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Abstract: The existing result for a nonsingular and involutive distribution A to be (f. g)-invariant has a priori assumption that
(% + A)/4 is nonsingular. This paper treats the problem of (f, g)-invariance for the case where (¥ + 4)/4 is singular, Necessary
and sufficient conditions for a nonsingular and involutive distribution to be (f, g)-invaniant are presented. The constructive proof
provides an.algorithm for the construction of the feedback law.
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{. Introduction

Consider an affine nonlinear system

f=f(x)+ T gilx)u=f(x) +glx)u (1.1)

i=1

where x € R", f(x), g:(x), i=1,...,m, are C* vector fields. A distribution 4 is said to be (f, g)-in-
variant, if there exist « € C*(R") (m dimensional C* functions) and 8 € Gi{m, C*(R")), such that

[f. a]lca, | {(1.22)
[g.4]cd, i=1,....m, (1.2b)
where |

f.=f+gav g=(g-l"'v"’gm)z(gl:-"sgm)Bng‘

If for a point p € R", there exist a neighborhood U of p, a € C(U) and §-€ Gl{m, C*(U)), such that
(1.2) holds on U, then A is said to be (f, g)-invariant at p.

The concept of (f, g)-invariant distributions plays an important role in the decoupling problems of
nonlinear systems and has been investigated widely (see e.g. [5]). This paper deals with local (f, g)-invari-
ance only. As for global aspects, we refer to [1,3].

Since the relations in (1.2) are not verifiable in the general case. it has besn the aim of many
investigators searching for verifiable equivalent conditions. Let Spanf X;...., X,} denote the span of
vector fields Xj,..., X, over C* functions while span{ X, ..., X,,} denotes the span over R. The main

7
result of local (f, g)-invariance is contained in the following theorem {4.5,7,9;.
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Theorem 1.1. Given a nonsingular and involutive distribution A around p € R", assume ($+A)/A is
nonsinguwlar at p, where ¥=Span(g,...., 8. }. Then & is (f, g)-invariant ar p, if and only if

[f.4]lca+9, (1.3a)
(g, Alca+%, i=1,2,...,m, (1.3b)
hold on a neighborhood U of p.
A distribution satisfying (1.3) is called weakly (f, g)-invariant.

The concept of ( f, g)-invariance is closely related to decoupling problems. For instance, let us consider
the disturbance decoupling problem (DDP). Observe the foll ~ing system:

x=f(x)+g(x)u+d(x)w, T (1.4a)
y=h(x), R (1.4b)

where w is an unknown disturbance. The local DDP is finding a feedback control law
u=a(x)+B(x)o

and local coordinates z, such that under coordinates z the feedback svstem has the following form:

A=Y z)+g'(z)o+d(z)w, (1.52)
2 =f2(2%) +%(2%)v, (1.5b) -
y=h(z?). (1.5¢)

From (1.5) it is clear that the disturbance w does not affect the output .
The following result follows immediately from Theorem 1.1.

Corollary 1.2. Let A be the largest weakly ([, g)-invariant distribution contained in ker k,. Assume that A -
and (9+A)/A are nonsingular. Then DDP is locally solvable if and onlv if Span{d}C A.

Observe that if we demand a decomposed form like (1.5). a nonsingular and involutive distribution A
which satisfies Span{d} C A C ker A, is required. However the nonsingularity requirement of (¥+ A)/4
seemis not very reasonable. The following example shows that even if (¥+ 4)/1 is singular, DDP may still
be solvable.

Example 1.3. Consider the system

H=f{x)+g(x)u+d(x)w, (1.6a)
Xy =x.xy +oxy eMu, ' (1.6b)
y=x,. o (1.6¢)
It is obvious that if we choose a = —x, e™, B=e ™, DDP is solved. But for system (1.6). (¥+ A)/A is

singular, where A = Span{d/dx,} is the largest weakly (f, g)-invariant distribution contained in ker h,.
~ Motivated by the above example we may hope that the condition of nonsingularity of (¥ + A4)/A can be
eliminated from Theorem 1.1. Unfortunately, the next example shows that without the assumption of

nonsingularity of (Z+ A)/4, the conclusion of Theorem 1.1 may not be true.

Example 1.4. Consider the system -

‘ [ 0 "
X = +
X X5
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Let A= Span{d/dx,}. Simple computation shows that A is weakly (f, g)-invariant. But at 0 € R?,
(94 A)/4 1s not regular. We claim that Theorem 1.1 does not hold. To see this, we assume that there
exists an a, such that [ f+ ga, A]C A, [t follows that

T
da da ,
—, X, +t—x;| €A.
ax, dx,
That is, for x, # 0, a = —x,x; ' + ¢(x,). This shows that there does not exist a continuous function «

defined on a neighborhood U of 0.

Thus, it is interesting to find a checkable necessary and sufficient condition for a nonsingular and
involutive distribution A to be (f, g)-invariant without the assumption that (¥+ A)/A is nonsingular.
This is the main purpose of this paper.

2. Main result

According to Frobenius’ Theorem, if a distribution 4 is nonsingular and involutive, then there exists a
local coordinate chart, such that

3 3 ' '
A=Span{a——,...,———}.‘ (2.1)

X, dx,

Since we consider only the local case, we may restrict our discussion in a Frobenius Cube, ie. a cube
U={x||x;] <e i=1,...,n} and (2.1) holds in this cube.
If a vector field X is expressed in x coordinates as X =X, a,(x)}8/3x,), we may define

n

X/a= % a(x)5e @)

i=k+1

as the natural projection of X on T(U)/A.
If a distribution D = Span{Y;,..., Y.}, then for each p &€ U we can define

(D/4), =Span{(Y,/4),,....(¥,/4),)}
which is the natural prolection of D on T(U)/A. If £/ 1s nonsingulsy, £ 15 «asy to sce that

D/A=Span{Y,/A,...,Y./A}.

Remark 2.1. A coordinate chart (U, x) in which (2.1) holds is a foliation chert in the foliation &
generated by A [2]. In fact X/A is the projection of X on the quotient manifold M /A. Thus it is
independent of the choice of the foliation chart (See e.g. pp. 5-10 and p. 28 of [16} and [11)).

Remark 2.2. Let a(x), 6(x) € C?(R"), X, Y€ V(R"), then
la(x) X, b(x)Y] =a(x)b(x)[ X, Y]+a(,x)L Ab(xXNY = b(x YL {a(xhX. - (23)
Thus, in a Frobenius Cube U,
[f.4]cA and [g, A]ca, j=1,....m,

are equivalent to

J - J _
Kf=0’1=1""’k and a—x—'gj=0, i=1,...,kij=1,....m.

respectively, where f=f/A and g, =g;/4.

Next, we present the main result.
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Theorem 2.3. Ler A be a nonsingular and involutive distribution areund p € R". Then A is (f, g) invariant at
p, if and only if there exists a neighborhood U of 14 such that on U,

[/, A]/Ac Span{g;/A|j=1,...,m}, - (2.4a)
[g,.,A]/AC_Span{gj/Alj=1,...,m}, i=1,...,m, , - (2.4b)

where Span means the module over C™(U).

Proof. (Necessity) Assume there exists /* such that

[(gB):vA]CA, -§=1,...,m_
Then for a basis { X},..., X} of 4,

l: Z ngj:’ A/:

J=1

27 eA.

It follows th'at
([glv Xi]v""[gmv X:]) = (817-~-~ gm)(Lx,..B)B—l + (Zlv"" Zm)ﬁ—l-

Thus, we have

(g, X]/4.. (8. X1/8) = (8:/4, 8/A,..., 8u/A) (L, B)B!
e Span{(g,/4).(8,/4).....(8.,/4)}. i=1,2,... k.
Using the identity (2.3), it follows that for any X € A,
[, X]/AeSpan{g,/A|j=1.....m}, i=1,....m.

Similarly, we can prove (2.4b).
(Sufficiency) We prove it by constructing a feedback pair {a(x), B(x)} in a Frobenius Cube. Assume
in the Frobenius Cube U= {x|!x,| <e, i=1,...,n}, that A= Span{d/9x,,...,3/9x,} and p=0€& U.
First we construct S: ‘ :
Denote g, = g,/4. Then (2.4b) is equivalent to

d , _ . A
30 (B 82 s Bn) = (81 B2y Ba) e i1k, (2.5)

where I is an m X m matrix with C* entries.

i

Following (2.5), we consider the following differential equation:

3 T A

ox, Y=1I,'Y. (2.6)

Treating all x; but x, as parameters, (2.6) becomes an ordinary differential equation. Thus there exist m

linearly independent solutions Y/,.... Y! [8]. .
Set W, = (Y, ¥;,..., Y.). Since the rows of (g,, &...., g,,) are also solutions of (2.6). then from [8] we

know that there exists an m X (n — k) C* matrix £, such that

(812 8aeeen B0) = WL, i=1... k. (2.7)

where L, is independent of x; which is the independent variable of differential equation (2.6).
Using (2.7), we obtain

Wil =W,L,= - =W, L,. (2.8
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-Since W, is nonsingular, we have
L, = Wi'W,L,. (2.9)

Set x, =0 on both sides of (2.9). Since L, is independent of x,, we have that L, = W;'W, [c,—0°
L0, X3,....x,). Let H,= W lw, | <,~o- Then H, is a smooth nonsingular matrix. Moreover L,=

HaLy(0 X3, X, ). |
Now, assume H, 1s a well defined smooth nonsingular matrix, and

L(x)=H-L(1,...,0, x;,1,---, X,).
Using (2.8), we have

L, (x)=W\W,H.L(0,...,0, x;1,..., x,).
Recall that L, ,(x) 1s independent of x,,; and let

Hi= u/i:—llVVIHi | P 0;
then we have

L (xy=H,_,-L(0....,0, x;,5,..., x,).

Thus, we may construct { H,} recursively. Finally we have H, and

L(x)=H,L,(0..... 0. Xpipreons X,0)e
let H=W,_ H,, L=L0.....0, x;,,.... x,). Then H is a smooth nonsingular matrix, and L is
independent of x,,..., x,. Moreover (g,,..., g,)' =HL.
Now we define :
- i
B=(HTY '=(HIWI) . (2.10)
Then -

(le"" g’m)B:LT
is independent of x|,..., x,. Thus we have

0, _
= (38),=0. @

Thatis [(gB) . Alc A, j=1..... m.
Next we prove (1.2a):
Note that (2.4a) is equivalent to

d . _ - )
3, = (&1, §2v--on T e (2.12)

where f=f/A. & is an m % 1 vector with C* entries.
It follows from (2.10)—(2.12) that

aHTE, _ 3HT,

z8 % =8 ry (2.13)
We will construct « as follows:
as _(H‘r)—l{/"(HT&)(X““_“\.‘__I. 7)dr
0
+["'"(HTgk_l)-(xl,_..,xk_l, 7. 0)dr+ - [ (H7E)(r,0....,0) dr].
0 0

(2.14)
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Using (2.3), we may show that
3 — -
o (&) =36 ~g6=0. O

Note that the form of the projection X/A etc. depends on the chosen coordinate frame. If the
coordinate frame at hand is a flat chart, i.e., a foliation chart in %, then the verification of (2.4) can be
performed easily. Otherwise it may be difficult to verify (2.4). Thus to avoid using the above projection we
would like 1o find an equivalent condition of (2.4).

Assume we have a local basis of A, say

A=Span{ X,,..., X }. ' ' (2.15)
By solving algebraic equations, we may obtain a dual basis of £ =A* as
Ar=Q=Span{w,,....w,_}. (2.16)
Now for any vector field Y we denote
(wy. Y)
o ¥y=|
(Wi V)

which i1s a column vector of n — & C* functions. Then we have:

Corollary 2.4, Ler A be the same distribution as in Theorem 2.3. Then A is (f. g)-invariant at p. if and only
if on a neighborhood U of p.

(w. [f .«\’j]} € Span{{w. g )..... (w, 8o}, J=1.... k. (2.17a)
{w, [gl. XI.]>ESpan{<w, g, (wog,), i=1..... m; j=1,..., k. (2.17b)

Proof. Choose a flat chart (U. ¢) sich that
d ‘ L N
A =Span{57 ..... e, and £ =A% =Span{dx;.,..... dx,J.

I fellows from the definition of the projection X /4 etc. that (2.4) 1s equivalent 10 (2.17) with these special
bases.

Since (w,. X)) =0, it is easy to see that (2.17) is independent of the choice of the basis { X\..... X, ) of
A, By the linearity of the inner product over C* functions one sees that (2.17) is independent of the choice
of the basis {w,..... w,_,; of £ to. Finally. since (2.17) is independent of the local coordinates. the

conclusion follows. O

3. Algorithms for computing a( X') and B(x) in Frobenius’ Cube .

The constructive proof of Theorem 2.3 supplies an algorithm for constructing feedback pair {a(x).
B(x)} in a Frobenius Cube. We summarize it as follows.

Algorithm 3.1,
I Verify dg/dx, =gl df/0x,=gé,. i=1..... k, by finding [ and §,.
2. Find ¥, by solving
ad

a—’Y=I Y(0)=1,. (3.1)

”

and let 1) = (¥]...., Y)). Note that ¥(0) can be any other nonsingular matrix.
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3. Define H,,..., H, recursively as
H =1, H:+|=W;111W,Hs|x,.1=0’ s>1.

Let H= W, H,.
4. Construct « and 8 as

a=RHS. of (2.14), B=(u7w5) "=(HT)"".
Following example shows the working procedures of the above algorithm.

Example 3.2. Consider the system

S1(x) Coglx) ] g2(x)

2 1 . ‘ 2
X = /7 (x) + & (x) Uy + gzn(x) 5.
XaXy X5 COS X, Xy Sin X,
X4 SIN X, —x,e% sin x, X, €% cos x,
9 1}
A=Span{—.—}.
PAM 3%, ox, [

It is clear that (#+ 4)/4A is singular at 0 € R*.
It is easy to verify that

3 (2 7] - — X3 SIn X, X3 COS X, 17 2] 0 1 o
2 - : . N - ki - .
dx, t°t o —x et cos x, —x,e%sin x, Pel-1 00 L
Similarly,
.2 . [ . =]
sin~x —SIin x, CO$ X —sin x, COS x, € ™2 CcOSs x
I = 1 | 1 _ 1 1 _ 1
2= . , . &= N . b=
—sin x, cos X, cosx, | cos~x, e~ | sin x,
4 L
Now, solving
Ve
Wi [0 1y e
v P4 1~
dx, -1 o
we have
W €0s x;  —sin X,
! sin x, coS X,
Likewise, we have
CoS X sin x 1 0 cos x sin x
W, = 1 1 1 1
5 T - . . .
- sin X, —cos x, || O e"ZJ sin x, —COS .,
Then
— ! _
Hy= W, Wi H, ‘A\-:=o— w.
cos X ¥ gin x ] ' X, COS x, + &% sin®x
-1 COS —e " in x — X, Cos x, +&  ¥sin~x
B=(HIW,) = """t o= SO R
. .| sin x,; e " cos x; [ — X2 §in x; — e 7 s x; cos x;

325
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Remark 33. In fact the feedback law {a(x), B(x)} s not unique. The previous method gives a pair of
a(x) and B(x) only. Using this algorithm one may obtain different a(x) and B(x) because the I} and ¢,
are not unique when dim{((%@+ 4)/4) < m.

i
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