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Abstract

This paper considers the problem of the stabilization of affine nonlinear control systems. First, we assume that the systems under investigation
are of the generalized Byrnes–Isidori normal form. A new way to approximate the center manifold is proposed, which can reduce the error degree
of the center manifold approximation. A new matrix product, called the semi-tensor product, is introduced to obtain the approximation of the
center manifold. Then the Lyapunov function with homogeneous derivative (LFHD) is used to design a stable center manifold by state feedback
control. Finally, the method is applied to general affine nonlinear control systems.
c© 2008 Elsevier B.V. All rights reserved.
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1. Preliminary

The center manifold theory emerged in the sixties of the last
century, and soon became a powerful tool for the investigation
of the stability of dynamic systems [4,14]. Later it was used for
the stabilization of nonlinear control systems [1,2].

Consider an affine nonlinear system

ẋ = f (x) +

m∑
i=1

gi (x)ui , x ∈ Rn, (1.1)

where f (x) and gi (x) are smooth vector fields on Rn with
f (0) = 0. The normal form of an affine nonlinear control
system was proposed in [3]. Under the normal form and with
a minimum phase assumption, a stabilization technique via the
center manifold, proposed by Byrnes and Isidori, has been used
to stabilize general affine nonlinear control systems [3,13].

To use the Byrnes–Isidori approach, two things are essential:
1. normal form (called Byrnes–Isidori normal form in some
literatures); 2. minimum phase. Recently, certain efforts have
been made to weaken these two restrictions.

First of all, for the case of the non-minimum phase, recent
results have been obtained by introducing some new tools such
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as a Lyapunov function with homogeneous derivative (LFHD)
to design the center manifold. [6,5,12]. Roughly speaking, we
use higher degree (deg ≥ 2) state feedback to design a center
manifold. We then use a LFHD to verify the stability of the
approximated dynamics on an approximated center manifold,
which assures us that the stability of the approximated
dynamics implies the stability of the real dynamics on the center
manifold.

Secondly, in recent work [9] we intended to relax the first
constraint. For system (1.1) we can adopt any m smooth
functions:

yi = hi (x), i = 1, . . . , m, (1.2)

as outputs and define the relative degree vector and decoupling
matrix at a fixed point. They are called the point relative
degree vector and point decoupling matrix. For those outputs,
that reach the largest norm of the relative degree vector, the
corresponding point relative degree vector and point decoupling
matrix are called the essential point relative degree vector and
the essential decoupling matrix. In the light of the essential
point relative degree vector and the essential point decoupling
matrix, a generalized Byrnes–Isidori normal form can be
obtained, which is cited here:

Theorem 1.1 ([9]). For system (1.1) and (1.2), if (1) the es-
sential point relative degree vector is (ρ1, . . . , ρm); (2) the
corresponding essential point decoupling matrix is nonsingu-
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lar; (3) G = Span{g1, . . . , gm} is involutive, then the system
(1.1) can be expressed into the following form, which is called
the generalized Byrnes–Isidori normal form:

ẋ i = Ai x i
+ bi ui +

(
0

αi (x, z)

)
+ pi (x, z)u,

x i
∈ Rρi i = 1, . . . , m

ż = q(x, z), z ∈ Rr ,

yi = x i
1, i = 1, . . . , m,

(1.3)

where r +
∑m

i=1 ρi = n, (Ai , bi ) is in the Brunovsky canonical
form as

Ai =


0 1 · · · 0

. . .

0 0 · · · 1
0 0 · · · 0

 , bi =


0
...

0
1

 , i = 1, . . . , m,

pi (0, 0) = 0, and αi (x, z) is of dimension 1.

Based on this generalized normal form, the center manifold
approach developed for standard normal form has been
extended to a much larger class of systems. A description of
this was given in [10].

The main purpose of this paper is to provide a new design
technique of the center manifold to stabilize system (1.3),
which is then extended to general affine nonlinear systems.

The paper is organized as follows: Section 2 explains the
motivation of this work. The main result for the stabilization
of systems in the generalized Byrnes–Isidori normal form is
in Section 3. Section 4 provides the method for calculating
the approximation of the center manifold. Section 5 extends
the result to general affine nonlinear control systems. Some
illustrative examples are presented in Section 6. Section 7 deals
with some concluding remarks.

2. Motivating examples

This section gives a sequence of simple examples to expose
the weakness of the approach proposed in [6], (used also in [9]
for generalized normal form), and then to reveal the idea for a
new more powerful design technique. Meanwhile, the examples
can also be implemented as a clear description of the technique
for stabilization via the center manifold approach.

Example 2.1. Consider the stabilization problem of the
following system

ẋ1 = x2
ẋ2 = x3
ẋ3 = x1 sin(z) + u
ż = x1z.

(2.1)

The system is in Byrnes–Isidori normal form. First, we can
choose a linear feedback to stabilize the linearly controllable
states x . Say, set the eigenvalues as {−1, −2, −3}; to this end
we use

u = −x1 sin(z) − 6x1 − 11x2 − 6x3

:= −x1 sin(z) + a1x1 + a2x2 + a3x3.
Let the center manifold to be designed be x = h(z). We may
choosex1 = φ(z) := −z2

x2 = 0
x3 = 0

to approximate the center manifold equation h(z). Then the
control can be chosen as [6]

u = −x1 sin(z) + a1x1 + a2x2 + a3x3 − a1(φ(z))

= −x1 sin(z) − 6x1 − x2 − 7x3 − 6z2. (2.2)

It follows that the error degree of the approximation (EDA) is
[4]

EDA =
∂x

∂z
(x1(z)z) − (Ax(z) + bu(x(z), z))

= (−2z)(−z2z) − 0 = O(‖z‖4). (2.3)

So the center manifold can be expressed as

h(z) =

−z2

0
0

 + O(‖z‖4). (2.4)

The dynamics on the center manifold of the closed-loop system
are given by

ż = h(z)z =

(
−z2

+ O(‖z‖4)
)

z = −z3
+ O(‖z‖5). (2.5)

Obviously, it is asymptotically stable and so is the closed-loop
system. Therefore, the state feedback control (2.2) stabilizes
system (2.1). �

Example 1 describes the basic idea in [6]. Next, we modify
the system a little.

Example 2.2. Consider the stabilization problem for the
following system

ẋ1 = x2 + x1zu
ẋ2 = x3 + zu
ẋ3 = x1 sin(z) + u
ż = x1z.

(2.6)

The system is in a generalized Byrnes–Isidori normal form.
As proposed in [9], we may still use the same method as in
Example 2.1 to stabilize it. The only difference that has to be
verified is the degree of approximation. In fact, the error degree
can be calculated by the Eqs. (36) and (37) of [9]. For the Eq.
(36), we havedx1(z)

dx2(z)
dx3(z)

 x1(z)z =

−2z
0
0

 x1(z)z = O(‖z‖4).

As for the Eq. (37), we have(
x1(z)z(x1(z) sin(z))

z(x1(z) sin(z))

)
=

(
−z2z(−z2 sin(z))

z(−z2 sin(z))

)
= O(‖z‖4).

Then (2.4) remains true. We conclude that the control (2.2) can
also stabilize system (2.6). �
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The method used above is what is proposed in [9]. Now, we
modify system (2.6) to see that the method developed in [6,9]
can fail.

Example 2.3. Consider the stabilization problem of the
following system

ẋ1 = x2 + x1zu
ẋ2 = x3 + zu
ẋ3 = sin(z) + u
ż = x1z.

(2.7)

The system is still in a generalized Byrnes–Isidori normal form.
We can still use the Eqs. (36) and (37) of [9] to check the EDA.
(36) is the same as in Example 2.2. For (37) we have

EDA =

(
x1(z) sin(z)

z sin(z)

)
=

(
−z2 sin(z)

z sin(z)

)
= O(‖z‖2).

So we can only claim that the center manifold has the form of

h(x) =

−z2

0
0

 + O(‖z‖2) = O(‖z‖2). (2.8)

The dynamics on the center manifold of the closed-loop system
is

ż = h(z)z =

(
−z2

+ O(‖z‖2)
)

z = O(‖z‖3). (2.9)

Clearly we can say nothing about the stability of (2.9). �

It is obvious that the method developed in [6] and [9] fails in
Example 2.3. But it does not mean that the system (2.7) is not
stabilizable by state feedback. In fact, the problem is that the
tool is not subtle enough.

Let’s try to sharpen our tool. Say, choosex1 = φ1(z)
x2 = φ2(z)
x3 = φ3(z)

to approximate the center manifold, and as before set x1(z) =

φ1(z) = −z2. Then choose x2, x3 and u in such a way that turns
the right-hand side of (2.7) to zero. That isx2 + x1zu = 0

x3 + zu = 0
sin(z) + u = 0.

Note that the linear part of u has to be chosen such that the
linearly controllable state variables are stable. So the control
can be chosen as

u = − sin(z) + a1x1 + a2x2 + a3x3 − a1(φ1(z))

− a2(φ2(z)) − a3(φ3(z)). (2.10)

Accordingly, we have

x2(z) = φ2(z) = −x1(z)zu(x(z), z) = −z3 sin(z)

x3(z) = φ3(z) = −zu(x(z), z) = −z sin(z).
Checking the EDA, we have

EDA =


∂φ1(z)

∂z
∂φ2(z)

∂z
∂φ3(z)

∂z

 φ1(z)z

−

φ2(z) + φ1(z)zu(z, φ1(z), φ2(z), φ3(z))
φ3(z) + zu(z, φ1(z), φ2(z), φ3(z))
sin(z) + u(z, φ1(z), φ2(z), φ3(z))


=

 −2z
−3z2 sin(z) − z3 cos(z)

− sin(z) − 2 cos(z)

 (−z2)z = O(‖z‖4).

Then (2.5) remains true. That is, control (2.10) stabilizes the
system (2.7). �

We would like the emphasize the idea in the above argument:
In [6], we use x i

1 = φi
1(z) to design the center manifold to

assure the stability of the dynamics on the center manifold and
set x i

j = 0, j > 1 to assure the required accuracy (degree) of the
approximation error. In [9], the method is used in the context of
a generalized Byrnes–Isidori normal form. It was shown in the
above examples that unlike the standard case, x i

j = 0, j > 1
may not be enough to assure the required accuracy (degree) of
the approximation error. But we may also design x i

j = φi
j (z),

j > 1 to improve the accuracy (degree) of the approximation
error to meet our requirement on the accuracy of the dynamics
on the center manifold.

In the rest of this paper, we will develop this idea into a
systematic treatment for the design of an approximate center
manifold, x i

j = φi
j (z), j ≥ 1.

3. Stabilization under the generalized normal form

Consider the stabilization problem of the generalized
Byrnes–Isidori normal form (1.3). First, assume the linear
feedbacks are chosen such that the linearly controllable
variables x i

j , i = 1, . . . , m; j = 1, . . . , ρi are stabilized
by

ui = ai
1x i

1 + · · · + ai
ρi

x i
ρi

, i = 1, . . . , m.

Assume that φi
j (z) are used to approximate the center manifold.

Then following the design idea in Section 2, we construct
controls as

ui (x, z) = −αi (x, z) + ai
1x1

1 + · · · + ai
ρi

x i
ρi

− ai
1φ

i
1(z)

− · · · − ai
ρi

φi
ρi

(z), i = 1, . . . , m. (3.1)

Now φi
1(z) can be chosen freely as a polynomial with lowest

degree ≥ 2. Then we can solve φi
j = x i

j , j > 1 from the
following equations.

F i
1(x, z) := x i

2 + pi
1(x, z)αi (x, z) = 0,

· · ·

F i
ρi −1(x, z) := x i

ρi
+ pi

ρi −1(x, z)αi (x, z) = 0,

i = 1, . . . , m.

(3.2)
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Lemma 3.1. Locally on a neighborhood U of the origin, the
x i

j , i = 1, . . . , m, j = 2, . . . , ρi can be uniquely solved from

Eq. (3.2) as functions of z (denoted by x i
j = φi

j (z), j ≥ 2),

where x i
1 = φi

1(z) are known.

Proof. Note that since f (0) = 0, αi (0, 0) = 0. Moreover,
pi

j (0, 0) = 0, i = 1, . . . , m, j = 1, . . . , ρi − 1. It follows
that the Jacobian matrix

J =

[
∂ F i

j (x, z)

∂x i
j+1

∣∣∣∣∣ i = 1, . . . , m, j = 1, . . . , ρi − 1

]∣∣∣∣∣
(0,0)

= Im .

By the implicit function theorem, x i
j , j ≥ 2 can be solved from

(3.2) locally. �

Using the above notations and Lemma 3.1, the following
theorem is an immediate consequence of the center manifold
theory.

Theorem 3.2. Assume there exist φi
j (z), i = 1, . . . , m, j =

1, . . . , ρi , such that (1) the error degree of approximation is

EDA =

[
∂φi

j (z)

∂z

∣∣∣∣∣ i = 1, . . . , m, j = 1, . . . , ρi

]
× q(φ(z), z) = O(‖z‖d+1); (3.3)

(2) the errors in the dynamics on the center manifold, caused
by the approximation error, are

qk(φ(z) + O(‖z‖d+1), z) = qk(φ(z), z) + O(‖z‖tk+1),

k = 1, . . . , r; (3.4)

(3) the approximated dynamics of the center manifold

żk = qk(φ(z), z), k = 1, . . . , r, (3.5)

are (t1, . . . , tr )-degree approximately stable, i.e.,

żk = qk(φ(z), z) + O(‖z‖tk+1), k = 1, . . . , r, (3.6)

are asymptotically stable.
Then the system (1.3) is asymptotically stabilizable by

control (3.1).

Now let ξk(z) be an approximation of qk(φ(z), z), consisting
of its lowest degree non-vanishing terms, with the degrees of
ξk(z) being deg(ξk(z)) = sk , k = 1, . . . , m. Then we can
construct the approximate system of (3.5) as [6]

żk = ξk(z), k = 1, . . . , r. (3.7)

Using the result about LFHD in [6], we have

Theorem 3.3. Assume (1) sk ≤ tk , k = 1, . . . , r; (2) there
exists a LFHD V > 0 such that

V̇ |(3.7) < 0. (3.8)

Then the system (1.3) is asymptotically stabilizable by control
(3.1).
Proof. An LFHD V > 0 satisfying (3.8) assures the
asymptotical stability of

żk = ξk(z) + O(‖z‖sk+1), k = 1, . . . , r.

Now the true dynamics on the center manifold are

żk = qk(φ(z), z) + O(‖z‖tk+1)

= ξk(z) + O(‖z‖sk+1) + O(‖z‖tk+1)

= ξk(z) + O(‖z‖sk+1), k = 1, . . . , r.

The conclusion follows. �

Remark. About the theory of LFHD, including testing the
negativity of the homogeneous derivatives, we refer to [6],
or [8].

4. Solving for an approximate center manifold

In Section 3, we defined x i
j (z) = φi

j (z), i = 1, . . . , m,
j = 1, . . . , ρi to approximate the center manifold, and proved
by the implicit function theorem that they do exist. But unless
we can solve φi

j (z), we are not able to go any further with the
design of the stabilizer. We introduce a new matrix product,
called the left semi-tensor product of matrices, which makes the
multiplication of multi-variable polynomials exactly the same
as that of a single-variable case. The following concepts and
properties of the left semi-tensor product can be found in [8]
or [11].

Definition 4.1. 1. Let X be a row vector of dimension np, and
Y be a column vector with dimension p. Then we split X into p
equal-size blocks as X1, . . . , X p, which are 1 × n rows. Define
the left semi-tensor product, denoted by n, as

X n Y =

p∑
i=1

X i yi ∈ Rn,

Y T n XT
=

p∑
i=1

yi (X i )T
∈ Rn .

(4.1)

2. Let A ∈ Mm×n and B ∈ Mp×q . If either n is a factor of p,
say nt = p, or p is a factor of n, say n = pt , then we define the
left semi-tensor product of A and B, denoted by C = A n B,
as the following: C consists of m × q blocks as C = (C i j ) and
each block is

C i j
= Ai n B j , i = 1, . . . , m, j = 1, . . . , q,

where Ai is the i-th row of A and B j is the j-th column of B.

Example 4.2. 1. Let X = (a b c d) and Y =

(
α

β

)
. Then

X n Y = (a b) · α + (c d) · β =
(
aα + cβ bα + dβ

)
.

2. Let

A =

(
a11 a12
a21 a22

)
, B =


b11 b12 b13
b21 b22 b23
b31 b32 b33
b41 b42 b43

 .

Then, see the equation given in Box I.
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A n B =

a11

(
b11
b21

)
+ a12

(
b31
b41

)
a11

(
b12
b22

)
+ a12

(
b32
b42

)
a11

(
b13
b23

)
+ a12

(
b33
b43

)
a21

(
b11
b21

)
+ a22

(
b31
b41

)
a21

(
b12
b22

)
+ a22

(
b32
b42

)
a21

(
b13
b23

)
+ a22

(
b33
b43

)


=


a11b11 + a12b31 a11b12 + a12b32 a11b13 + a12b33
a11b21 + a12b41 a11b22 + a12b42 a11b23 + a12b43
a21b11 + a22b31 a21b12 + a22b32 a21b13 + a22b33
a21b21 + a22b41 a21b22 + a22b42 a21b23 + a22b43

 .

Box I.
Remark. Note that when n = p, the left semi-tensor product
coincides with the conventional matrix product. Therefore,
the left semi-tensor product is only a generalization of the
conventional product. For convenience, we may omit the
product symbol n. �

Some fundamental properties of the left semi-tensor product,
which are related to our approach are collected in the following:

Proposition 4.3. The left semi-tensor product satisfies (as long
as the related products are well defined)

1. (Distributive rule)

A n (αB + βC) = αA n B + β A n C;

(αB + βC) n A = αB n A + βC n A, α, β ∈ R.
(4.2)

2. (Associative rule)

A n (B n C) = (A n B) n C;

(B n C) n A = B n (C n A).
(4.3)

Proposition 4.4. 1. Assume A and B are of proper dimensions
such that A n B is well defined. Then

(A n B)T
= BT n AT. (4.4)

2. In addition, assume both A and B are invertible; then

(A n B)−1
= B−1 n A−1. (4.5)

Proposition 4.5. Let X ∈ Rt be a column and A ∈ Mm×n be
an m × n matrix. Then

X n A = (It ⊗ A) n X. (4.6)

Note that when ξ ∈ Rn is a column or a row, then
ξ n · · · n ξ︸ ︷︷ ︸

k

is well defined. We, therefore, denote

ξ k
:= ξ n · · · n ξ︸ ︷︷ ︸

k

.

In the sequel, we need the tensor expression of polynomials.
Let x = (x1, . . . , xn)T

∈ Rn . Then xk
:= x n · · · n x︸ ︷︷ ︸

k

, which is

a basis of k-th degree polynomials. A k-th degree homogeneous
polynomial can be expressed as α n xk , where the coefficient
vector α is a 1 × nk row, briefly, αxk

:= α n xk . Similarly,
a vector field of k-th degree homogeneous polynomials can be
expressed as F nxk , where the coefficient vector F is an n ×nk

matrix, briefly, Fxk
:= F n xk .

Proposition 4.6. Let αxm and βxn be m-th and n-th
homogeneous polynomials respectively. Then the product is

(αxm)(βxn) = α n β n xm+n . (4.7)

The following example shows how the above propositions
may be used to form the product of vector fields, Lie derivatives
of forms etc.

Example 4.7. Let X and Y be k-th and s-th degree
homogeneous polynomial vector fields. Then we can express
X and Y as

X = Fxk, Y = Gx s,

where F and G are n × nk and n × ns matrices respectively.
Then

X n Y = Fxk n Gx s
= F n (xk n G) n x s

= F(Ink ⊗ G)xk+s . � (4.8)

Return back to the calculation of the approximation of the
center manifold. Set

X =

(
φ1

2(z), . . . , φ1
ρ1

(z), . . . , φm
2 (z), . . . , φm

ρm
(z)

)T
.

Using the Taylor expansion on (3.2), we can express it as

A0 X + A1(z)X2
+ A2(z)X3

+ · · · = B0z2
+ B1z3

+ · · · ,

(4.9)

where A0 is a constant invertible matrix.
Note that it is almost impossible to solve X from (4.9).

Fortunately, we don’t need to solve X precisely. Let the error
degree of approximation be d + 1, i.e.,

EDA = ‖φ(z) − h(z)‖ = O(‖z‖d+1).

Then it is enough to solve X as

X = C0z2
+ C1z3

+ · · · + Cd−2zd
+ O(‖z‖d+1). (4.10)

To solve X from (4.9), we have only to compare the coefficients
on both sides. To start we have

C0 = A−1
0 B0.
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We don’t need all the terms of Ai (z). In fact, ignoring higher
degree (deg > d) terms, we may assume

A1(z) = A1
0 + A1

1z + · · · + A1
d−4zd−4

A2(z) = A2
0 + A2

1z + · · · + A2
d−6zd−6

· · ·

As(z) = 0, 2s > d − 2.

(4.11)

Now (4.9) can be expressed as

A0 X + A1(z)X2
+ A2(z)X3

+ · · · + At−1(z)X t

= B0z2
+ B1z3

+ · · · + Bd−2zd
+ O(‖z‖d+1), (4.12)

where t =
[ d

2

]
, which is the integral part of d

2 .
Next, consider X k . Using (4.8), we have

X2
=

d∑
µ=4

∑
i+ j=µ

Ci (Ini ⊗ C j )z
µ

X3
=

d∑
µ=6

∑
i+ j+k=µ

Ci (Ini ⊗ C j )(Ini+ j ⊗ Ck)z
µ

· · · .

(4.13)

Plugging (4.11) and (4.13) into (4.9), we have a set of linear
algebraic equations for Ci . If (4.9) is too complicated, we refer
to [8], or [7] for a systematic treatment.

5. Stabilization of general affine nonlinear systems

In section 3, as well as in [9], when the stabilization of
systems under the (generalized) Byrnes–Isidori normal form
is considered, the nonlinear part z is considered as being of
zero center (i.e., with zero linear part). If the dynamics of z
have some unstable linear part (i.e., its Jacobian matrix at the
origin has positive real part eigenvalues), the system is not
stabilizable. So we can assume
A1. For system (1.1) let A = J f (0) and B =

(g1(0), . . . , gm(0)). The uncontrollable subspace of (A, B)

does not contain any eigenvalues with a positive real part.
Under A1, the system should be allowed to have a partly

stable linear part. In this case we can combine the linearly
stable part (subspace associated with the negative real part
eigenvalues) with the linearly controllable part (x). We propose
the following general form for affine nonlinear systems.{

ẋ = Ax + ξ(x, z) + (B + η(x, z))u, x ∈ Rt

ż = q(x, z), z ∈ Rn−t (5.1)

where ξ(x, z) vanish with their first derivatives at zero,
η(0, 0) = 0, (A, B) is assumed to be stabilizable.

For ease of exposition, assume A is a Hurwitz matrix, which
can be assured by a linear pre-feedback control.

In this general case, we can choose higher degree (deg ≥ 2)
polynomials as controls, say,

u(z) = B0z2
+ B1z3

+ · · · + Bd−2zd
∈ Rm . (5.2)
Choose x = φ(z) to approximate the center manifold, where
xi = φi (z), i = 1, . . . , t are solved from

Ax + ξ(x, z) + (B + η(x, z))u(z) = O(‖z‖d+1). (5.3)

The solution of (5.3) exists, because if we set the right hand
side to be zero, a particular solution is assured by the implicit
function theorem.

Now the algorithm described in Section 4 can be used to
solve φi (z). For the approximation of the center manifold, using
the same argument as for Theorem 3.2, we have the result:

Theorem 5.1. Assume that (1) the error degree of the
approximation is

EDA =
∂φ(z)

∂z
q(φ(z), z) = O(‖z‖d+1);

(2) the errors in the dynamics of the center manifold, caused
by the approximation error, are

qk(φ(z) + O(‖z‖d+1), z) = qk(φ(z), z) + O(‖z‖tk+1),

k = 1, . . . , r;

(3) The approximated dynamics of the center manifold

żk = qk(φ(z), z), k = 1, . . . , r,

are (t1, . . . , tr )-degrees approximately stable.
Then the system (5.1) is asymptotically stabilizable by

control (5.2) satisfying (5.3).

Remark. As for the case of the generalized Byrnes–Isidori
normal form, the LFHD approach can also be used for the
center manifold design of system (5.1).

6. Some examples

Consider a system in the generalized Byrnes–Isidori normal
form.

Example 6.1.

ẋ1 = x2 + x3u1
ẋ2 = sin(z1 + z2) + u1
ẋ3 = x4 − z2u2
ẋ4 = x2 + u2
ż1 = −x1 sin(z1 + z2)

ż2 = (x1 + x3)z
2
2 + z4

1z2.

(6.1)

Since the equations of states z involve neither u nor the
nonzero linear part, it is easy to verify that x is the largest
approximately linearizable part. Following the procedure
described in Section 3, we construct the stabilizer as follows.
First, we choose the approximation for the center manifold as

x1 = φ1(z) ∈ O(‖z‖2), x2 = φ2(z),

x3 = φ3(z) ∈ O(‖z‖2), x4 = φ4(z).
(6.2)

Note that φ1(z) and φ3(z) can be chosen freely, while φ2(z) and
φ4(z) have to be solved from the restriction equation (3.2). Let
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the eigenvalues of the linear part be {−1, −1, −1, −1}. Then
the controls are{

u1 = − sin(z1 + z2) − x1 − 2x2 + φ1(z) + 2φ2(z)
u2 = −x2 − x3 − 2x4 + φ3(z) + 2φ4(z).

(6.3)

Then x2 = φ2(z) and x4 = φ4(z) are assumed to satisfy the
following{

x2(z) + φ3(z)[− sin(z1 + z2)] = 0
x4(z) − z2(−x2(z)) = 0.

(6.4)

That is,{
x2(z) = φ2(z) = sin(z1 + z2)φ3(z)
x4(z) = φ4(z) = −z2 sin(z1 + z2)φ3(z).

(6.5)

Check the error degree of approximation:

EDA =



∂φ1

∂z1

∂φ1

∂z2
∂φ2

∂z1

∂φ2

∂z2
∂φ3

∂z1

∂φ3

∂z2
∂φ4

∂z1

∂φ4

∂z2


(

−φ2(z) sin(z1 + z2)

[φ1(z) + φ3(z)]z
2
2 + z2

1z3
2

)

= O(‖z‖4). (6.6)

Now we consider the dynamics on the center manifold.
ż1 = −[φ1(z) + O(‖z‖4)] sin(z1 + z2)

= −φ1(z) sin(z1 + z2) + O(‖z‖5)

ż2 = [φ1(z) + φ3(z) + O(‖z‖4)]z2
2 + z4

1z2

= [φ1(z) + φ3(z)]z
2
2 + z4

1z2 + O(‖z‖6).

(6.7)

If we can choose φ1(z) and φ3(z) such that the approximated
system of (6.7){

ż1 = −φ1(z)(z1 + z2)

ż2 = [φ1(z) + φ3(z)]z
2
2 + z4

1z2
(6.8)

is (3, 5)-degree approximately stable, we are done. Choosing
φ1(z) = αz2

1 and φ3(z) = −αz2
1 + βz3

2, (6.8) becomes{
ż1 = −αz3

1 − αz2
1z2

ż2 = βz5
2 + z4

1z2.
(6.9)

Setting a LFHD as

V = z4
1 + z2

2,

and choosing α = 3, β = −2, we then have

V̇(6.9) = −12z6
1 − 12z5

1z2 − 4z6
2 + 2z4

1z2
2

≤ −12z6
1 + (10z6

1 + 2z6
2) − 4z6

2 +

(
4
3

z6
1 +

2
3

z6
2

)
= −

2
3

z6
1 −

4
3

z6
2 < 0.

The inequality in the above follows from the inequality (3.1) of
[6].
Summarizing the above argument, we conclude that the
system (6.1) can be stabilized by controls (6.3) with

φ1(z) = 3z2
1

φ2(z) = − sin(z1 + z2)(3z2
1 + 2z3

2)

φ3(z) = −3z2
1 − 2z3

2
φ4(z) = −3z2

1z2 sin(z1 + z2). �

The second example is a general affine nonlinear system.
In this Case, the approximation of the center manifold cannot
be solved from (3.2) precisely. It has to be solved as a certain
degree approximation.

Example 6.2. Consider the stabilization of the following
system:

ẋ1 = −x1 − sin(x2z1)

ẋ2 = 2x1 − x2 + x2
1 + cos(x2z1)u

ż1 = x1x2
ż2 = (x1 + x2)z2.

(6.10)

Let x1(z) = φ1(z) and x2(z) = φ2(z), solved from (3.2) for
(6.10), be of degree O(‖z‖2). This is fundamental for defining
its center manifold. Then the error degree of approximation is

EDA =
∂φ(z)

∂z

(
φ1(z)φ2(z)

[φ1(z) + φ2(z)]z2

)
= O(‖z‖4).

Now if we can find φ1(z) and φ2(z) such that the dynamics on
the center manifold

ż1 = [φ1(z) + O(‖z‖4)][φ2(z) + O(‖z‖4)]

= φ1(z)φ2(z) + O(‖z‖6)

ż2 = [φ1(z) + φ2(z) + O(‖z‖4)]z2

= [φ1(z) + φ2(z)]z2 + O(‖z‖5)

(6.11)

is asymptotically stable we are done. It suffices that{
ż1 = φ1(z)φ2(z)
ż2 = [φ1(z) + φ2(z)]z2

(6.12)

are (5, 3)-degree approximately stable.
Choosing u = αz2

1 + βz1z2 + γ z2
2, (3.2) becomes{

−x1 − sin(x2z1) = 0
2x1 − x2 + cos(x2z1)(αz2

1 + βz1z2 + γ z2
2) = 0.

(6.13)

Now x1 and x2 cannot be solved from (6.13) accurately. Due
to the approximation error, we know that they have to be
solved precisely up to all third degree terms. After some tedious
algebraic computations, using the tool developed in Section 4,
we have

φ1(z) = x1(z) = −

[
αz3

1 + βz2
1z2 + γ z1z2

2

]
+ O(‖z‖4)

φ2(z) = x2(z)

=

[
αz2

1 + βz1z2 + γ z2
2

]
(1 + 2z1) + O(‖z‖4).

(6.14)

Choosing β = 0, (6.12) leads to{
ż1 = −α2z5

1 − γ 2z1z4

ż2 = γ z3
2 + αz2

1z2.
(6.15)
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Setting V = z2
1 + z4

2 and choosing α = 1, γ = −1, we then
have

V̇(6.15) = −2z6
1 − 2z2

1z4
2 − 4z6

2 + 4z2
1z4

2

≤ −2z6
1 − 4z6

2 + 4
(

1
3

z6
1 +

2
3

z6
2

)
= −

2
3

z6
1 −

4
3

z6
2 < 0.

So the system (6.10) can be stabilized by the control

u = z2
1 − z2

2. �

Remark. From the above two examples, one sees that under
the (generalized) normal form, the design of the center manifold
is much easier than starting from the general form, but the
“trade off” is the additional normal form transformation.

7. Conclusion

This paper considered the problem of the stabilization of
affine nonlinear control systems via the design of a center mani-
fold. The basic technique has been developed in [6] for systems
in the Byrnes–Isidori normal form. Then in [9] we proposed the
generalized Byrnes–Isidori normal form, which covers a much
larger class of affine nonlinear systems (almost all). Meanwhile,
it was also proved that the design technique of the stabilizer via
the center manifold approach, developed in [6], can also be used
for systems of generalized normal form. Motivated by some
simple examples, it was revealed that the design technique for
standard normal form is not subtle enough for the generalized
normal form. So in this paper we proposed a new design tech-
nique to design the whole approximate center manifold x i

j =

φi
j (z), j ≥ 1, so as to improve (raise) the EDA and to meet the

accuracy requirement of the dynamics on the center manifold.
It significantly improved the existing technique, which designs
x i

1 = φi
1(z) only. It is easy to prove that in the standard normal

form our new technique degenerates to the classic one.
It has been proved that the method can also be used for a

more general case: when the linear part (linear approximation,
or Jacobian linearization—as it is called in some literatures)
consists of two parts: the stabilizable part and the center
part (with zero real part eigenvalues). Some examples were
presented to demonstrate the design procedure.
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