

ξ =

⎛
⎜⎝(Mx(t))T ,

⎛
⎝ t∫

t−τ

MK(t − s)x(s)ds

⎞
⎠

T

(Mf (x(t)))T ,

⎛
⎝ t∫

t−τ

MK(t − s)f (x(s)) ds

⎞
⎠

T
⎞
⎟⎠

T

.

Hence, by Lemma 4 and from (42), we know that under the
given condition (30), V̇ (t) ≤ 0 and V̇ (t) = 0 if and only if
ξ ≡ 0. Moreover, we obtain V (t) ≤ V (0), namely, V (t) is a
bounded function. Thus, ‖Mx(t)‖ −→ 0. This completes the
proof.

Corollary 1: Under Assumptions A1−A4, the dynamical
system (29) is locally synchronized if there are positive
definite matrices P = (pij) ∈ R(m−1)n×(m−1)n, Q =
(qij) ∈ R(m−1)n×(m−1)n, and R = (rij) ∈ R(m−1)n×(m−1)n

and a positive definite diagonal matrix Σ = diag(Σ1,
Σ2, . . . ,Σ(m−1)n) ∈ R(m−1)n×(m−1)n, such as shown at the
bottom of the page, where F = diag(F1, F2, . . . , Fn) ∈ Rn×n,
F = Em−1 ⊗ F , H = (MN1J) ⊗ Γ, H = (MN1J) ⊗ Λ,
M ∈ R(m−1)×m, and J ∈ Rm×(m−1) have the same structures
as those in (22) and (23).

Proof: Instead of using the inequalities (39) and (40), by
Assumption A1, it follows that

fT (x(t))MTΣMf (x(t))

=
m−1∑
j=1

[f (xj(t)) − f (xj+1(t))]
T

× Σj [f (xj(t)) − f (xj+1(t))]

≤
m−1∑
j=1

[xj(t) − xj+1(t)]
T FΣj [f (xj(t)) − f (xj+1(t))]

= xT(t)MTFΣMf (x(t)) (44)

where Σj = diag(Σ(j−1)n+1, . . . ,Σjn).

Ω =

⎛
⎜⎜⎝

−PC1 − C1T
P + PH + HTP + τ2K1T

(0)RK1(0) PH PA1 + FΣ PB1

H
T
P −R 0 0

A1T
P + ΣF 0 τ2K1T

(0)QK1(0) − 2Σ 0
B1T

P 0 0 −Q

⎞
⎟⎟⎠ < 0 (43)
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Following the same step as in the proof of Theorem 1,
Corollary 1 is proved.

Note that when m = N , we can obtain a theorem to ensure
the global synchronization of the coupled system (29).

Theorem 2: Under Assumptions A2–A4, the dynamical
system (29) is globally synchronized if there are pos-
itive definite matrices P = (pij) ∈ R(N−1)n×(N−1)n, Q =
(qij) ∈ R(N−1)n×(N−1)n, and R = (rij) ∈ R(N−1)n×(N−1)n

and a positive definite diagonal matrix Σ = diag(Σ1,
Σ2, . . . ,Σ(N−1)n) ∈ R(N−1)n×(N−1)n, such that

⎛
⎜⎜⎝

Ξ PH PA1 PB1

H
T
P −R 0 0

A1T
P 0 τ2K1T

(0)QK1(0) − Σ 0
B1T

P 0 0 −Q

⎞
⎟⎟⎠< 0 (45)

where Ξ = −PC1 − C1T
P + PH + HTP + FΣF +

τ2K1T
(0)RK1(0), F = diag(F1, F2, . . . , Fn) ∈ Rn×n,

F = EN−1 ⊗ F , H = (MN1J) ⊗ Γ, H=(MN1J) ⊗ Λ,
M ∈ R(N−1)×N , and J ∈ RN×(N−1) are defined in (22)
and (23).

Remark 3: In this paper, only the simple Lyapunov function
in (31) is used. It is certain that one can use other complex
Lyapunov function candidates to get better conditions for this
local synchronization problem by a csimilar approach. There-
fore, it is omitted here.

Remark 4: For the Semantic Grid or Virtual Organizations,
there are very few models that can be used to investigate their
reputation computation. Considering that a node in our new
complex network model is a fundamental unit with detailed
contents about an entity in the Virtual Organizations, we can use
it to study the reputation computation for Virtual Organizations.
It is a new method to solve this problem based on our complex
network model, which can well describe the dynamics of the
reputation degrees of Virtual Organizations.

IV. NUMERICAL EXAMPLE

In this section, we show one simulation example to illustrate
the application of the theoretical results obtained in this paper.

Consider the following reputation computation model:

ẋi(t) = −Cxi(t) + Af (xi(t))

+ B

t∫
t−τ

K(t − s)f (xi(s)) ds + Ii(t)

+
4∑

j=1

Gij

⎡
⎣Γxj(t) + Λ

t∫
t−τ

K(t − s)xj(s)ds

⎤
⎦

i = 1, 2, 3, 4 (46)

where

x(t) = (x1(t), x2(t))
T

f (x(t)) = (tanh (x1(t)) , tanh (x2(t)))
T

Ii(t) = (0.1, 0.2)T

C =
(

1 0
0 1

)
, A =

(
2.0 −0.1
−5.0 3.0

)

B =
(
−15 −10
−2 −45

)
, τ = 1

G =

⎛
⎜⎝

−16 15.96 0.02 0.02
15.96 −16 0.02 0.02
0.02 0.02 −0.1 0.06
0.02 0.02 0.06 −0.1

⎞
⎟⎠

Γ =
(

1 0
0 1

)
, Λ =

(
0.1 0
0 0.1

)

Ki(s) = αe−αs, α = 1, i = 1, 2.

It is obvious that Assumptions A1–A4 are satisfied (with
F = E2). Choose the initial conditions

x1(s) =
(

0.1
−0.2

)
x2(s) =

(
−0.3
0.4

)

x3(s) =
(

0.5
−0.6

)
x4(s) =

(
−0.7
0.8

)
.

The trajectories of the system (46) are shown in Fig. 1. Here, we
consider the local synchronization of the first two nodes in the
coupled system (46), i.e., m = 2. By Theorem 1 and using the
linear matrix inequality Matlab Toolbox, the following feasible
solutions are obtained:

P =
(

5.4820 −0.0304
−0.0304 5.0397

)

Q =
(

77.6007 8.0483
8.0483 110.9880

)

R =
(

91.1977 −10.5443
−10.5443 39.3123

)

Σ =
(

151.5666 0
0 135.3840

)
.

Based on Theorem 1, the system (46) is locally synchronized.
The error distance among the first two nodes in the coupled
networks is

err1(t) =
2∑

i=1

√
[x1i(t) − x2i(t)]

2

which is shown in Fig. 2. If we choose m = 4 and consider the
global synchronization of the dynamical system (46), feasible
solutions do not exist. The error distance among all four nodes
in the coupled network is

err2(t) =
2∑

i=1

√√√√ 4∑
j=2

[x1i(t) − xji(t)]
2

which is shown in Fig. 3. Therefore, the coupled system (46) is
locally synchronized but not globally synchronized.

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 5, 2009 at 21:19 from IEEE Xplore.  Restrictions apply.



YU et al.: LOCAL SYNCHRONIZATION OF A COMPLEX NETWORK MODEL 239

Fig. 1. Trajectories of nodes in the coupled networks (46).

Fig. 2. Error distance of the first two nodes in the coupled network (46).

We may consider nodes 1 and 2 as a group. Their reputation
degrees are changed in the same way. In real-world large-scale
coupled networks, many nodes in a coupled network can be
classified into some groups with similar properties. In this case,
one can consider the local synchronization of the reputation
computation of the complex network model.

V. CONCLUSION

Recently, the Semantic Grid and Virtual Organizations have
become focal research topics; however, the corresponding re-

Fig. 3. Error distance of the coupled network (46).

sults, particularly the dynamical models for their reputation
dynamics, are still lacking. In this paper, we have built a new
complex network model to solve this problem and to study the
reputation computation for Virtual Organizations in the sense
that a node in the network is a fundamental unit with detailed
contents that can present an entity in the Semantic Grid. We
have investigated some dynamics of the reputation degrees of
entities in Virtual Organizations and their local, as well as
global, synchronization.

In this paper, a framework about the local synchronization
of a complex network model is established. It is possible to
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extend the obtained results to stochastic networks, discrete-time
networks, delayed networks, time-varying networks, and so on.
Further research on this new model and the proposed approach
will be carried out in the near future.
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