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OBSERVABILITY OF SYSTEMS ON LIE GROUPS AND COSET SPACES*

D. CHENGT, W. P. DAYAWANSAZ, anD C. F. MARTIN§

Abstract. The purpose of this paper is to study the observability of a class of systems for which the
state space is a Lie group and the output space is a coset space. The study of this type of system was initiated
by Brockett [SIAM J. Control, 10 (1972), pp. 265-284]. In this paper, Brockett’s observability results are
generalized and necessary and sufficient conditions for observability are obtained. Effective algorithms are
established to verify such conditions. Finally, as an application, some disturbance decoupling problems are
considered.
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1. Introduction. In this paper, we study the observability properties of systems
that are described by a state equation that evolves on a Lie group G and an output
equation that takes values in a coset space of G. These equations are assumed to be
of the form

Ly $=A(X)+ T B(Xu, xeG,

i=1
(1.2) y=Cx

where A(x), By(x),- -, B, (x) are right-invariant vector fields on G, C is a closed
subgroup of G, and the notation Cx is to be interpreted as the right coset of C in G
that contains x. ‘

This system model has been studied by Brockett [1] where G was assumed to be
a group of matrices. Brockett has shown [1] that there are many important applications
in engineering and in physics that have models of this form. Jurdjevic and Sussmann
[2] have extended (1.1) to an abstract Lie group G and have obtained a set of basic
controllability properties of (1.1). Our work is related to and extends the work of [1].

The observability properties are discussed by Brockett [1]. To describe Brockett’s
observability result, we need a preliminary definition.

DeriNiTION 1.1. Two points x, and x, are distinguishable if there exists some
control that gives rise to different outputs for the two starting points.

Let S be a subset of G. We denote by {S}s the subgroup generated by S, i.e., the
smallest subgroup of G containing S. Let 3 be a set of right invariant vector fields of
G. We denote by {3}, 4 the Lie subalgebra generated by 3, and

exp ({#}a) ={exp X |X e{I}Lat.

The main observability result of [1] is Theorem 1.1.

* Received by the editors May 31, 1988; accepted for publication (in revised form) July 12, 1989.

T Department of Mathematics, Texas Tech University, Lubbock, Texas 79409.

1 Department of Mathematics, Texas Tech University, Lubbock, Texas 79409. This work was supported
in part by National Science Foundation grant ECS-88024831.

§ Department of Mathematics, Texas Tech University, Lubbock, Texas 79409. This work was supported
in part by National Security Agency grant MDA 904-85-H0009 and National Aeronautics and Space
Administration grant NAG 2-82.

570

Exhibit 3-23

.



SYSTEMS ON LIE GROUPS AND COSET SPACES 571

THEOREM 1.1 [1]. Let 3¢ and ¥ be Lie algebras in gl {n, R}, and suppose that all
the poznts reachable from the identity for matrix system

=(A+ > uiBi)x, y=({exp %}c)x
are {exp F}. Then the set of initial states &, which are indistinguishable from the identity,
contains {exp ¥} if and only if {ady K} o <= H. Therefore a necessary condition for all
states to be distinguishable from the identity is that F contains no subalgebra ¥ such that
{adg H}ac #. :

It is shown by example in Brockett [1] that the preceding theorem is not suﬂiCIent
An important point in this theorem is that the “unobservable” p_art is related to an
F-invariant subalgebra {ad, '}, ., which is contained in the Lie subalgebra of the
output subgroup. — o ‘

Motivated by this fact, we investigate the “unobservable” part in more detail. The
results of Jurdjevic and Sussmann [2] enable us to describe the controllable set, which
corresponds to {exp £} of Theorem 1.1. Based on [1] and [2], we give necessary and
sufficient conditions for the system (1.1), (1.2) to be observable.

The paper is organized in the following way. Section 2 contains two main results—
local observability conditions and global observability conditions. In § 3, we develop
algorithms that are useful for studying groups of matrices. In § 4, we give'some examples.
Finally, in § 5 the input-output decoupling problem is discussed as an application.

2. Observability results. To avoid unnecessary complexity, we assume throughout
this paper that the controls are piecewise: constant. In fact, this is not essential. For
instance, if we replace the set of piecewise constant functions by the set of the piecewise
continuous functions, all of the arguments remain valid.

Let R(x) be the reachable set starting from x, i.e., R(x) is the set of points-y such
that there exist a piecewise constant control. # and a time T =0, such that the solution
of (1.1) satisfies x(0) =x, x(T)=y. We denote by R(x, t) ‘the reachable set at time ¢,
starting from’ x.

It-is proved in Jurdjevic and Sussmann [2] that for the right-invariant system
(1.1), the reachable set of x is related to the reachable set of the identity e by
(2.1) o ‘ R(x)=R(e)x.

Using this fact, we prove the followiﬁg elerhentary result, which shows that distinguish-

ing two arbitrary points is equivalent to distinguishing a point from the identity.
LEmMMmA 2.1. Two poznts p and q are indistinguishable if and only if for each

re R(e)

(2.2) Ad (r)pq eC

Proof. By the-structure of the output (1.2) it is clear that p and g are indistinguish-
able if and only if for all ¢, R(p, t) and R(g, t) are in the same coset of C. From (2.1),
it follows that

(2.3) Crp=Crq for all re R(e),
that is, S ' '
pq”'r '=Ad (r)pg e C. . 0

Now we may define an unobservable state as follows. (It is similar to the linear
case: x; and x, are indistinguishable if and only if x;, —~ x, belongs to an unobservable
subspace.)
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572 C. CHENG, W. P. DAYAWANSA, AND C. F. MARTIN

DeriNniTION 2.1. A point h is called unobservable if there exist p and g such that
pq ' =h and p and q are indistinguishable.

Remark 1. Let h be unobservable. Then it follows from Lemma 2.1 that for any
pair (p', q') if p'(q")~' = h, then p' and q' are indistinguishable.

Let

H ={he G|h is unobservable}.

By definition of unobservable state and equation (2.2), it is clear that
(2.4) HcC

In fact, H has a subgroup structure that is shown in the following lemma. _
LemMA 2.2. Assume Cis closed. Then the unobservable set H is a closed Lie subgroup
of G.
Proof. By definition and Lemma 2.1,
(2.5) H={he G|rhr~'e C for all re R(e)}.
Let hy, h,€ H. Then,
rhihs 'y =rhor Tk e = (kY (rhor ) e C

Thus, H is a subgroup of G.
Since C is closed, if for a sequence {h,}< H, h, = h, as n > o, then

rhyr 's>rir e C

Thus, he H, and hence H is closed. Now the result follows from the well-known fact
(see for example, Hausner and Schwartz [4]) that a closed subgroup of a Lie group
is a Lie subgroup. a

If C is closed, the output mapping has an analytic structure that is described by
the following well-known theorem.

THeEOREM 2.1 [3]. Let G be a Lie group and C a closed subgroup of G. Then the
quotient space C\ G admits the structure of real analytic manifold in such a way that the
action of G on C\G is real analytic, that is, the mapping G X C\ G » C\ G, which maps
(p, Cq) into Cpq, is real analytic. In particular, the projection G- C\ G is real analytic.

. Let {R(e)}s be the subgroup of G generated by R(e) and let {R(e)}G denote the
closure of {R(e)}s. For convenience denote the vector fields A(x), B,(x), - -, B,,(x)
by A, By, -+, B,,, respectively, where A and B; are elements in 4(G), the Lie algebra
of G. Then we have the following lemma.

LeEmMMmA 2.3. Assume he H. Then

(2.6) Ad(r)he H forall re{G(e)}s.
Proof. First, we claim that
2.7 Ad(r)he H for all re G(e).

Since R(e) is a semigroup [2], for any e R(e) we have 7re R(e). Thus,
(Fr)R(Fr) ' =F(rhr )# 'e C for all 7€ R(e).

It follows that rhr ‘e H.
From its defining properties, it is clear that

{R(e)}c = {CXP (t.X,) - - - exp (hX))|tieR,se Z7,
ujeR},i=1,---,s}.
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SYSTEMS ON LIE GROUPS AND COSET SPACES 573

Set
E:={(t1, T, tS)ERS|Ad (exp(t:X:) e eXp (tlxl))he C}

Then, to prove (2.6) for re {R(e)}s it is enough to show that E,=R", s=1,2,---.
We proceed by induction. For s =1, if Ad (exp t;X;)h & C, then there exists 7, such that

Ad (exp t,X,)h 2 (R,),94(C)

dn;,
where p = Ad (exp ,X,)h, 4(C) is the Lie algebra of C and R, is the right translation,
i.e, R,:G-> G is defined as x-xp. In other words, there exists a right-invariant
one-form w(x) generated by we (4(C))* such that

d
(2.9) <w(”)’I Ad (exp th,)h>#0.
117

By analyticity, (2.9) holds in an open dense subset of R. But according to (2.7), for
f,eR,={teR, t =0} the left-hand side of (2.9) is zero; this leads to a contradiction.

Now, assume that
Ad (exp (t,_X;-,) - - exp (1, X ))h e C, teR
and
{Ad (exp (t,X,) - - - exp (6, X)) h]|(t;, - - -, t,) eR*} C.

Then there exists £=(f,,- -, f,) such that

d . .
Zl. Ad (exp (tX,) exp (£,_, X, 1) - - - exp ({;X,))h € 4(C).

Similar to the case when s =1, we have a contradiction.

Thus, we have shown that (2.6) holds for all re {R{e)}s. By continuity, it holds
for all re{R(e)}s. O

Remark 2. 1t is clear by (2.8) that {R(e)}s is a path-connected group, hence a
Lie subgroup [5]. Now since {R(e)}; is a connected Lie group, and A, B,, B,, " - -, B,

generate 9({R(e)}s), then [2, Lemma 6.2]
(2 0) {R(e)}G = {exp (tst) T exp (tIXI) I t,- € R5 S€ Z+5
Nl
Xie{AaBla."5Bm}5i=15“'5s}' D

Next, we investigate the relations among the Lie algebras 9(H), 9(C), and 4(G),
which are the Lie algebras of H, C, and G, respectively.

Let {X(x), -, X,(x)} be a set of right-invariant vector fields generated by
X;€9(G), i=1,---,s, respectively. Let A denote the subspace of ¥(G) spanned by
{x{," -, xs}. A subspace A of 4(G) is called Y € 4(G) invariant if

{Y,X]|XeAl<A.

Likewise, for right-invariant we form w,(x), - - -, w,(x) generated by w, € ¥*(G), the
cotangent space of G at the identity e, we have a right-invariant subspace

Q=span{w,, -, w.}.

! This remark was suggested by an anonymous reviewer.
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Q is Y invariant if
{Lyw|weQ}=Q.

The following two lemmas are generahzations of Theorem 1.1.

LEMMA 2.4. 4(H) is A and B, i=1, , m, invariant,

Proof. Let X =A or B;, teR, p=exp (tX) According to Lemma 2. 3 and (2.10),
(Ad exp (1X)),9(H) < 9(H). Now let Y e ¥(H). Then

X, Y]=—
[X, Y]= @il o
LEMMA 2.5. %(H) is the largest A and B;, i=1, - - - , m, invariant Lie subalgebra
contained in 4(C). :
Proof. We claim that
(2.11) Y(H)= N ady! .- ad};@(C).

X1, X, E{A By, B}
: pE

First, we show that (2.11) implies @(H ) is the largest A and B; invariant Lie subalgebra
contained in 4(C). Assume 9(H)< 4(C) is also A and B; invariant. Then, for any
Xla' * 'aXpe{A,Bla' ' 'aBm}a

ady, - - adxp@(ﬁ) = 9(H)< 4(C).

Adexp (1X), Y e 9(H). O

Thus,
G(H)cady. - - adx 9(C).
Since X, -+, X, are chosen arbitrarily, we have that
Y(H)<= 9(H).

Next, we prove (2.11).
(¢) Lemma 2.4 shows that 9(H) is A and B; invariant. The inclusion follows by

an argument similar to the above.
(2) Let

Ye _ Dw B'yad;{ -+ - adx! 4(C).
PEZ+1,.“, "
To show that Y e 4(H), it is enough to show that
exp(7Y)e H for all TeR.
Using (2.10), it suffices to show thai for any
X, X%,€{A By, -, B), (4, 1) ER
Ad (exp (1,X,) - - - exp (11 X,)) exp Y e C.
Sinc'e' Ad (exp (£, X,) - - " exp (t:X1)) is a dlﬂeomorphlsm we have
Ad (exp (£,X,) - - - exp (£,X,)) exp 7Y = exp (Ad (exp (t,,X,,) - exp (1 X,)TY))

Now to prove (2.12), it suffices to show that |
(2.13) Ad‘_(e_)‘(p :(t,,X,,) <r e exp (thl'))'rY'e @(C);

Let us denote the right-hand‘_side of (2.11) by #. Now since

Ad (exp (£,X,) -+ - exp (1, X,)7Y) B '
= Ad (exp £,X,) Ad (exp t,-1X,-1) - - - Ad (exp (£, X)) 7Y, .

(2.12)
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it suffices to prove that
Ad (exp (£, X,)7Y) € 4.
But
Ad (exp (t,x,)7y) = exp (ad (t,x,)) 7y )

(ad(tlxl))

i: (7y).

Therefore, obviously, Ad (exp (t,x;)7y) e L. O
We are now ready to discuss the observability properties of (1.1), (1.2).
DEerFINITION 2.2. System (1.1), (1.2) is locally observable at x if there exists a
neighborhood V, of x such that

LN Vi={x},

where I, is the set of points that are indistinguishable from x. Systerﬁ (1.1), (1.2) is
locally observable if it is locally observable everywhere. System (1.1), (1.2) is (globally)
observable if

L ={x}.

In fact, Lemma 2.5 leads to the following local observability result, which is now
obvious. ‘

THEOREM 2.2. System (1.1), (1.2) is locally observable if and only if the largest A
and B, i=1,- - -, m, invariant subalgebra contained in 4(C) is zero. Moreover, if V, is
a neighborhood of e such that I, V,={e}, then V, = R.(V,) is a neighborhood of x such
that I.N V, ={x}.

Let S be the centralizer of {R(e)}g, i.c.;

(2.14) S={xe G|rx=xr for all re{R(e)}s}.
According to (2.10), we may express S in an easily verifiable form as
(2.15) S={xe G|xexp (tX)=exp (tX)x,Xc{A,B,, -+, B,}}.

We will use S to establish a global result.

It is obvious that S is a closed subgroup of G, and hence is a Lie subgroup
Moreover, by the construction of {R(e)}s we see that to verify that x € S it is enough
to verify that

Ad(x)exp (tY)=exptY
for
Ye{A B, -,B,}, teR.
Now we state our global observability theorem. .

THEOREM 2.3. System (1.1), (1.2) is globally observable lf and only if the followmg
two conditions are satisfied :

(a) 9(H)=A{0},

(b) SNC ={e}.

Proof. Necessity. The necessity of (a) has been proved in Theorem 2.2. The
necessity of (b) is obvious, because if e # he SN C, then he H, i.e., h is indistinguish-
able from e. L
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Sufficiency. From (a) we see that H is a discrete subgroup of G. Now for each
he H, we define a mapping ¢ :{R(e)}c—> H as

d(r)=Ad (r)h

According to Lemma 2.3, ¢ maps {R(e)}s into H. Now, since {R(e)}s is connected
and ¢ is continuous, {Ad (r)h|re{R(e)}g} < H is connected, but since

he{Ad (r)h|re{R(e)}c}
it follows that
{h}={Ad (k| re{R(e)}a},
1e.,
Ad (r)h=h for all re{R(e)}g.
In other words, h € S. Now using condition (b), we see that h=e, i.e., H ={e}. |

3. Algorithm. In the previous section, we saw that the Lie subalgebra 4(H) of
the unobservable Lie group H plays an important role in investigating the observability
of the system (1.1), (1.2). The following algorithm gives a method to compute it.

ALGORITHM 3.1.

‘(2'0é (g(c)J.’

Qi1 2 +L 0+ Y LgQy, k=1
i=1
Algorithm 3.1 produces an increasing sequence of right-invariant subspaces. To
see that it provides 4(H), we need the following theorem. The proof may be found
in Isidori [6].
TueoREM 3.1. In Algorithm 3.1 if Qyxyq= Q.+ then

(3.1) G(H)=Q%k.

Note that the algorithm converges since the sequence of subspace {Qx} is
increasing. /

Since every Lie algebra over the field of real numbers R is isomorphic to some
matrix algebra, we may consider further algorithmic details for the Lie algebras of
groups of matrices.

First, let w(x) <€ V*(G) be a right-invariant covector field (one-form) generated
by w € 9*(G), and let A(x), B(x) € V(G) be the right-invariant vector fields generated
by A, B e %(G), respectively. Then,

(Law, B)= (LA(x)w (x), B(x))
= Lax{w(x), B(x)) —(w(x), [A(x), B(x)]).

Since (w(x), B(x)) is constant, the first term of the right-hand side of (3.2) is zero.
Thus, we have

(33) (LAw’ B) = _<Cl), [A’ B])'

(3.2)

* Now we consider a group of matrices. Assume the group considered is GL (n, R)
(or a subgroup of it). Then, A, Begl (n, R) may be considered as matrices A = (a;)
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and B= (bu) respectively. Let w € gl* (n,R). We may assume o is also expressed as
a matrix o = (w;) and define

(3.4) (w, A)= Y ¥ wyay.
i=1j=1
Now,

(Lsw, B)=—(o,[A, B])

=Yy X X (akjwijbik_aikwijbkj)

n n n
= Z Z (kz wpkaqk - akpwkq) bpq-

=1
Thus , .
(3.5) Lio=[w, AT]=wA"— Ao,

where T stands for transpose. To apply Algorithm 3.1, formula (3.5) is helpful.
Remark 3. As shown in Brockett [1], a right-invariant vector field on 9(n, R) may
be written as

A(x) = Ax,

where A= A(e) and A(x)=(R,),A(e) = Ax. Slmllarly, a rlght invariant covector field
may be wrltten as

w(x)= w(xT)'1

where o = w(e) and w(x)=(R,~)*w(e)=w(x")""
To see this, we only have to show that

(w(x), A(x)) =(w, A).
, X =(x;), and y =(y;), then

In fact, if we denote y ='x""

((x), A(x)) =ZJZ (% ww;»)(% ai,,xq,)

~S3Topa(Sxn)

i.p g

=L L L @iy

ipaqg
= z,: § wipafp ={w, A).
In fact, if we rewrite A(x) in the ““usual fashion™ as a vector
A(e)=(ay, ", Qu, @21, ", 8oy " 5 Gy, t " 0, ann)T’
then
A(x)=(3cT_—FxT—F~ . -—'FxTJ)A(e) n terms.

Sa—

Similarly,

w(x) =w(e)((xN) )T ()T
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where “+” denotes the direct sum of matrices, and (x"+ x4+ -+x7) and (x") '+
(x™)7'4+- - -4+ (x7)7") are the Jacobian matrices of R, and R,-1, respectively.

4. Examples. In this section, we present some examples to demonstrate our results
and algorithms.
Example 4.1. Consider a system

(4.1) X =uBx,
(4.2) y=Cx
where x € GL (3,R), C = SO (3), and

0 00
B=|1 0 0|
0 00

Now 9(C) is the following set of skew-symmetric matrices:
01 0]] 00 1]]/0 0O
Y(C)=spans| -1 0 O|| 0 0 O[]0 O 1
: 0 0 0J]|-1 0 O0|]|O0O -1 O

According to Algorithm 3.1, we set

1 0 0[]0 O Of[0O O Of|O 1 O 0 0 1{]0 0 O
Qy=spand|(0 0 O0[,JO0-1 Of[O0O O Of|1 O Of|[O O O[,|]O O 1
0 0 0(]O0 O Of]O0O O 1}1]/0 O O}|1 0 O}]0 1 O
éSpan{l‘)l’11)2’11)3’11)4»’(‘)5"'-’6}'
Using formula (3.5), we see that
010 0 00 0 0 -1
L3w1= 0 0 0 N LB(.U5= 0 0 0 N LBw6= 0 0 0
0 00 0 10 00 O
Thus, Q, = ¥*(G) and k, = 1. Therefore,
Y(H)=0y={0}.
Next, let us consider
SN C={xeC|xexptB=exp (tB)x, for all teR}.
Let x = (x;) € C. Since
1 00
exptB=|t 1 0},
0 01
we set
Xi1tX X X3 X11 X12 X13

XexptB=| Xy T 1Xsy Xon Xp3 =exp‘(tB)x= X111t X2 Xt X X3+ X3 |
X3 T X3y X3z Xi3 ; X3 X32 X33

It follows that

(4.3) X12=0, X1 =Xz, X13=0, x3,=0.
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Since x € C =S0(3), the only solutions of (4.3) are

-1 00
(4.4) x, =e, x= 0 -1 0}
0 01

According to Theorem 2.3, system (4.1), (4.2) is not globally observable. O
Example 4.2. Consider the following system:

(4.5) X = Ax + uBx,
(4.6) y=Cx
where B and C are as in Example 4.1, and
0 01
A=|0 0 O
0 00

As in the previous example, we see that 9(H) = {0}. So the system is locally observable.
Now

0 ¢
1 0}
01

[
|
O O

According to (2.15), we have only to check the commutativity of both x; and x, of
(4.4) with exp (tA). For x, the answer is “no.”” Therefore, x, = e = I, is the only element
in SN C. It follows that system (4.5), (4.6) is globally observable.

Remark 4. In Example 4.2, if we consider e?, e®, e™® e * ¢® ¢ and their

products, it is easy to see that

1 0 a
{R(e)}G = b 1 ¢ a, b, ceRsp.
0 01

It follows that

x 0 0
§=410 x y||x,yeR,x#0
0 0 x :
and therefore,
SnC=I3.

But in general, it is difficult to calculate {R(e)}; and S. In fact, Example 4.2
shows that to use Theorem 2.3 it is not necessary to construct {R(e)}s and S directly.
We may check the global observability by the following rule, which may be considered
as a corollary of Theorem 2.3.

CoroLLARY 4.1. System (1.1), (1.2) is globally observable, if and only if,

(a) 9(H)={0},

(b) {xe Clexp (tX)x=xexp(tX), X €{A,B,, -, B,}, teR}={e}.
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5. Decoupling problems. As an application, we consider a decoupling problem.
To keep the right-invariance of A(x) and B;(x), we consider only a constant feedback

(5.1) u=a+pBu

where a e R™ and B e GL (m, R).
Now assume

(5.2) x=A(x)+ Z w;B;(x)+ o W(x),

(5.3) y=Cx

where w is a disturbance.
LeEMMA 5.1. The disturbance o does not affect the output y if and only if

(5.4) We 4(H).
Proof. In fact, we may choose a local coordinate chart (¢, U) around e, say
x = (x', x*), such that
CNU={peU|x;=0}
Thus,
y=x*q), qeU

Now, it is easy to see that on U, ¥(H ) is the largest A and B, invariant distribution
contained in the ker (y,). Note that constant feedback does not affect 4(H). Thus,
the canonical decoupling result shows that (Isidori et al. [7]) (5.4) is a necessary and
sufficient condition that w does not affect y on V. By the analyticity, it is also true

globally. a
Next, we consider the input-output decoupling problem. Assume C,, « - -, Cy are
Lie subgroups of G. Let C= C,N- -+ C,. Then it is easy to see that
(5.9) y=Cx
is equivalent to
»n=Cx
(5.6) :
e=Cix

in the sense that p and g are indistinguishable in (5.5) if and only if they are
indistinguishable in (5.6).

Let 9¥(H') be the largest A and B, invariant Lie subalgebra contained in
G(C,N: - C_{NCiyy-+-N Cp). Consider the system

x=A(x>+_§ uiB(x),

(5.7
= Cx, ji=1---,k

We say that the input-output decoupling problem is solvable if there exists
B =(B;) e GL (m,R), such that for

u=y8

there exists a partition of v, namely v= (v, - - -, v*), such that v' affects only the
corresponding y;, i=1,- - k.
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THEOREM 5.1. For the system described by (5.7) the input-output decoupling problem
is solvable if and only if

B=BNYH"Y+---+BNYH")

where B=span{B,, -+, B,,}. Moreover, if the system (5.7) satisfies the controllability
rank condition (i.e., 9{R.}g) = 9(G)), then v’ controls y* completely.

Proof. The proof is immediate from Lemma 5.1 and the well-known decoupling
results of Nijmeijer and Schumacher [8] and Cheng [9].

6. Conclusion. We have considered a system defined on a Lie group with outputs
in a coset space as described in Brockett [1]. The main results of this paper are two
observability theorems, Theorems 2.2 and 2.3, that give necessary and sufficient condi-
tions for local and global observability, respectively. Algorithm 3.1 calculates the A
and B; invariant Lie subalgebra contained in a given Lie subalgebra, which makes the
condition in the above two theorems computably verifiable. Some examples are
included. Finally, we have briefly discussed the input-output decoupling problem of
a system on a Lie group with output in a coset space.
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