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An Extension of LaSalle’s Invariance Principle
and Its Application to Multi-Agent Consensus

Daizhan Cheng, Jinhuan Wang, and Xiaoming Hu

Abstract—In the paper, an extension of LaSalle’s Invariance Principle to
a class of switched linear systems is studied. One of the motivations is the
consensus problem in multi-agent systems. Unlike most existing results in
which each switching mode in the system needs to be asymptotically stable,
this paper allows that the switching modes are only Lyapunov stable. Under
certain ergodicity assumptions, an extension of LaSalle’s Invariance Prin-
ciple for global asymptotic stability is obtained. Then it is used to solve
the consensus reaching problem of certain multi-agent systems in which
each agent is modeled by a double integrator, and the associated interac-
tion graph is switching and is assumed to be only jointly connected.

Index Terms—LaSalle’s invariance principle, multi-agent consensus,
switched linear systems, weak common quadratic Lyapunov function.

I. INTRODUCTION

Consider a switched linear system

_x = A�(t)x; x 2
n (1)

where � : [0;+1)! � = f1; 2; . . . ; Ng is a right continuous piece-
wise constant function, called a switching signal (or switching law).
We use '(x0; t) for the solution of (1) with a fixed switching law and
initial condition '(0) = x0. For determining the stability of system
(1), it is very natural for us to search for a common quadratic Lyapunov
function (CQLF), V (x) = xTPx, where P > 0 is a positive definite
matrix, such that

PA� +A
T

�P < 0; 8 � 2 �: (2)

Finding a CQLF is an interesting and challenging problem. There is a
large amount of literature concerning it, e.g., [3], [6], [10] and the ref-
erences therein. It is worth mentioning that it was shown in [7] that the
existence of a common quadratic Lyapunov function is only a sufficient
condition for switched linear systems to be asymptotically stable.

The method of multiple Lyapunov functions is also a useful tool for
stability analysis of switched systems. In comparison to a common Lya-
punov function, it allows each switching mode to have its own Lya-
punov function [2].

When the total derivative of the candidate Lyapunov function with
respect to each mode is only non-positive, the function is called a weak
Lyapunov function [1]. In order to solve the stability problem in such
a case, several extensions of LaSalle’s invariance principle for hybrid
systems have been investigated. For instance, [4] developed two prin-
ciples, which characterize asymptotic convergence of bounded hybrid
trajectories to weakly invariant sets. In [5], an invariance principle was
developed for left-continuous dynamic systems. As a special case of
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this result, new invariant set stability theorems were established for
nonlinear impulsive dynamic systems. In [8], distinct regularity as-
sumptions on the class of switching signals are placed. Depending on
the structural assumptions, either asymptotic stability or simple conver-
gence to an invariant set is concluded. Then the results are extended to
nonlinear systems [9]. A more traditional style extension of LaSalle’s
invariance principle, which emphasizes on set attraction, is proposed in
[1]. Under the assumption that the switching signals have a positive av-
erage dwell-time, another extension of LaSalle’s invariance principle
for switched nonlinear systems and criteria for asymptotic stability are
obtained in [11].

It has been pointed out that [1], [8] certain restriction on the
switching signals is necessary for extending LaSalle’s invariance
principle. A switched system is said to have a non-vanishing dwell
time, if there exists a positive time period �0 > 0, such that the
switching instances f�k j k = 1; 2; . . .g satisfy

inf
k

(�k+1 � �k) � �0: (3)

Throughout this paper we assume that
A1 Admissible switching signals have a dwell time �0 > 0.
The following is a multi-Lyapunov function approach to LaSalle’s

invariance principle for switched linear systems.
Proposition 1: [8] Consider system (1). Suppose that there exists a

set fP�j� 2 �g of n�n symmetric positive definite matrices and a set
of n �m matrices fC�j� 2 �g such that at each switching moment
we have

x
T (t)P�(t)x(t) � x

T (t)P�(t )x(t); 8 t > 0 (4)

and

P�A� + A
T

�P� � �CT

� C�; 8 � 2 �: (5)

Then (1) is Lyapunov stable. Moreover, if each pair (C�; A�) is ob-
servable, then (1) is asymptotically stable.

Note that if (C�; A�) is observable and there existsP� > 0 such that
(5) holds, then A� is a Hurwitz matrix ([12]). In this paper, we explore
a new extension, which allows Lyapunov stable modes. Of course, in
this case some restriction on the switching signal is necessary and we
will pose an ergodicity assumption on the switching signals.

In recent years, the study of consensus of multiple agents has at-
tracted much attention, see for example [14]–[18] and the references
therein. For many typical models of multi-agent systems adopted in the
literature, it appears that when local information is used the closed-loop
switching modes can only be Lyapunov stable. This makes it impos-
sible to use the existing extensions of LaSalle’s invariance principle to
solve the consensus problem for such a system, and partially motivates
our study. Later on, one sees that the ergodicity assumption we will
pose is satisfied if the interaction graphs of the multi-agent system are
jointly connected.

The rest of the paper is organized as follows: Section II introduces
a new kind of weak Lyapunov functions, the so-called common joint
quadratic Lyapunov function (CJQLF). In Section III an extension of
LaSalle’s invariance principle is proposed. Section IV is the application
of the result obtained in Section III to the consensus problem of multi-
agent systems. Section V is the conclusion.

II. JOINT QUADRATIC LYAPUNOV FUNCTION

In this section, we propose a new concept, called the joint quadratic
Lyapunov function. By using it we will develop an extension of
LaSalle’s invariance principle for system (1).

0018-9286/$25.00 © 2008 IEEE
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Since we only require each mode to be Lyapunov stable, in addition
to A1, we need to assume certain ergodicity property for the switching
signal.

A2. There exists a T > 0, such that for any t0 � 0, the switching
signal �(t) satisfies

ft j �(t) = �g [t0; t0 + T ] 6= ;; 8 � 2 �: (6)

Remark: If both A1 andA2 hold, then there exists T > 0 (replacing
the original T of A2 by T + �0) such that

ft j �(t) = �g [t0; t0 + T ] � �0; 8 � 2 �; t0 � 0 (7)

where j � j denotes the Lebesgue measure.
Definition 1: Consider system (1).

1) If a quadratic function V (x) = xTPx with positive definite P >
0 has the following property:

PAi + AT
i P = �Qi � 0; i = 1; . . . ; N (8)

then V (x) (or briefly, P ) is called a common weak quadratic Lya-
punov function (CWQLF) of system (1).

2) A common weak quadratic Lyapunov function of system (1) is
called a common joint quadratic Lyapunov function (CJQLF) if

Q :=

N

i=1

Qi > 0: (9)

Remark: It is easy to show that for system (1), if there exists a
CWQLF P > 0, then P is a CJQLF if and only if

i2�

Zi = f0g; (10)

where Zi is the kernel of Qi, i 2 �:
Now, a fundamental question is: under the assumptions of A1 and

A2, is the existence of a CJQLF sufficient for assuring the global
asymptotical stability?

Unfortunately, the answer is negative and the following is a counter
example:

1) Example 1: Consider a switched linear system

_x = A�(t)x (11)

with a right continuous piecewise constant switching law �(t) :
[0;+1) ! � = f1; 2; 3g: Let

A1 =

0 1 0

�1 0 0

0 0 �1

; A2 =

0 0 �1

0 �1 0

1 0 0

A3 =

�1 0 0

0 0 1

0 �1 0

:

Choose P = I3. A straightforward computation shows that

Q1 =diagf0; 0; 2g; Q2 = diagf0; 2; 0g

Q3 =diagf2; 0; 0g;

and Z1 = spanf(1;0; 0)T ; (0; 1; 0)Tg, Z2 =
spanf(1;0; 0)T ; (0; 0; 1)Tg, Z3 = spanf(0;1; 0)T ; (0; 0; 1)Tg.

Obviously, Qi � 0, i = 1; 2; 3; and Q = 3
i=1Qi = 2I3 > 0,

namely I3 is a common joint quadratic Lyapunov function. We choose
a periodic switching law with period T = 1:5�

�(t) =

1; t 2 [kT; kT + 0:5�)

2; t 2 [kT + 0:5�; kT + �)

3; t 2 [kT + �; (k + 1)T ),k = 0; 1; . . .

which is ergodic. However, system (11) is not asymptotically stable
under the above switching law if we take the initial value x(0) =
(0; 1; 0)T 2 Z1. Indeed, the trajectory is a closed loop with kx(t)k � 1
for all t � 0.

Therefore, in addition to A1, A2, and the existence of CJQLF, some
additional conditions may be needed to assure that the system is glob-
ally asymptotically stable, which will be discussed in Section III.

Before ending this section, we give a brief discussion on attractive
sets.

Definition 2: [1] A compact set M is weakly invariant with respect
to (1), if for each point x 2M , there exists a � 2 � and b > 0 such that
the trajectory of exp(A�t)x 2 M for either t 2 [0; b] or t 2 [�b; 0].
With some mild modification, we state Theorem 1 of [1] as

Proposition 2: [1] Assume system (1) has a CWQLF

z =
i2�

zi

and M is the largest weak invariant set contained in Z . Then every
solution '(x0; t) of system (1) converges to M .

III. LASALLE’S INVARIANCE PRINCIPLE FOR A CLASS OF Ai

In this section, we impose certain constraints on system (1), or more
precisely, on fAig. We begin with the following observation.

Lemma 1: For system (1) if there exists a CWQLF, then for each i,
Ai is Lyapunov stable, which implies thatAi can only have eigenvalues
with non-positive real part. Moreover, the algebraic multiplicity of each
eigenvalue on the imaginary axis is equal to its geometric multiplicity.

Definition 3: Assume P is a CWQLF for system (1). Set z =
P 1=2x. Then z is called the normal coordinate frame.

Remark: A straightforward computation shows that under the
normal coordinate frame P , Ai and Qi, denoted by ~P , ~Ai and ~Qi

respectively, become
~P = In; ~Ai = P 1=2AiP

�1=2

~Qi =P�1=2QiP
�1=2; i 2 �: (12)

It is worthwhile noting that since P is identity now, the Lyapunov func-
tion becomes kzk2.

In the following discussion we use only the normal coordinate frame
unless otherwise stated. To avoid notational mess, instead of z, we still
use x. We need some preparations first.

Lemma 2: Consider a linear system

_x = Ax; x 2 n (13)

where A is Lyapunov stable. Denote K = ker(A), and let y 2 K .
Then for anyR > 0, there exists r > 0, such that if kx0�yk < r then

k'(x0; t)� y)k < R; t � 0: (14)

Proof: It is easy to see that any y 2 K is a stable equilibrium
of (13), thus the conclusion follows. In particular we can choose r =
R=L, where L = max

t�0
eAt < +1. Then

kx(t)� yk = keAt(x0 � y)k � Lkx0 � yk < Lr = R

t � 0: (15)

Lemma 3: Consider the switched linear system (1). AssumeAi, i 2
� are Lyapunov stable matrices. Denote Ki = ker(Ai),K =

i2�

Ki,
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and let y 2 K . Assume the switching signal satisfies A1 andA2. Then
for any R > 0, there exists r > 0, such that if kx0 � yk < r then

k'(x0; t)� yk < R; 0 � t � T: (16)

Proof: Let L = sup
t�0;i2�

keA tk. Then L < 1 since every Ai is

Lyapunov stable. Let k = [T=�0]+1. Then there are at most k switches
over the duration 0 � t � T . Choose r = R=Lk+1:

Let �0; �1; . . .�s be the sequential active modes with lasting times
t0; t1; . . . ts respectively. Then s � k and

k'(x0; t)� yk = eA t � � � eA t x0 � y

= eA t � � � eA t (x0 � y)

�Lk+1r = R:

Remark: From the proof of Lemma 3, one sees easily that
the Lemma remains true if � is replaced by �0 = f� j
Mode � is active for some t 2 [0; T ]:g.

Lemma 4: ker(Ai) � ker(Qi).
Proof: Since

Ai + AT
i = �Qi

then, for any x0 2 ker(Ai),

xT0Qix0 = �xT0 Ai +AT
i x0 = 0:

So Qix0 = 0 due to the fact that Qi � 0. The conclusion follows.
Denote by M the largest weak invariant set contained in Z , and let

Vi = M Zi; i = 1; . . . ; N:

Using Lemma 4, one sees easily that ker(Ai) itself is a weak invariant
set contained in Zi � Z , hence ker(Ai) � Vi. We further assume

A3. ker(Ai) = Vi, i 2 �.
Now we are ready to present our main result.
Theorem 1: Consider system (1). Assume A1 and A2 hold, and

there exists a CJQLF such that A3 holds. Then system (1) is globally
asymptotically stable.

Proof: Choosing x0 2 n and let x(t) = '(x0; t) be any trajec-
tory of system (1) under the normal coordinate frame and with certain
switch �. Since k'(x0; t)k is non-increasing monotonically, the Lya-
punov stability is obvious. Moreover

lim
t!1

k'(x0; t)k = c:

Thus we only need to show c = 0. We will prove this by contradiction.
Assume c > 0. Since x(t) is bounded, then there exists an infinite
sequence ftkg such that

xk := x(tk)! y as k !1

where kyk = c > 0. Now since y is a point in the !-limit set (see [1]),
we have y 2 M � Z .

Split � into two disjoint subsets, I � � and J = � n I , such that

y 2 Zi; 8 i 2 I; y =2 Zj ; 8 j 2 J:

Since y 2M , thus I 6= ; and y 2 Vi, 8i 2 I . According to condition
(10), J 6= ; either.

Denote

d = min
j2J

d(y; Zj) > 0: (17)

We can choose 0 < R < d=2 and define a ballBR(y) (whereBr(p) =
fx 2 njkx � pk < rg). Then we have

d(x; Zj) > R; x 2 BR(y); 8 j 2 J: (18)

For each x 2 n, we can decompose it with respect to each i 2 �
by x = x1 + x2; where x1 2 Zi and x2 2 Z?i . If mode i is active,
then

d

dt
kx(t)k2 =;�xT2 Qix2

and

�mx
T
2 x2 � xT2Qix2 � �MxT2 x2

where �m and �M are the smallest and largest nonzero (equivalently,
positive) eigenvalues of Qi, and kx2k is the distance of x to Zi.

Let

�min = min
j2J

�jk j �
j

k : nonzero eigenvalues of Qj > 0: (19)

Then it is clear that if a mode j 2 J is active, then

d

dt
kx(t)k2=� xT (t)Qjx(t)

���minkx2k
2

���minR
2; 8 x 2 BR(y): (20)

Choose a positive number N0 � 1 and let R0
1 = R=N0. Then we

can find an � > 0 such that

max
j2J

eA t � I �
(N0 � 1)R0

1

kyk+R0
1

; 0 � t � �: (21)

Since when � = 0 the left hand side of (21) is zero, (21) follows from
the continuity. Without loss of generality we can assume � � �0.

Now assume for the time being that we can find a moment t0 such
that x(t0) 2 BR (y) and at t0 a mode j 2 J is triggered, then we have

kx(t)� yk � kx(t)� x(t0)k+ kx(t0)� yk

�
(N0 � 1)R0

1

kyk+R0
1

kx(t0)k+R0
1

� R; t0 � t � t0 + �: (22)

Denote � = �minR
2� > 0: From (22) and the fact that the mode

j 2 J becomes active at t0, we can use (20) to get

kx(t0 + �)k2 < kx(t0)k
2 � �

< kx(t0)k
2 � � +

�

2 kx(t0)k

2

= kx(t0)k �
�

2 kx(t0)k

2

: (23)

Hence

kx(t0 + �)k � kx(t0)k �
�

2 kx(t0)k
:
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Since x(t0) 2 BR (y), then kx(t0)k < kyk + R0
1 < kyk + R, and

hence

kx(t0 + �)k < kx(t0)k �
�

2(kyk+R)
: (24)

Now choose

R1 = min R
0
1;

�

2(kyk+R)
(25)

and let x(t0) 2 BR (y) � BR (y). Then (24) yields

kx(t0 + �)k < kyk+R1 �
�

2(kyk+R)
� kyk (26)

i.e., kx(t0 + �)k < kyk, which is a contradiction because kyk = c is
the lower bound of kx(t)k.

Finally, we have to show that for R1 given by (25), the required t0 in
the previous assumption exists. Since y belongs to the !-limit set, for
any r > 0 there exists t� such that x(t�) 2 Br(y). Using the remark
after Lemma 3 together with Assumption A3, we can find 0 < r < R1

such that when x(t�) 2 Br(y) and only some modes i 2 I are active,
we have

'(x0; t) 2 BR (y); t
� � t � t

� + T: (27)

Recalling Assumption A2, a j 2 J mode will become active at some
moment t0 2 [t�; t� + T ] and by (27) we know that the trajectory
'(x0; t) (t� � t � t0) remains in BR (y) � BR (y).

In general, it is not straightforward to verify A3. We thus give a suf-
ficient condition here.

Proposition 3: If rank(Ai) = rank(Ai + AT
i ) (equivalently in

the original coordinate frame: rank(Ai) = rank(PAi + AT
i P )), i =

1; . . . ; N; then A3 is satisfied.
Proof: Lemma 4 implies that ker(Ai) � ker(Qi). Now since

rank(Ai) = rank(Qi), we have dim(ker(Ai)) = dim(ker(Qi)).
Therefore, ker(Ai) = ker(Qi) = Zi. Then Vi � ker(Ai). Mean-
while, since ker(Ai) is Ai invariant and contained in ker(Qi), so,
ker(Ai) � Vi. We conclude that Vi = ker(Ai).

A particular interesting case is the following:
Remark: If Ai (equivalently in the original coordinate frame:

P 1=2AiP
�1=2), i 2 � are symmetric, then A3 is satisfied

automatically.

IV. CONSENSUS OF LEADER FOLLOWING MULTI-AGENT SYSTEMS

In this section, we study the consensus problem of multi-agent sys-
tems with variable interaction topology by applying the results from
the previous sections.

In order to apply our results to the multi-agent consensus problem
we need to modify (in fact weaken) Assumption A2 to the following.

A2’ There exists a T > 0, such that for any t � 0

j2J [t;t+T ]

Qj > 0 (28)

where J [t; t + T ] := f�(s) j s 2 [t; t + T ]g:
Remark: In the study of consensus problems a common assumption

is that there exist a T0 > 0 and a sequence 0 < t1 < t2 < � � � !
1, ti+1 � ti � T0, 8i such that the graphs over [ti; ti+1] are jointly
connected. This requires that

j2J[t ;t ]

Qj > 0; 8 i: (29)

In fact (28) and (29) are equivalent. Equation (28))(29) is obvious.
To prove (29))(28), set T = 2T0, then for any t � 0, there exists a k
such that [tk; tk+1] � [t; t + T ].

Proposition 4: Theorem 1 remains true when Assumption A2 is
replaced by A20.

Proof: According to (10), A20 assures that on each time duration
[t; t+T ]; 8 t � 0, certain j 2 J mode must be active. So the argument
in the proof of Theorem 1 remains true.

In coordination problems for multiple agents, tools from the alge-
braic graph theory are used frequently (referring to [13], [19] for the
details).

We consider a system consisting of n agents and a leader which is
denoted by a graph �G. It contains n agents (related to an undirected
graph G) and a leader (labeled by 0) with directed edges from some
agents to the leader. The set of neighbors of vertex i at time t is denoted
by Ni(t) = fj 2 V : (i; j) 2 E ; j 6= ig, where V = f1; 2; . . . ; ng
and E = f(i; j) : i; j 2 Vg � V �V are the sets of vertices and edges
of graph G, respectively.

A subgraph X of G is an induced subgraph if two vertices of V(X )
are adjacent in X if and only if they are adjacent in G. An induced
subgraph of G that is maximal, subject to being connected, is called a
component of G. “The graph �G is connected” means that at least one
agent in each component of G is connected to the leader. The union
graph of a collection of graphs f �G1; �G2; . . . ; �Gmg, with the same vertex
set �V , is defined as a graph, denoted by �G, with vertex set �V and edge
set equaling the union of the edge sets of all the graphs in the collection.
The collection of graphs f �G1; �G2; . . . ; �Gmg is called jointly connected
if the union graph �G is connected [14], [15].

For the multi-agent system concerned, the neighborhood for each
agent is time-varying. Assume all possible interconnection topologies
of graph �G are �G1; �G2; . . . ; �GN . Following [14], we assume the weights
between agents are

aij(t) =
a�ij ; if j 2 Ni(t)

0; otherwise

and

bi(t) =
b�i ; if agent i is connected to the leader at t
0; otherwise

where a�ij , b�j (i; j = 1; . . . ; n) are fixed positive constants.
In this paper, we consider the following double integrator system of

n agents:

_qi = pi

_pi = ui
(30)

where qi; pi; ui 2 , i = 1; 2; . . . ; n; denote the position (or angle),
velocity (or angular velocity) and control input of agent i, respectively.

There does not seem to exist an obvious way to adopt the matrix
analysis method used in [15] directly to the second order dynamics.
Thus we will use instead the LaSalle’s invariance principle approach
to solve the consensus problem. In this paper we consider the consensus
problem for leader-following multi-agent systems.

The dynamics of the leader is expressed as follows:

_q0 = p0 (31)

where p0 2 is the desired constant velocity known to all agents.
Our control aim is that all the agents follow the leader asymptotically

and the desired velocity of all the agents converges to p0, namely, qi !
q0, pi ! p0 as t ! 1.
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We use the following neighbor-based feedback control law:

ui = �
j2N (t)

aij(t)(qi � qj)� bi(t)(qi � q0)

� k(pi � p0)

i =1; 2; . . . ; n (32)

where k > 1 is a control parameter.
Let xi = qi � q0, vi = pi � p0, i = 1; 2; . . . ; n; then (32) can be

rewritten as

ui = �
j2N (t)

aij(t)(xi � xj)� bi(t)xi � kvi

i =1; 2; . . . ; n: (33)

Let �(t) : [0;1) ! � = f1; 2; . . . ; Ng be a right continuous
piecewise constant switching signal. The Laplacian of graph G�(t) is
defined as L�(t) = (lij(t)) 2

n�n, where

lij(t) = k2N (t)

aik(t); j = i

�aij(t); j 6= i:

Denote � = (�T1 ; . . . ; �
T
n )

T 2 2n; �i = (xi; vi)
T 2 2; u =

(u1; . . . ; un)
T 2 n:

With (30) and (33), the closed-loop system for the followers can be
expressed as:

_x = v

_v = �(L�(t) +B�(t))x� kv
(34)

where L�(t) is the Laplacian of G�(t) and B�(t) =
diag(b1(t); . . . ; bn(t)) is the leader adjacency matrix of
�G�(t). We use �(t) to emphasize that they change values only when
the switchings occur. Putting variables together, we have

_� = F�� (35)

where

F� = In 

0 1

0 �k
+H� 


0 0

�1 0

H� =L� +B�:

Lemma 5: [14] If graph �Gp (p 2 �) is connected, then the
symmetric matrix Hp associated with �Gp is positive definite. More-
over, let Hi ; . . . ; Hi be the matrices associated with the graphs
�Gi ; . . . ; �Gi , respectively. If these graphs are jointly connected, then

m

j=1Hi is positive definite.
Now, we present our main result of this section.
Theorem 2: Consider system (35). Assume the switching signal

�(t) satisfies A1, and there exists a T > 0 such that for any t �
0, the collection of the interaction graphs across each interval [t; t +
T ] is jointly connected, then the consensus is reached asymptotically,
namely, lim

t!1
�(t) = 0.

Proof: Take a positive definite matrixP = In

k 1

1 1
;where

k > 1; then

Qp := � (FT
p P + PFp)

= In 

0 0

0 2(k� 1)
+Hp 


2 1

1 0
; p 2 �:

Since Hp; p 2 � are positive semi-definite, there exist orthogonal ma-
trices Up such that

UT
p HpUp =

�p 0

0 0
; p 2 �

where �p = diagf�1(Hp); . . . ; �r (Hp)g with �i(Hp), i =
1; . . . ; rp; being the nonzero eigenvalues of Hp, and rp > 0 is the
rank of Hp. At the same time

�Fp := (Up 
 I2)
TFp(Up 
 I2)

= In 

0 1

0 �k
+

�p 0

0 0



0 0

�1 0
(36)

�Qp := (Up 
 I2)
TQp(Up 
 I2)

= In 

0 0

0 2(k� 1)
+

�p 0

0 0



2 1

1 0
:

(37)

Choose

k >
1

4
maxf�i(Hp); p 2 �; i = 1; 2; . . . ; rpg+ 1 (38)

then

2�i(Hp) �i(Hp)

�i(Hp) 2(k� 1)
> 0

which implies that Qp � 0, p 2 �.
Denote J [t; t+ T ] = f�(s) j s 2 [t; t + T ]g, jJ [t; t+ T ]j = mt.

On each interval [t; t + T ], since f �Gp; p 2 J [t; t + T ]g is jointly
connected, by Lemma 5,

p2J [t;t+T ]Hp > 0, 8 t � 0.
Define � = maxfeigenvalues of

p2J[t;t+T ]Hp > 0; 8 t � 0g,
which is well defined since fJ[t; t+T ]; 8 t � 0g � 2� is a finite set.
Take k > 1=4maxf�; �i(Hp) j p 2 �; i = 1; 2; . . . ; rpg+ 1, then

p2J[t;t+T ]

Qp = In 

0 0

0 2mt(k� 1)

+ (
p2J[t;t+T ]

Hp)

2 1

1 0
> 0:

Therefore, Assumption A20 holds and P is a CJQLF. Furthermore,
by (36) and (37), we can easily obtain that rank( �Fp) = rank( �Qp),
p 2 �, which implies A3 is satisfied by observing Proposition 3. Thus,
by Proposition 4, lim

t!1
�(t) = 0.

V. CONCLUSION

By introducing the common joint quadratic Lyapunov function an
extension of LaSalle’s invariance principle was obtained in this paper.
Unlike the traditional extensions, our results did not require each
switching mode being asymptotically stable, while certain ergodicity
restrictions were imposed on the switching signals. Based on the
stability result, a consensus problem of multi-agent systems with
variable interaction topology was studied. With a neighbor-based
feedback control rule for each agent, we proved that a leader-following
multi-agent system of two dimensional dynamics for each agent
can achieve consensus asymptotically under the assumption that the
collection of the interaction graphs is jointly connected.
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Growth Conditions for the Global Stability of High-Speed
Communication Networks With a Single Congested Link

C. King, R. N. Shorten, F. R. Wirth, and M. Akar

Abstract—This note considers the design of transmission control protocol
(TCP)-like congestion control protocols for deployment in high-speed com-
munication networks. A basic problem in this area is to design congestion
control strategies that probe more aggressively than standard TCP, but
which coexist with each other and result in globally stable and equitable
network behavior. In this note, we take a first step towards this goal, by
formulating the TCP dynamics as a discrete linear system with nonlinear
feedback gain. Under the assumption of player synchronisation, conditions
for global network stability are derived in the form of growth bounds on
the local nonlinear probing functions.

Index Terms—Asymptotic stability, congestion control, discrete-time
system, nonlinear additive-increase multiplicative-decrease (AIMD).

I. INTRODUCTION

Transmission control protocol (TCP), in congestion avoidance
mode, is based primarily on Chiu and Jain’s [2] additive-increase mul-
tiplicative-decrease (AIMD) paradigm for decentralized allocation of a
shared resource (e.g., bandwidth) among competing users. With some
minor modifications, the AIMD algorithm has served the networking
community well over the past two decades and it continues to provide
the basic building block upon which today’s internet communication is
built. Recently, in the context of designing high speed communication
networks, several authors have suggested basic modifications to the
AIMD algorithm; for example, see [3], [4], [6], [10], and [11]. One
idea underlying these modifications is to replace the constant growth
rate of window size in standard TCP with an increasing rate. The
rationale for this change is that such protocols probe more aggressively
for available bandwidth as network capacity increases [3], [11]. These
algorithms, which we refer to as nonlinear AIMD (NAIMD), result
in networks with different dynamic properties than those employing
the basic (linear) AIMD; see [3], [8]. A basic question in the design
of NAIMD networks is how to choose the probing action so that the
resulting network exhibits desirable properties. Remarkably, despite
increasing deployment of these algorithms (e.g., a high-speed TCP
algorithm is implemented as part of the Linux operating system), little
work has been carried out in this area and basic questions concerning
the existence and nature of network equilibria have yet to be addressed.

Our objective in this note is to study basic convergence and stability
properties of a class of NAIMD congestion control protocols. In this
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