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Abstract This paper investigates the stability of (switched) polynomial systems. Using semi-tensor

product of matrices, the paper develops two tools for testing the stability of a (switched) polynomial

system. One is to convert a product of multi-variable polynomials into a canonical form, and the other

is an easily verifiable sufficient condition to justify whether a multi-variable polynomial is positive

definite. Using these two tools, the authors construct a polynomial function as a candidate Lyapunov

function and via testing its derivative the authors provide some sufficient conditions for the global

stability of polynomial systems.
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1 Introduction

Stability is a long standing and challenging topic for investigating nonlinear (control) sys-
tems. Lyapunov function is a fundamental tool for studying stability and stabilization of
(control) systems. The stability of polynomial systems has been attracting special research
interest[1−4]. It is because not only this kind of systems are practically important, but also con-
structing Lyapunov functions for them is relatively easier. For instance, Roser[3] constructed
a homogeneous Lyapunov function for homogeneous system under the hypothesis that zero is
locally asymptotically stable. M’Closkey and Murray[2] considered the problem of exponen-
tial stabilization of controllable, driftless systems using time-varying, homogeneous feedback.
Grun[4] showed that for any asymptotically controllable homogeneous system in Euclidian space,
there exists a homogeneous control Lyapunov function and a homogeneous, possibly discontin-
uous state feedback law stabilizing the corresponding sampled closed loop system. The Kro-
necker product is used for non-quadratic stability analysis and sufficient conditions for global
asymptotic stability of polynomial systems are obtained in terms of LMI feasibility tests for
the existence of homogeneous Lyapunov functions of even degree[1]. But in these investigations
the homogeneity plays an important role. For instance, in [3–5] the system considered is homo-
geneous; in [1, 3] the Lyapunov function is homogeneous; in [2] the feedback is homogeneous;
in [6] the derivative is homogeneous, etc. Obviously, homogeneity brings restriction and/or
conservative to the application of the methods presented above.
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In this paper the polynomial systems considered are not assumed to be homogeneous. We
first develop some results for homogeneous case and then extend them to non-homogeneous
case.

The paper is organized as follows. Section 2 gives a brief review for semi-tensor product
of matrixes. Converting polynomials and their derivatives into canonical forms is discussed in
Section 3. Section 4 provides an easily verifiable sufficient condition for testing the positivity
of homogeneous polynomials. Section 5 discusses the global stability of vector fields via two
Lyapunov functions. In Section 6 some sufficient conditions are obtained for the stability of
polynomial systems. Section 7 contains some concluding remarks.

2 Semi-Tensor Product

This section is a brief review on semi-tensor product of matrices, which plays a fundamental
role in the following discussion. We restrict it to the definitions and some basic properties, which
are useful in the sequel. In addition, only left semi-tensor product for multiple-dimension case
is involved in the paper. We refer to [7–8] for right semi-tensor product, general dimension case,
and many details. Through out this paper “semi-tensor product” means the left semi-tensor
product.

Definition 2.1 1) Let X be a row vector of dimension np, and Y be a column vector with
dimension p. Then, we split X into p equal-size blocks as X1, X2, · · · , Xp, which are 1 × n
rows. Define the STP, denoted by n, as





X n Y =
p∑

i=1

Xiyi ∈ Rn,

Y T nXT =
p∑

i=1

yi(Xi)T ∈ Rn.

(1)

2) Let A ∈ Mm×n and B ∈ Mp×q. If either n is a factor of p, say nt = p and denote it as
A ≺t B, or p is a factor of n, say n = pt and denote it as A Ât B, then we define the STP of A
and B, denoted by C = AnB, as the following: C consists of m× q blocks as C = (Cij) and
each block is

Cij = Ai nBj , i = 1, 2, · · · ,m, j = 1, 2, · · · , q,

where Ai is i-th row of A and Bj is the j-th column of B.
Remark 2.2 Note that when n = p the STP coincides with the conventional matrix prod-

uct. Therefore, the STP is only a generalization of the conventional product. For convenience,
we may omit the product symbol n.

Some fundamental properties of the STP are collected in the following.
Proposition 2.3 The STP satisfies (as long as the related products are well-defined)
1) (Distributive rule)

An (αB + βC) = αAnB + βAn C,

(αB + βC)nA = αB nA + βC nA, α, β ∈ R.
(2)

2) (Associative rule)

An (B n C) = (AnB)n C,

(B n C)nA = B n (C nA).
(3)
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Proposition 2.4 Let A ∈ Mp×q and B ∈ Mm×n. If q = km, then

AnB = A(B ⊗ Ik). (4)

If kq = m, then

AnB = (A⊗ Ik)B. (5)

Proposition 2.5 1) Assume A and B are of proper dimensions such that A n B is
well-defined, then

(AnB)T = BT nAT; (6)

2) In addition, assume both A and B are invertible, then

(AnB)−1 = B−1 nA−1. (7)

Proposition 2.6 Assume A ∈ Mm×n is given.
1) Let Z ∈ Rt be a row vector, then

An Z = Z n (It ⊗A); (8)

2) Let Z ∈ Rt be a column vector, then

Z nA = (It ⊗A)n Z. (9)

For notational ease, hereafter we omit the symbol n.

3 Polynomials and Their Derivatives

In this section, we show how to convert a polynomial and its derivative along a trajectory
of polynomial system into normal form. Note that when ξ ∈ Rn is a column or a row vector,
ξ n ξ n · · ·n ξ︸ ︷︷ ︸

k

is well-defined. We denote it briefly as

ξk := ξ n ξ n · · ·n ξ︸ ︷︷ ︸
k

.

Now let x = (x1, x2, · · · , xn)T ∈ Rn. Then xk is well-defined. Using it, a k-th degree
polynomial Pk(x) can be expressed as

Pk(x) = Exk, (10)

where E is a row of dimension nk. Note that such E is not unique.
Let P (x) be a polynomial with lowest degree k and highest degree k + s. Then, it can be

expressed as

P (x) = Ekxk + Ek+1x
k+1 + · · ·+ Ek+sx

k+s. (11)

We call (11) the canonical form of a polynomial. Similarly, a polynomial system can be expressed
as

ẋ = f(x) := Fkxk + Fk+1x
k+1 + · · ·+ Fk+sx

k+s, (12)
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where Fi, i = k, k + 1, · · · , k + s, are n× ni matrices.
Next we consider the derivative of a polynomial. For this purpose we need the swap ma-

trix, which is also called the permutation matrix and is defined implicitly by Magnus and
Neudecker[9]. Many properties can be found in [7–8]. The swap matrix W[m,n] is an mn×mn ma-
trix constructed in the following way: label its columns by (11, 12, · · · , 1n, · · · ,m1,m2, · · · , mn)
and its rows by (11, 21, · · · ,m1, · · · , 1n, 2n, · · · , mn). Then, its element in the position ((I, J),
(i, j)) is assigned as

w(IJ),(ij) = δI,J
i,j =

{
1, I = i and J = j,

0, otherwise.
(13)

When m = n we simply denote W[n,n] by W[n].
Let A ∈ Mm×n, i.e., A is an m × n matrix. Denote by Vr(A) the row stacking form of A,

that is,
Vr(A) = (a11 a12 · · · a1n · · · am1 am2 · · · amn)T,

and by Vc(A) the column stacking form of A, that is,

Vc(A) = (a11 a12 · · · am1 · · · a1n a2n · · · amn)T.

The following “swap” property shows the meaning of the name.
Proposition 3.1 1) Let X ∈ Rm and Y ∈ Rn be two columns, then

W[m,n] nX n Y = Y nX, W[n,m] n Y nX = X n Y. (14)

2) Let A ∈ Mm×n, then

W[m,n]Vr(A) = Vc(A), W[n,m]Vc(A) = Vr(A). (15)

Proposition 3.2 Let A ∈ Mm×n and B ∈ Mp×q, then

WT
[m,n] = W−1

[m,n] = W[n,m]. (16)

Using swap matrix, we can prove that
Proposition 3.3 If X ∈ Rn, Y T ∈ Rm, then

XY = Y nW[n,m] nX. (17)

Now we consider how to calculate the differential form of a polynomial. We construct an
nk+1 × nk+1 matrix Φk as

Φk =
k∑

s=0

Ins ⊗W[nk−s,n]. (18)

Then, we have the following differential form of Xk, which is fundamental in later approach.
Proposition 3.4

D(Xk+1) = Φk nXk. (19)

Now let

V (x) =
j+t∑

i=j

Eix
i
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be a candidate of Lyapunov function. We calculate its derivative with respect to system (13)
as

V̇ |(13) =
( j+t∑

i=j

EiΦi−1x
i−1

)( k+s∑

α=k

Fαxα

)

=
(
EjΦj−1x

j−1
)
Fkxk

+
(
Ej+1Φjx

jFkxk + EjΦj−1x
j−1Fk+1x

k+1
)

+ · · ·+ Ej+tΦj+t−1x
j+t−1Fk+sx

k+s.

(20)

Using Proposition 2.6, we can express the derivative into canonical form as

V̇ |(13) = EjΦj−1(Inj−1 ⊗ Fk)xj+k−1

+(Ej+1Φj(Inj ⊗ Fk) + EjΦj−1(Inj−1 ⊗ Fk+1)) xj+k

+ · · ·+ Ej+tΦj+t−1(Inj+t−1 ⊗ Fk+s)xj+t+k+s−1

:= Dj+k−1x
j+k−1 + Dj+kxj+k + · · ·+ Dj+t+k+s−1x

j+t+k+s−1.

(21)

4 Positivity of Homogeneous Polynomials

In this section we consider when a homogeneous polynomial is positive definite. In general,
this is a very hard open problem. We give an easily verifiable sufficient condition. The argument
is based on the following lemma.

Lemma 4.1[6] Let S ∈ Zn
+ and x ∈ Rn. Then, we have the following inequality:

|xS | ≤
n∑

j=1

sj

|S| |xj ||S|, (22)

where xS =
∏n

i=1(xi)si , and |S| = ∑n
i=1 si.

Sometimes we need a modification. Assume λi > 0 and
∏n

i=1 λsi
i = 1. Then, replacing xi

by λixi, we have a modification of (22) as

|xS | ≤
n∑

j=1

sj

|S|λ
|S|
j |xj ||S|. (23)

To use this lemma for a k-th homogeneous polynomial of x ∈ Rn, we must know the powers of
xi in each component of xk. Since xk has nk components, for each xi, we use an nk dimensional
vector, denoted by V i

k , to represent the powers of xi in each component of xk.
Example 4.2 Let x ∈ R2, then,

x4 = (x4
1, x

3
1x2, x

2
1x2x1, x

2
1x

2
2, x1x2x

2
1, x1x2x1x2, x1x

2
2x1, x1x

3
2,

x2x
3
1, x2x

2
1x2, x2x1x2x1, x2x1x

2
2, x

2
2x

2
1, x

2
2x1x2, x

3
2x1, x

4
2).

Hence,
V 1

4 = [4, 3, 3, 2, 3, 2, 2, 1, 3, 2, 2, 1, 2, 1, 1, 0]T,

and
V 2

4 = [0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4]T.
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Next, we consider the general form of V i
k .

Lemma 4.3 Let x ∈ Rn. Then the powers of xi in each components of xk, expressed by
V i

k , are

V i
k = (1n)k−1δn

i + (1n)k−2δn
i 1n + · · ·+ 1nδn

i (1n)k−2 + δn
i (1n)k−1, (24)

where 1n = (1, 1, · · · , 1︸ ︷︷ ︸
n

)T, δn
i is the i-th column of In.

Proof First, we prove a recursive form as follows:
{

V i
1 = δn

i ,

V i
s+1 = 1nV i

s + δn
i 1ns−1 , s ≥ 1.

(25)

Since x1 = (x1, x2, · · · , xn)T, xi appears only on its i-th component with power 1, so V i
1 = δn

i .
Now assume V i

s is known, it is a vector of dimension ns. We may get V i
s+1 from V i

s through
the following two steps: First, repeating it n times to get an ns+1 vector. This is produced by
multiplying xs with x1, x2, · · · , xn, respectively. It is represented by 1nV i

s . Next, the i-th ns

dimensional block of xs+1 is obtained by multiplying xs with xi. Hence, in this block the power
of xi must be raised by 1. This is performed by δn

i 1n. Combining these two steps yields (25).
Using (25) repetitively, we can prove (24) easily.
In xk, the terms of highest degree of xi, i.e., xk

i , are particularly important. When k = 2,
they are called the diagonal elements, because in quadratic form xTQx, they correspond to
diagonal elements of Q. It is well known that for quadratic form we have so-called diagonal
dominating principle (DDP), that is, xTQx is positive definite if the diagonal elements are
dominating, i.e.,

qii >
∑

j 6=i

|qij |, i = 1, 2, · · · , n. (26)

For k > 2, we still call xk
i diagonal elements. The DDP has been extended to general case

when k > 2 is even[6]. In the following we give a matrix expression of the cross row diagonal
dominating principle (CRDDP) and DDP proposed by Cheng[6] for general case.

First, we want to figure out the positions of diagonal elements in xk. It is easy to prove the
following lemma.

Lemma 4.4 Let x ∈ Rn. The position of diagonal element xk
i in xk is on di-th, where

di = (i− 1)
nk − 1
n− 1

+ 1, i = 1, 2, · · · , n. (27)

For instance, assume x ∈ R4 and k = 2. Using (27), we have d1 = 1, d2 = 6, d3 = 11, and
d4 = 16. It is easy to verify this from Example 4.2.

For convenience, we define the position set of diagonal elements as Dk
n = {di|i = 1, 2, · · · , n},

where di is the position of xk
i in xk.

Note that if an even degree homogeneous polynomial P (x) = Fxk is positive definite, then
its diagonal elements xk

i must have positive coefficients, that is,

Fdi > 0, i = 1, 2, · · · , n.

Using Lemmas 4.1, 4.3, and 4.4, we have the following result.
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Theorem 4.5 Let k be even, and P (x) = Fxk be a k-th homogeneous polynomial with
x ∈ Rn.

1) Assume Fdi > 0, i = 1, 2, · · · , n. Define F̃ by

F̃i =

{
0, i ∈ Dk

n,

|Fi| , otherwise.
(28)

If

Fdi >
1
k

F̃V i
k , i = 1, 2, · · · , n, (29)

then P (x) is positive definite.
2) Assume Fdi < 0, i = 1, 2, · · · , n. Define F̃ by

F̃i =

{
0, i ∈ Dk

n,

|Fi| , otherwise.
(30)

If

−Fdi >
1
k

F̃V i
k , i = 1, 2, · · · , n, (31)

then P (x) is negative definite.
Proof Using (22) to each term of P (x), one sees that for each component xk

i of xk, its
coefficient is V i

k

k . Keeping diagonal elements xk
i , i = 1, 2, · · · , n, unchanged, and enlarging the

absolute values of other terms by (22), it is easy to check that (29) assures the positivity. The
argument for negativity is similar.

We give some examples to describe this.
Example 4.6 1) Consider polynomial

P (x) = x4
1 − x2

1x
2
2 + 1.5x1x

3
2 + 2x4

2.

Express P (x) = Fx4, then,

F = [1, 0, 0,−1, 0, 0, 0, 1.5, 0, 0, 0, 0, 0, 0, 0, 2].

Using (28), F̃ is constructed as

F̃ = [0, 0, 0, 1, 0, 0, 0, 1.5, 0, 0, 0, 0, 0, 0, 0, 0].

It is easy to calculate that

V 1
4 = 13

2
1
2 + 12

2
1
212 + 12

1
21

2
2 + 1

21
3
2

= [4, 3, 3, 2, 3, 2, 2, 1, 3, 2, 2, 1, 2, 1, 1, 0]T

and
V 2

4 = 13
2
2
2 + 12

2
2
212 + 12

2
21

2
2 + 2

21
3
2

= [0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4]T.

Note that Fd1 = 1 and Fd2 = 2. Checking (29), we have

Fd1 −
1
4
F̃ V 1

4 =
1
8

> 0, Fd2 −
1
4
F̃ V 2

4 =
3
8

> 0.
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Thus, P (x) > 0, that is, P (x) is positive definite.
2) Consider

Q(x) = x4
1 + 6x2

1x
2
2 + 1.5x1x

3
3 + 2x4

2.

Express Q(x) = Hx4, then,

H = [1, 0, 0, 6, 0, 0, 0, 1.5, 0, 0, 0, 0, 0, 0, 0, 2].

Construct H̃ as
H̃ = [0, 0, 0, 6, 0, 0, 0, 1.5, 0, 0, 0, 0, 0, 0, 0, 0].

Checking (29), we have

Hd1 −
1
4
H̃V 1

4 = −19
8

< 0, Hd2 −
1
4
H̃V 2

4 = −17
8

< 0.

We can conclude nothing.
Comparing P (x) with Q(x), it is easy to see that Q(x) ≥ P (x). Therefore, for Q(x) the

inequality (29) is not sharp enough. The problem is that we don’t need to enlarge positive
semi-definite term 6x2

1x
2
2 in Q(x). We can simply ignore it.

To find positive semi-definite terms, we construct the following matrix:

Vk = [V 1
k , V 2

k , · · · , V n
k ].

Then, the (i, j)-th element of Vk is the power of xj in the i-th component of xk. For instance,
in Example 4.6, we have

V T
4 =

[4 3 3 2 3 2 2 1 3 2 2 1 2 1 1 0

0 1 1 2 1 2 2 3 1 2 2 3 2 3 3 4

]
.

If the elements in i-th row of Vk are all even, then the i-th term of P (x) = Fxk has all even
powers. We call such terms the even power terms. Now, if the corresponding coefficient Fi of
F is positive, i.e., Fi > 0, then in estimating the inequality such terms can be omitted. We,
therefore, have the following corollary.

Corollary 4.7 In Theorem 4.5 the positivity of P (x) remains true when (28) is replaced
by

F̃i =

{
0, even term with Fi ≥ 0,

|Fi| , otherwise.
(32)

Similarly, the negativity of P (x) remains true when (30) is replaced by

F̃i =

{
0, even term with Fi ≤ 0,

|Fi| , otherwise.
(33)

5 Global Stability via Two Lyapunov Functions

Consider a dynamic system

ẋ = f(x), x ∈ Rn, (34)
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where f(x) is a smooth vector field.
First, we define a kind of stability, called U stability.
Definition 5.1 Let U be a neighborhood of the origin. System (34) is said to be U -stable,

if it is Lyapunov stable and for any x0 ∈ Rn,

lim
t→∞

d(x(x0, t), U) = 0,

where x(x0, t) is the solution to (34) with initial point x0 and d is the distance.
The following result is obvious.
Proposition 5.2 Consider system (34).
1) Assume there is a positive definite radially unbounded function V1(x) > 0. U := {x|V1(x) <

α}, for some α > 0, is a neighborhood of the origin. If

V̇1|(34) < 0, x ∈ U c,

then, system (34) is U -stable.
2) Assume there is a positive definite function V2(x) > 0. W := {x|V2(x) ≤ β}, for some

β > 0, is a neighborhood of the origin. If

V̇2|(34) < 0, 0 6= x ∈ W,

then, (34) is asymptotically stable at the origin, and W is a region of attraction.
3) If there are V1(x) and V2(x), which are the same as in the items 1 and 2, respectively.

Moreover, assume U ⊂ W , then, system (34) is globally asymptotically stable.

6 Stability of Polynomial Systems

Consider a polynomial

P (x) := pkxk + pk+1x
k+1 + · · ·+ pk+sx

k+s.

We define its lowest degree terms and highest degree terms by

LP (x) := pkxk, HP (x) := pk+sx
k+s.

Similarly, for a polynomial vector field f(x) the lowest and highest terms form two homogeneous
vector fields, denoted by Lf (x) and Hf (x), respectively.

The following result is obvious.
Lemma 6.1 Assume a polynomial P (x) is positive definite, then the two polynomials LP (x)

and HP (x) are positive semi-definite.
Based on this lemma, we assume
Assumption 1 System (13) is an odd-ended system, i.e., both deg(Lf (x)) and deg(Hf (x))

are odd. Then, we can express (13) as

ẋ = f(x) = F2i+1x
2i+1 + F2i+2x

2i+2 + · · ·+ F2(i+j)+1x
2(i+j)+1

:= Lf (x) + f2i+2 + f2i+3 + · · ·+ f2(i+j) + Hf (x),
(35)

where fk = Fkxk, k = 2i + 1, 2i + 2, · · · , 2(i + j) + 1.
Now assume we can find two positive definite homogeneous polynomials V1(x) > 0 and

V2(x) > 0 with deg(V1(x)) = 2p and deg(V2(x)) = 2q. Moreover,

V̇1|Hf (x) < 0, x 6= 0 and V̇2|Lf (x) < 0, x 6= 0.
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Next, we define a cub, C, as

C := {x ∈ Rn | |xi| ≤ ri, i = 1, 2, · · · , n},

where ri > 0. We want to estimate V̇1|f(x) for x ∈ Cc and V̇2|f(x) for x ∈ C. To use the result
for the positivity (equivalently, negativity) of homogeneous polynomials, we want to convert
them into homogeneous forms. We provide two algorithms for this purpose.

Algorithm 6.2
1) Calculate

V̇1|fk(x) = Z2p+k−1x
2p+k−1, (36)

where k = 2i + 1, 2i + 2, · · · , 2(i + j).
2) Remove negative semi-definite terms:

Dk(x) := Z̃2p+k−1x
2p+k−1, (37)

where k = 2i + 1, 2i + 2, · · · , 2(i + j) and the components of Z̃2p+k−1 are defined as

Z̃i
2p+k−1 =

{
0, even power term with Zi

2p+k−1 ≤ 0,∣∣Zi
2p+k−1

∣∣, otherwise.

3) Enlarge it to homogeneous case:

Hk(x) := Z̃2p+k−1|x|2p+k−1 (|x1|2(i+j)−k+1 + · · ·+ |xn|2(i+j)−k+1)

max
{
r
2(i+j)−k+1
s |s = 1, 2, · · · , n

} , (38)

where x ∈ Cc, k = 2i + 1, 2i + 2, · · · , 2(i + j).
Using Algorithm 6.2, we can define an estimation as

E1(x) := V̇1|Hf (x) +
2(i+j)∑

k=2i+1

Hk(x). (39)

From the constructing of the algorithm, it is easy to see the following lemma.
Lemma 6.3

V̇1|f(x) ≤ E1(x), x ∈ Cc. (40)

Since E1 is a homogeneous function, it is easy to use previous methods to check its negativity.
Next, we check the negativity of V̇2|fk(x).
Algorithm 6.4
1) Calculate

V̇2|fk(x) = Z2q+k−1x
2q+k−1, k = 2i + 2, 2i + 3, · · · , 2(i + j) + 1. (41)

2) Remove negative semi-definite terms:

Dk(x) := Z̃2q+k−1x
2q+k−1, (42)

where k = 2i + 2, 2i + 3, · · · , 2(i + j) + 1, and the components of Z̃2q+k−1 are defined as
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Z̃i
2q+k−1 =

{
0, even power term with Zi

2q+k−1 ≤ 0,∣∣Zi
2q+k−1

∣∣, otherwise.

3) Enlarge it to homogeneous case:

Lk(x) := 1
2q+k−1 Z̃2q+k−1

[
V 1

2q+k−1r
k−1−2i
1 |x1|2q+2i + · · ·+ V n

2q+k−1r
k−1−2i
n |xn|2q+2i

]
, (43)

where k = 2i + 2, 2i + 3, · · · , 2(i + j) + 1.
Using Algorithm 6.4, we can define an estimation as

E2(x) := V̇2|Lf (x) +
2(i+j)+1∑

k=2(i+1)

Lk(x). (44)

From the algorithm it is easy to see the following lemma.
Lemma 6.5

V̇2|f(x) ≤ E2(x), x ∈ C. (45)

Since E2 is a homogeneous function, it is easy to use the tool developed in Section 4 to
check its negativity.

Summarizing the above arguments, we have
Theorem 6.6 Consider system (35). Assume that there exist homogeneous V1(x) > 0,

V2(x) > 0, and an invariant cub C, such that

E1(x) < 0, x ∈ Cc,

E2(x) < 0, 0 6= x ∈ C.
(46)

Then, the system is globally asymptotically stable.
Consider a switched polynomial system

ẋ = fσ(t)(x), (47)

where σ(t) : [0,∞) → Λ = {1, 2, · · · , N} is a switching signal, fλ, λ ∈ Λ, are odd-ended
polynomial vector fields.

Using Theorem 6.6, we have
Theorem 6.7 Consider system (47). Assume that there exist homogeneous V1(x) > 0,

V2(x) > 0, and an invariant cub C, such that for the i-th switching mode,

Ei
1(x) < 0, x ∈ Cc,

Ei
2(x) < 0, 0 6= x ∈ C.

(48)

Then, the system is globally asymptotically stable under arbitrary switches.

7 An Illustrative Example

Example 7.1 Consider the following polynomial system:
{

ẋ1 = −βx1 + x2
1 + x2

2 − αx3
1,

ẋ2 = −βx2 + 2x1x2 − αx3
2.

(49)
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We can express the polynomial system (49) as

ẋ = A1x + A2x
2 + A3x

3, (50)

where

A1 =
[−β 0

0 −β

]
, A2 =

[
1 0 0 1
0 1 1 0

]
, A3 =

[−α 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −α

]
,

x = (x1, x2)T, x2 = (x2
1, x1x2, x2x1, x

2
2)

T,

x3 = (x3
1, x

2
1x2, x1x2x1, x1x

2
2, x2x

2
1, x2x1x2, x

2
2x1, x

3
2)

T.

Denote f1 := A1x, f2 := A2x
2, f3 := A3x

3, and choose candidate Lyapunov functions

V1(x) =
1
4
(x4

1 + x4
2), V2(x) =

1
2
(x2

1 + x2
2). (51)

It is obvious that V1(x) and V2(x) are two positive definite homogenous polynomials. More-
over,

V̇1|f3(x) = −α(x6
1 + x6

2) < 0, x 6= 0, α > 0,

V̇2|f1(x) = −β(x2
1 + x2

2) < 0, x 6= 0, β > 0.

Next, we define a cub C as

C := {x ∈ R2||xi| ≤ 1, i = 1, 2}.
Now, using Algorithm 6.2, the estimation E(x) can be obtained.

First, we have

V̇1|f1(x) = −β(x4
1 + x4

2) = Z1x
4,

V̇1|f2(x) = x3
1(x

2
1 + x2

2) + 2x1x
4
2 = Z2x

5,
(52)

where

Z1 = [−β, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−β],

Z2 = [1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0].
(53)

Removing the negative semi-definite terms, we get

D1(x) = Z̃1x
4, D2(x) = Z̃2x

5 = Z2x
5, (54)

where

Z̃1 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

Z̃2 = [1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0].

Thus, H1(x) = 0. Then, we enlarge D2(x) to H2(x), where

H2(x) = Z̃2|x|5(|x1|+ |x2|)
= x6

1 + x4
1x

2
2 + 2x2

1x
4
2 + |x1|5|x2|+ |x1|3|x2|3 + 2|x1||x2|5

= [1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]|x|6. (55)
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It is easy to see that
D2(x) ≤ H2(x).

Define

E(x) : = V̇1|f3(x) + H1(x) + H2(x) = V̇1|f1(x) + H2(x)

= −α(x6
1 + x6

2) + x6
1 + x4

1x
2
2 + 2x2

1x
4
2 + |x1|5|x2|+ |x1|3|x2|3 + 2|x1||x2|5

= E|x|6, (56)

where

E = [1− α, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−α]. (57)

Now we check its negativity. From (57),

Ed1 = 1− α, Ed2 = −α.

Choose α > 4, from Lemma 4.3, then we have

V 1
6 = [6, 5, 5, 4, 5, 4, 4, 3, 5, 4, 4, 3, 4, 3, 3, 2, 5, 4, 4, 3, 4, 3, 3, 2, 4, 3, 3, 2, 3, 2, 2, 1,

5, 4, 4, 3, 4, 3, 3, 2, 4, 3, 3, 2, 3, 2, 2, 1, 4, 3, 3, 2, 3, 2, 2, 1, 3, 2, 2, 1, 2, 1, 1, 0]T,

V 2
6 = [0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,

1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6]T,

Ẽ = [0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0].

(58)

Thus, we can get the following inequalities:

Ed1 +
1
6
ẼV 1

6 = 1− α + 3 < 0,

Ed2 +
1
6
ẼV 2

6 = −α + 4 < 0.

Using Theorem 4.5, E(x) is negative definite.
Next, using Algorithm 6.4, we get the estimation of F (x),

V̇2|f3(x) = −α(x4
1 + x4

2) = Z3x
4,

V̇2|f2(x) = x1(x2
1 + x2

2) + 2x1x
2
2 = Z2x

3,
(59)

where

Z3 = [−α, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−α],

Z2 = [1, 0, 0, 3, 0, 0, 0, 0].
(60)

Removing the negative semi-definite terms, we get

D3(x) = Z̃3x
4, D2(x) = Z̃2x

3 = Z2x
3, (61)
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where

Z̃3 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

Z̃2 = [1, 0, 0, 3, 0, 0, 0, 0].

Thus, L3(x) = 0. Similarly, we enlarge D2(x) to L2(x),

L2(x) =
1
3
Z̃2(V 1

3 , V 2
3 )(x2

1 + x2
2)

=
1
3
Z̃2(V 1

3 x2
1, V

2
3 x2

2)

= 2x2
1 + 2x2

2, (62)

where V 1
3 = [3, 2, 2, 1, 2, 1, 1, 0]T, V 2

3 = [0, 1, 1, 2, 1, 2, 2, 3]T.
Then, we have

D2(x) ≤ L2(x), x ∈ C.

Define an estimation as

F (x) : = V̇2|f1(x) + L2(x) + L3(x)

= V̇2|f1(x) + L2(x)

= −β(x2
1 + x2

2) + 2x2
1 + 2x2

2

= (2− β)x2
1 + (2− β)x2

2. (63)

When β > 2, F (x) is negative.
Using Theorem 6.6, we conclude that system (49) is globally asymptotically stable when

α > 4, β > 2.
Particularly, choosing α = 5, β = 10, we get a trajectory in Figure 1.
Remark 7.2 We may have an alternative way to enlarge D2(x) to L2(x) as

D2(x) = Z2x
3

= x3
1 + 3x1x

2
2

≤ |x1|2 + 3|x2|2 := L2(x), x ∈ C. (64)

Based on Example 7.1, we can provide an illustrative example for switched polynomial
system.

Example 7.3 Consider a switched polynomial system

ẋ = gσ(t)(x), (65)

where σ(t) : [0,∞) → Λ = {1, 2} is a switching signal, gλ, λ = 1, 2, are odd-ended polynomial
vector fields. The subsystems are, respectively,

ẋ = g1(x) = A1
1x + A1

2x
2 + A1

3x
3, (66)

ẋ = g2(x) = A2
1x + A2

2x
2 + A2

3x
3. (67)

where

Ai
1 =

[−βi 0
0 −βi

]
, Ai

2 =
[
1 0 0 1
0 1 1 0

]
, Ai

3 =
[−αi 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −αi

]
. (68)
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(b)(a) t t

x x

x x

Figure 1 The trajectory of Example 7.1 when α = 5, β = 10, and x(0)=[5,4].
(a) trajectory in interval [0, 1]; (b) trajectory in interval [0, 0.05].

and αi > 4, βi > 2, i = 1, 2.
From Example 7.1 we know that, using two candidate Lyapunov functions (51), subsystems

(66) and (67) are all globally asymptotically stable. In addition, the conditions in Theorem 6.7
are all satisfied. We conclude that the switched system (65) is globally asymptotically stable
under arbitrary switches.

8 Conclusion

The stability problem of (switched) polynomial systems was investigated in this paper.
The main results of this paper are the following. First, the semi-tensor product was used
to convert multi-variable polynomials into canonical forms. As a generalization, the product
of two polynomials can also be converted into the canonical form. Second, some sufficient
conditions were obtained for verifying the positivity of homogenous polynomials by using semi-
tensor product. Using them, a new method, called the two Lyapunov function approach, was
proposed to justify the global stability of polynomial systems, which are not assumed to be
homogeneous but only odd-ended. The method proposed is also applicable to the stability of
odd-ended switched polynomial systems.
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