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CONSTRUCTIVE STABILIZATION
OF QUADRATIC-INPUT NONLINEAR SYSTEMS

WITH BOUNDED CONTROLS

JIANGHUA ZHONG, DAIZHAN CHENG, and XIAOMING HU

Abstract. In this paper, the stabilization of quadratic-input nonlin-
ear systems with bounded controls is considered. According to the
type of quadratic-input forms, two cases, namely, positive definite
and positive semi-definite, are considered. For the case of positive
definiteness, a universal formula for bounded stabilizers is given via
a known Lyapunov control function. For the case of positive semi-
definiteness, a constructive parametrization of bounded stabilizers is
proposed under the assumption that there exists a known Lyapunov
control function with respect to a smaller control set than the admis-
sible control set.

1. Introduction

In this paper, we consider the following quadratic-input nonlinear system:

ẋ = f(x) +
m∑

i=1

gi(x)ui +
m∑

i1=1

m∑

i2=1

hi1i2(x)ui1ui2 , (1.1)

where x ∈ R
n is the state,

u ∈ B(L) = {u ∈ R
m | ‖u‖2 = u2

1 + u2
2 + · · · + u2

m < L}
is the control input, and f , g, and hij are smooth vector fields with f(0) = 0.

Since the concept of Lyapunov control function was first introduced
by Arstein [1], many results have been obtained for the stabilization of
nonlinear control systems using the Lyapunov control function approach,
e.g., [2, 5–7, 9–12]. Among them, Moulay and Perruquetti gave a formula
for the continuous stabilizers for system (1.1) in the single-input case via a
known Lyapunov control function [7]. Lin constructed a bounded smooth
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stabilizer for system (1.1) with unbounded controls under one of the as-
sumptions that the unforced system is stable (the asymptotic stability is
not necessary; [3, 4]). The authors’ recent paper [12] proposed a con-
structive parametrization of continuous stabilizers for system (1.1) with
unbounded controls using Lyapunov control function approach. Suárez et
al. constructed a one-parameter family of bounded continuous stabilizers
for affine nonlinear control systems with controls taking values in compact
convex sets via a known Lyapunov control function [10]. Under the as-
sumption that an appropriate Lyapunov control function is known, Lin and
Sontag gave a universal formula for the bounded continuous stabilizers for
affine nonlinear control systems with controls taking values in the Euclidean
unit ball [5], based on Sontag’s formula for continuous stabilizers [9]. Mal-
isoff and Sontag extended Lin and Sontag’s result to the Minkowski unit
ball [6]. Later, Suárez et al. generalized Malisoff and Sontag’s result to
a large class of sets of control values [11]. Motivated by these works, this
paper considers the stabilization of quadratic-input nonlinear systems with
controls taking values from a bounded Euclidean ball. According to the
type of quadratic-input forms, two cases, namely, positive definite and pos-
itive semi-definite, are considered. For the first case, a universal formula for
bounded continuous stabilizers is obtained via the known Lyapunov control
function. For the second case, a constructive parametrization of bounded
continuous stabilizers is proposed under the assumption that there exists a
known Lyapunov control function with respect to a smaller control set than
the admissible control set.

The paper is organized as follows. Section 2 presents some preliminar-
ies. Section 3 gives a universal formula for bounded continuous stabiliz-
ers for the case of positive definiteness. Section 4 investigates the feasible
set of bounded continuous stabilizing controls for the case of positive semi-
definiteness. Section 5 provides a detailed bounded control design procedure
for the case of positive semi-definiteness. Section 6 gives some illustrative
examples. Section 7 is the conclusion.

2. Preliminaries

In this section, we recall some basic definitions and facts concerning Lya-
punov control functions. We also give preliminary notation and results for
system (1.1).

Consider a nonaffine nonlinear control system

ẋ = f(x, u), (2.1)

where x ∈ R
n is the state, u ∈ U ⊂ R

m is the control input, and f is the
smooth vector field such that f(0, 0) = 0.

Definition 2.1 (see [1, 7]). A smooth, proper, and positive definite
function V is a control Lyapunov function (LCF) for system (2.1) if for
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any x ∈ R
n \ {0}

inf
u∈U

{
∂V

∂x
f(x, u)

}
< 0. (2.2)

Definition 2.2 (see [1, 7]). A LCF V for system (2.1) is said to satisfy
the small control property if for each ε > 0, there exists δ > 0 such that if
x �= 0 satisfies ‖x‖ < δ, then there exists some u such that ‖u‖ < ε and

∂V

∂x
f(x, u) < 0. (2.3)

From the above definition, one can see that the small control property
assures the existence of a stabilizing control u which is continuous at the
origin and such that u(0) = 0.

However, the construction of a bounded continuous stabilizer is, in gen-
eral, highly nontrivial, except for the affine control case.

We consider an affine nonlinear control system

ẋ = f(x) + g(x)u, (2.4)

where x ∈ R
n is the state, u ∈ B(r) is the control input, and f and g =

(g1, . . . , gm) are smooth vector fields, where f(0) = 0.
For system (2.4), inequality (2.2) is reduced to

inf
u∈B(r)

{
∂V

∂x

[
f(x) +

m∑

i=1

gi(x)ui

]}
< 0. (2.5)

We denote

a(x) :=
∂V

∂x
f(x), bi(x) :=

∂V

∂x
gi(x), i = 1, . . . ,m.

We set
b(x) := [b1(x), b2(x), . . . , bm(x)]T .

Then it is easy to see that inequality (2.5) is equivalent to the following
expression:

b(x) = 0 =⇒ a(x) < 0 ∀x �= 0. (2.6)

We denote

k(x) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−√
r

a(x) +
√

a2(x) + ‖b̃(x)‖4

‖b̃(x)‖2(1 +
√

1 + ‖b̃(x)‖2)
b̃(x) if b̃(x) �= 0,

0, if b̃(x) = 0,

(2.7)

where b̃(x) =
√

rb(x).
The following result is from [5] with a slight modification.
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Proposition 2.3. Assume that V is a Lyapunov control function of sys-
tem (2.4). Then k(x) is smooth everywhere except for the origin, takes val-
ues in B(r), and is continuous at the origin if the LCF V satisfies the small
control property. Moreover, the control law u = k(x) globally asymptotically
stabilizes system (2.4).

Consider system (1.1). Denote by hi
i1i2

(x) the ith component of hi1i2(x),
and for each i ∈ {1, . . . , n}, let

Ri(x) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

hi
11(x)

hi
12(x) + hi

21(x)
2

. . .
hi

1m(x) + hi
m1(x)

2
hi

12(x) + hi
21(x)

2
hi

22(x) . . .
hi

2m(x) + hi
m2(x)

2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
hi

1m(x) + hi
m1(x)

2
hi

2m(x) + hi
m2(x)

2
. . . hi

mm(x)

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

Then
m∑

i1=1

m∑

i2=1

hi1i2(x)ui1ui2 = [uT R1(x)u, uT R2(x)u, . . . , uT Rn(x)u]T .

Assume that V is a smooth, proper, and positive definite function. Then
the time derivative of V along the trajectories of system (1.1) is

V̇ |(1.1) =
∂V

∂x
f(x) +

∂V

∂x
g(x)u +

∂V

∂x
[uT R1(x)u, uT R2(x)u, . . . , uT Rn(x)u]T

=
∂V

∂x
f(x) +

∂V

∂x
g(x)u +

n∑

i=1

(
∂V

∂xi
uT Ri(x)u

)

=
∂V

∂x
f(x) +

∂V

∂x
g(x)u + uT

(
n∑

i=1

∂V

∂xi
Ri(x)

)
u.

We denote

a(x) :=
∂V

∂x
f(x), b(x) :=

(
∂V

∂x
g(x)

)T

, R(x) :=
n∑

i=1

∂V

∂xi
Ri(x).

Then R(x) is symmetric and

V̇ |(1.1) = a(x) + bT (x)u + uT R(x)u. (2.8)

We denote
F (x, u) = a(x) + bT (x)u + uT R(x)u.

Under the assumption that V is a LCF for system (1.1), it has been
pointed out in [7] that one of sufficient conditions of the existence of a
continuous stabilizer is that F (x, u) is convex with respect to u for all x ∈
R

n\{0} (i.e., R(x) is positive semi-definite except for the origin [12]). In the
rest of this paper, we first discuss the case where R(x) is positive definite
except for the origin, and then the case where R(x) is positive semi-definite.
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3. Universal formula for bounded stabilization

In this section, we give a universal formula for the bounded continuous
stabilizers of system (1.1) via a known Lyapunov control function for the
case R(x) > 0 for all x �= 0, i.e., the case where R(x) is positive definite
everywhere except for the origin.

Lemma 3.1 (see [2]). Assume that A is a symmetric, positive definite
matrix. Then the set of solutions of the quadratic inequality

ξT Aξ + dT ξ + c < 0,

where ξ ∈ R
m, is nonempty if and only if

1
4
dT A−1d − c > 0,

and the set of solutions is given by

ξ = −1
2
A−1d + A− 1

2 ν

√
1
4
dT A−1d − c, (3.1)

where ν satisfies ‖ν‖ < 1.

Using this lemma, we can obtain the following result.

Theorem 3.2. Assume that V is a LCF for system (1.1) and that
R(x) > 0 for all x �= 0. Then a stabilizer u0 = u0(x) of system (1.1)
such that u0(0) = 0 can be expressed as follows:

u0(x) = −1
2

√
L‖R1/2(x)‖

√
L‖R1/2(x)‖ +

√
1
4bT (x)R−1(x)b(x) − a(x)

R−1(x)b(x) (3.2)

for all x �= 0, and it takes values in B(L) and is continuous in R
n \ {0}.

Moreover, if the LCF V for system (1.1) satisfies the small control property,
then u0(x) is continuous in R

n.

Proof. Since V is a LCF for system (1.1), there exists u0 ∈ B(L) such that

a(x) + bT (x)u0 + uT
0 R(x)u0 < 0 ∀x �= 0, (3.3)

i.e.,

‖R1/2(x)u0 +
1
2
R− 1

2 (x)b(x)‖ <

√
1
4
bT (x)R−1(x)b(x) − a(x) ∀x �= 0.

Note that∥∥∥∥R1/2(x)u0 +
1
2
R− 1

2 (x)b(x)
∥∥∥∥ ≥ 1

2
‖R− 1

2 (x)b(x)‖ − ‖R1/2(x)u0‖

and
‖R1/2(x)u0‖ ≤ ‖R1/2(x)‖ ‖u0‖ <

√
L‖R1/2(x)‖.
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Then
1
2
‖R− 1

2 (x)b(x)‖ <
√

L‖R1/2(x)‖ +

√
1
4
bT (x)R−1(x)b(x) − a(x) (3.4)

for all x �= 0. In (3.1), we set

ν = ν(x) =
1
2R− 1

2 (x)b(x)
√

L‖R1/2(x)‖ +
√

1
4bT (x)R−1(x)b(x) − a(x)

(3.5)

for all x �= 0. In terms of (3.4), ν(x) in (3.5) satisfies ‖ν(x)‖ < 1 for all
x �= 0. By Lemma 3.1, solving inequality (3.3) yields

u0 = u0(x) = −1
2

√
L‖R1/2(x)‖

√
L‖R1/2(x)‖ +

√
1
4bT (x)R−1(x)b(x) − a(x)

R−1(x)b(x)

for all x �= 0. For any x ∈ R
n \ {0}, let v = R1/2(x)u0. Then

v = −1
2

√
L‖R1/2(x)‖

√
L‖R1/2(x)‖ +

√
1
4bT (x)R−1(x)b(x) − a(x)

R− 1
2 (x)b(x)

for all x �= 0. From (3.4), it is easy to see that ‖v‖ <
√

L‖R1/2(x)‖ for
all x �= 0. Therefore, for any x ∈ R

n\{0}, there exists � ∈ R
m satisfying

‖�(x)‖ < 1 such that v =
√

LR1/2(x)�. In turn, u0 = R− 1
2 (x)v =

√
L�

for all x �= 0. Hence, ‖u0‖ <
√

L for all x �= 0. This completes the proof.

4. Feasible set of bounded controls

In this section, we give a feasible set of bounded continuous stabilizers
under certain assumptions for the case of positive semi-definiteness. To
assure that the obtained stabilizer u ∈ B(L), we assume the following.

A1. There exists a smooth, proper, and positive definite function V such
that

inf
u∈B(L/2)

[a(x) + bT (x)u + uT R(x)u] < 0 ∀x �= 0. (4.1)

It is easy to see that if assumption A1 holds, then V is a LCF for system
(1.1). But the inverse may not be true. Thus, assumption A1 is stronger
than the assumption that V is a LCF for system (1.1).

Under assumption A1, we define

ξ(x) := inf
u∈B(L/2)

[a(x) + bT (x)u + uT R(x)u].

Then ξ(x) ∈ [−∞, 0) for all x �= 0, and ξ(0) = 0 since a(0) = 0, b(0) = 0,
and R(0) = 0. For any α < 0, we define truncated ξ as follows:

ξα(x) = max{ξ(x), α}.
It is easy to see that if ξ(x) is continuous, then ξα(x) is also a continuous
function.
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First, we need the following lemma.

Lemma 4.1. B(L/2) ⊂ [B(L/2) ∩ Im(R(x))] + [B(L/2) ∩ Im⊥(R(x))].

Proof. For any u ∈ B(L/2) ⊂ R
m, u = uI + uP , where uI ∈ Im(R(x)) and

uP ∈ Im⊥(R(x)). Note that ‖u‖2 = ‖uI‖2 + ‖uP ‖2 and ‖u‖2 < L/2. Then
‖uI‖2 < L/2 and ‖uP ‖2 < L/2. The lemma is proved.

Now, for each fixed x, we decompose u as follows:

u(x) = uI(x) + uP (x), (4.2)

where
uI(x) ∈ Im(R(x)), uP (x) ∈ Im⊥(R(x)).

Then

a(x) + bT (x)u + uT R(x)u = a(x) + bT (x)uI + bT (x)uP + uT
I R(x)uI . (4.3)

Under assumption A1, we also define

η(x) := inf
uI∈B(L/2)∩Im(R(x))

[a(x) + bT (x)uI + uT
I RuI ]. (4.4)

Note that η(x) > −∞ is a well-posed function.
We denote

D = {f ∈ C0(Rn \ {0}) | 0 < f(x) < 1)},
i.e., D is the set of continuous functions in R

n\{0} with values in (0, 1).
Choosing any α < 0 and any μ(x) ∈ D, we have

inf
u∈B(L/2)

[a(x) + bT (x)u + uT R(x)u]

≥ inf
uI∈B(L/2)∩Im(R(x))

[a(x) + bT (x)uI + uT
I R(x)uI − η(x) + μ(x)ξα(x)]

+ inf
uP ∈B(L/2)∩Im⊥(R(x))

[η(x) − μ(x)ξα(x) + bT (x)uP ]. (4.5)

For the first term of the right hand side of (4.5), we have

inf
uI∈B(L/2)∩Im(R(x))

[a(x) + bT (x)uI + uT
I R(x)uI − η(x) + μ(x)ξα(x)]

= μ(x)ξα(x) < 0 ∀x �= 0. (4.6)

For the second term, we have

inf
uP ∈B(L/2)∩Im⊥(R(x))

[η(x) − μ(x)ξα(x) + bT (x)uP ] ≤ ξ(x) − μ(x)ξα(x)

≤ (1 − μ(x))ξa(x) < 0 ∀x �= 0. (4.7)

Next, we can construct bounded continuous controls uI and uP sepa-
rately. Then u = uI + uP is a feasible bounded control.
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We set

a1(x) = a(x) − η(x) + μ(x)ξα(x),

a2(x) = η(x) − μ(x)ξα(x).

From inequalities (4.6) and (4.7) we obtain the following result.

Lemma 4.2. Assume that assumption A1 holds. Then there exist uI ∈
B(L/2) ∩ Im(R(x)) and uP ∈ B(L/2) ∩ Im⊥(R(x)) such that

a1(x) + bT (x)uI + uT
I R(x)uI < 0 ∀x �= 0 (4.8)

and
a2(x) + bT (x)uP < 0 ∀x �= 0. (4.9)

Remark. This lemma yields that as long as

inf
u∈B(L/2)

[a(x) + bT (x)u + uT R(x)u] < 0 ∀x �= 0, (4.10)

we have

inf
uI∈B(L/2)∩Im(R(x))

[a1(x) + bT (x)uI + uT
I R(x)uI ] < 0 ∀x �= 0 (4.11)

and
inf

uP ∈B(L/2)∩Im⊥(R(x))
[a2(x) + bT (x)uP ] < 0 ∀x �= 0. (4.12)

To construct u(x), we also need the following lemma.

Lemma 4.3. If uI(x) ∈ B(L/2) ∩ Im(R(x)) is a continuous (except
possibly for the origin) control satisfying inequality (4.8) and uP (x) ∈
B(L/2)∩ Im⊥(R(x)) is a continuous (except possibly for the origin) control
satisfying inequality (4.9), then u(x) = uI(x) + uP (x) is also continuous
(except possibly for the origin) and satisfies ‖u‖ <

√
L and

a(x) + bT (x)u(x) + u(x)T R(x)u(x) < 0 ∀x �= 0. (4.13)

Proof. The continuity and boundedness of u are obvious. Therefore, it
suffices to prove inequality (4.13):

a(x) + bT (x)u(x) + u(x)T R(x)u(x)

= a(x) + b(x)(uI + uP ) + (uI + uP )T R(uI + uP )

= a(x) + bT (x)uI + bT (x)uP + uT
I RuI

= [a(x) + bT (x)uI + uT
I RuI − η(x) + μ(x)ξα(x)]

+ [η(x) − μ(x)ξα(x) + bT (x)uP ]

= [a1(x) + bT (x)uI + uT
I RuI ] + [a2(x) + bT (x)uP ] < 0 ∀x �= 0.

The proof is complete.
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Finally, under assumption A1, we construct three feasible sets as follows:

Φα
μ =

{
uI(x) ∈ B(L/2) ∩ Im(R(x))

∣∣∣

a1(x) + bT (x)uI(x) + uT
I (x)R(x)uI(x) < 0 ∀x �= 0; uI(0) = 0

}
,

Ψα
μ =

{
uP (x) ∈ B(L/2) ∩ Im⊥(R(x))

∣∣∣

a2(x) + bT (x)uP (x) < 0 ∀x �= 0; uP (0) = 0
}

,

Φ =
{

u(x) ∈ B(L)
∣∣∣

a(x) + bT (x)u(x) + uT (x)R(x)u(x) < 0 ∀x �= 0; u(0) = 0
}

.

Based on the above arguments, after some tedious but straightforward
calculations that are omitted here, we obtain the first main result in the
following theorem. It provides a complete parametrized expression of the
feasible set of u, from which the bounded continuous stabilizing controls
can be constructed.

Theorem 4.4. Assume the A1 holds. Then the feasible set of bounded
stabilizing controls u for system (1.1) is as follows:

Φ =
⋃

α<0

⋃

μ(x)∈D

{
u = uI(x) + uP (x)

∣∣∣ uI(x) ∈ Φα
μ , uP (x) ∈ Ψα

μ

}
. (4.14)

Proof. Note that the choices of the parameters α and μ(x) are independent.
According to Lemmas 4.2 and 4.3, Φ is composed of double inclusions.

5. Bounded continuous control design

In this section, we construct bounded continuous uI(x) from inequality
(4.11) and bounded continuous uP (x) from inequality (4.12) in the case of
R(x) ≥ 0, i.e., the case where R(x) is positive semi-definite. We assume the
following.

A2. R(x) ≥ 0.
For the sake of presentation ease, we also tentatively assume the follow-

ing.
A3.
1. For any α < 0, ξα(x) is continuous in R

n \ {0};
2. η(x) is continuous in R

n \ {0}.
First, we consider inequality (4.11). Under assumption A2, it is similar

to the case where R(x) > 0 for all x �= 0 discussed in Sec. 3. However,
due to the restriction on uI , certain further investigation is needed. In the
sequel, we denote by A+ the pseudo-inverse of A (see [8]).
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The following is an easily verifiable result.

Lemma 5.1 (see [12]). Let A be a symmetric (n × n)-matrix, u ∈ R
n,

and v = Au. Then u = A+v if and only if u ∈ Im(A).

We need one more assumption in order to construct continuous controls.
A4. (R1/2)+(x) is continuous in R

n\{0}.
Note that if we want uI and uP to be continuous, then the assumptions

in A3 become necessary. First, we should show that assumptions in A3 are
reasonable. First, we give the following result.

Lemma 5.2. Assume that A1 and A2 hold and that uI ∈ Im(R(x)). Let
v = R1/2(x)uI . Then

‖uI‖ <

√
L

2
⇐⇒ ‖v‖ <

√
L

2
‖R1/2(x)‖.

Proof. Necessity.

‖v‖ ≤ ‖R1/2(x)‖ ‖uI‖ <

√
L

2
‖R1/2(x)‖.

Sufficiency. Note that ‖v‖ <
√

L/2‖R1/2(x)‖ if and only if v =√
L/2R1/2(x)ω for some ω ∈ R

m satisfying ‖ω‖ < 1. Then along with
Lemma 5.1, uI =

√
L/2(R1/2)+(x)R1/2(x)ω. Since ‖(R1/2)+(x)R1/2(x)‖ ≤

1 for all x ∈ R
n,

‖uI‖ ≤
√

L

2
‖(R1/2)+(x)R1/2(x)‖ ‖ω‖ <

√
L

2
.

The lemma is proved.

Now we want to show that assumption A4 is a sufficient condition for
Assumption A3.

Lemma 5.3. If assumptions A1, A2, and A4 hold, then η(x) and ξ(x)
are continuous in R

n \ {0}.
Proof. Recall that

η(x) = inf
uI∈B(L/2)∩Im(R(x))

[a(x) + bT (x)uI + uT
I R(x)uI ]. (5.1)

We set v = R1/2(x)uI . Then by Lemma 5.1, uI = (R1/2)+(x)v. Hence

a(x) + bT (x)uI + uT
I R(x)uI

= a(x) + bT (x)(R1/2)+(x)v + vT v

=
[
v +

1
2
(R1/2)+(x)b(x)

]T [
v +

1
2
(R1/2)+(x)b(x)

]

+ a(x) − 1
4
bT (x)R+(x)b(x). (5.2)
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On the other hand, by Lemma 5.2,

‖v‖ <

√
L

2
‖R1/2(x)‖.

Therefore,
1. if

1
2
‖(R1/2)+(x)b(x)‖ ≤

√
L

2
‖R1/2(x)‖,

then
η(x) = a(x) − 1

4
bT (x)R+(x)b(x);

2. if
1
2
‖(R1/2)+(x)b(x)‖ >

√
L

2
‖R1/2(x)‖,

then

η(x) =
[
a(x) + bT (x)(R1/2)+(x)v + vT v

]∣∣∣
v=−

√
L
2 R1/2(x)

(R1/2)+(x)b(x)

‖(R1/2)+(x)b(x)‖

= a(x) −
√

L

2
bT (x)(R1/2)+(x)b(x)
‖(R1/2)+(x)b(x)‖ +

L

2
bT (x)(R1/2)+(x)R1/2(x)b(x)

‖(R1/2)+(x)b(x)‖2
.

Summarizing the above, we have

η(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a(x) − 1
4
bT (x)R+(x)b(x)

if
1
2
‖(R1/2)+(x)b(x)‖ ≤

√
L

2
‖R1/2(x)‖,

a(x) −
√

L

2
bT (x)(R1/2)+(x)b(x)
‖(R1/2)+(x)b(x)‖

+
L

2
bT (x)(R1/2)+(x)R1/2(x)b(x)

‖(R1/2)+(x)b(x)‖2

if
1
2
‖(R1/2)+(x)b(x)‖ >

√
L

2
‖R1/2(x)‖.

Hence it is easy to see that if (R1/2)+(x) is continuous in R
n\{0}, then so

is η(x).
Next, we consider ξ(x). Note that

ξ(x) = inf
u∈B(L/2)

[a(x) + bT (x)u + uT R(x)u]. (5.3)

According to the proof of Lemma 4.1, for any u ∈ B(L/2), u = uI + uP ,
where uI ∈ B(L/2) ∩ Im(R(x)), uP ∈ B(L/2) ∩ Im⊥(R(x)). Therefore,

F (x, u) = a(x) + bT (x)u + uT R(x)u

= a(x) + bT (x)uI + uT
I R(x)uI + bT (x)uP .
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Represent b(x) as

b(x) = bI(x) + bP (x),

where bI ∈ Im(R(x)) and bP ∈ Im⊥(R(x)). Let v = R1/2(x)uI . Then
by Lemma 5.1, uI = (R1/2)+(x)v. We set uI = (‖u‖ cos θ) eI and uP =
(‖u‖ sin θ) eP , where θ is the angle between u and uI and ‖eI‖ = ‖ep‖ = 1.
Hence

F (x, u) = a(x) + bT (x)u + uT R(x)u

= a(x) + bT (x)(R1/2)+(x)v + vT v + (bT
I (x) + bT

P (x))uP

=
[
v +

1
2
(R1/2)+(x)b(x)

]T [
v +

1
2
(R1/2)+(x)b(x)

]

+ a(x) − 1
4
bT (x)R+(x)b(x) + bT

P (x)uP

=
∥∥∥∥(‖u‖ cos θ)R1/2(x)eI +

1
2
(R1/2)+(x)b(x)

∥∥∥∥
2

+ (‖u‖ sin θ)bT
P (x)eP + a(x) − 1

4
bT (x)R+(x)b(x). (5.4)

In terms of (5.4), to make F (x, u) minimum with respect to u, we should
have ‖u‖ =

√
L/2. Note that 0 ≤ θ ≤ π/2. Then we have the following

results.
Case 1. If θ = 0 (i.e., uP = 0) or bP (x) = 0, then ξ(x) = η(x).
Case 2. If θ = π/2 (i.e., uI = 0), then ξ(x) = a(x) −√

L/2‖bP (x)‖.
Case 3. If R+(x)b(x) = 0, then R(x)b(x) = R2(x)R+(x)b(x) = 0 and

bT (x)R(x)b(x) = 0. Therefore, b(x) ∈ Im⊥(R(x)). In turn, bT (x)uI = 0.
Note that uIR(x)uI ≥ 0. Then ξ(x) = a(x) −√

L/2‖bP (x)‖.
Case 4. If R+(x)b(x) �= 0, 0 < θ < π/2, and bP (x) �= 0, then to make

F (x, u) minimum with respect to u, we should have

eI = −R+(x)b(x)/‖R+(x)b(x)‖, eP = −bP (x)/‖bP (x)‖.

Hence the minimum of F (x, u) with respect to u is reduced to the minimum
of F̄ (x, θ) with respect to θ, where 0 < θ < π/2 and

F̄ (x, θ) = −
√

L

2
bT (x)R+(x)b(x)
‖R+(x)b(x)‖ cos θ

+
L

2
bT (x)R+(x)b(x)
‖R+(x)b(x)‖2

cos2 θ −
√

L

2
‖bP (x)‖ sin θ + a(x).
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Denote

τ = τ(x) =

√
L

2
bT (x)R+(x)b(x)
‖R+(x)b(x)‖ ,

β = β(x) =
L

2
bT (x)R+(x)b(x)
‖R+(x)b(x)‖2

,

γ = γ(x) =

√
L

2
‖bP (x)‖,

and
z = cos θ, 0 < θ < π/2.

Then

F̃ (x, z) := F̄ (x, θ) = −τ(x)z + β(x)z2 − γ(x)
√

1 − z2 + a(x),

where τ, β, γ > 0 and 0 < z < 1. Hence the minimum of F̄ (x, θ) with
respect to θ is reduced to that of F̃ (x, z) with respect to z. Obviously,

∂F̃

∂z
= −τ + 2βz +

γz√
1 − z2

,

∂2F̃

∂z2
= 2β +

γ

(1 − z2)
√

1 − z2
> 0

for all z ∈ (0, 1). Moreover, note that

lim
z→0+

∂F̃

∂z
= −τ < 0, lim

z→1−

∂F̃

∂z
= +∞.

Therefore, we conclude that there exists a unique z0 ∈ (0, 1) such that

∂F̃

∂z
= 0

and that the minimum of F̃ (x, z) with respect to z is F̃ (x, z0). Solving

∂F̃

∂z
= 0

with respect to z is reduced to solving the equation

4βz4 − 4τβz3 + (τ2 − 4β2 + γ2)z2 + 4τβz − τ2 = 0, (5.5)

which can be solved in the existing formulas. Therefore, ξ(x) = F̃ (x, z0),
where z0 is the real solution of Eq. (5.5) taking values in (0, 1).

Summarizing the above, we have

ξ(x) = min

{
η(x), a(x) −

√
L

2
‖bP (x)‖, F̃ (x, z0)

}
.

Hence if (R1/2)+(x) is continuous in R
n\{0}, then so is η(x).
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We set v = R1/2(x)uI . Note that Im(R1/2(x)) = Im(R(x)) and, there-
fore, according to Lemma 5.1,

uI = (R1/2)+(x)v ∈ Im(R(x)).

Moreover, for each uI ∈ Im(R(x)), we can find v such that

uI = (R1/2)+(x)v.

We denote

S =
{

v ∈ R
m | ‖v‖2 = v2

1 + v2
2 + · · · + v2

m <
L

2
‖R1/2(x)‖2

}
;

then, along with Lemma 5.2, we can rewrite inequality (4.11) as follows:

inf
v∈S

[a1(x) + b̃T (x)v + vT v] < 0 ∀x �= 0, (5.6)

where b̃(x) = (R1/2)+(x)b(x). Thus, the solutions of inequality (5.6) and the
solutions of inequality (4.11) are in a one-to-one correspondence v ↔ uI =
(R1/2)+(x)v. Now obtaining the parametrized formula of v(x) satisfying
inequality (5.6) is similar to the case of R(x) > 0 for all x �= 0, which was
discussed in the previous section. Therefore, we have the following theorem.

Theorem 5.4. Assume that A1, A2, and A4 hold. Then a feasible con-
trol uI with uI(0) = 0 is given by

uI(x) = −1
2

√
L
2 ‖R1/2(x)‖

√
L
2 ‖R1/2(x)‖ +

√
1
4bT (x)R+(x)b(x) − a1(x)

R+(x)b(x) (5.7)

for all x �= 0, which takes values in B(L/2) and is continuous in R
n\{0}.

Moreover, if the LCF V for system (1.1) satisfies the small control property,
then uI(x) is continuous in R

n.

Proof. In terms of inequality (4.11), there exists uI ∈ B(L/2) ∩ Im(R(x))
such that

a1(x) + bT (x)uI + uT
I R(x)uI < 0 ∀x �= 0,

i.e.,
∥∥∥∥R1/2(x)uI +

1
2
(R1/2)+(x)b(x)

∥∥∥∥ <

√
1
4
bT (x)R+(x)b(x) − a1(x)

for all x �= 0. Note that
∥∥∥∥R1/2(x)uI +

1
2
(R1/2)+(x)b(x)

∥∥∥∥ ≥ 1
2
‖(R1/2)+(x)b(x)‖ − ‖R1/2(x)uI‖

and

‖R1/2(x)uI‖ ≤ ‖R1/2(x)‖ ‖uI‖ <

√
L

2
‖R1/2(x)‖.
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Then

1
2
‖(R1/2)+(x)b(x)‖

<

√
L

2
‖R1/2(x)‖ +

√
1
4
bT (x)R+(x)b(x) − a1(x) (5.8)

for all x �= 0. On the other hand, since assumptions A1 and A2 hold, by the
previous arguments, inequality (5.6) holds. Hence there exists v ∈ S such
that

a1(x) + b̃T (x)v + vT v < 0 ∀x �= 0.

By Lemma 3.1, solving the above inequality, we have

v = −1
2
b̃(x) + ν(x)

√
1
4
b̃T (x)b̃(x) − a1(x)

= −1
2
(R1/2)+(x)b(x) + ν(x)

√
1
4
bT (x)R+(x)b(x) − a1(x), (5.9)

‖ν(x)‖ < 1 for all x �= 0.
To assure that v ∈ S, we choose

ν(x) =
1
2 (R1/2)+(x)b(x)

√
L
2 ‖R1/2(x)‖ +

√
1
4bT (x)R+(x)b(x) − a1(x)

(5.10)

for all x �= 0. From (5.8), we can see that ν(x) of the form (5.10) satisfies
‖ν(x)‖ < 1, for all x �= 0. Substituting (5.10) into (5.9), we have

v = −1
2

√
L
2 ‖R1/2(x)‖

√
L
2 ‖R1/2(x)‖ +

√
1
4bT (x)R+(x)b(x) − a1(x)

(R1/2)+(x)b(x)

(5.11)
for all x �= 0. Since (5.8) holds, it is easy to verify that v of the form (5.11)
satisfies ‖v‖ <

√
L/2‖R1/2(x)‖ for all x �= 0. Then uI = (R1/2)+(x)v yields

(5.7). According to Lemma 5.2, ‖uI‖ <
√

L/2 for all x �= 0. This completes
the proof.

Next, we deduce uP from inequality (4.12). We will also relax the re-
striction on uP .

Lemma 5.5. Let A be a symmetric (n × n)-matrix. Define

PA := In − A+A.

Then
PA : R

n → R
n, x �→ PAx,

satisfies the following conditions:
1. Im(PA) = I⊥m(A);
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2. PA

∣∣
Im⊥(A)

= identity.

Proof. 1. We show only that Im(PA) ⊂ Im⊥(A). The “equality” follows
from the following proof of the second statement.

Let x ∈ R
n, we have only to show that (PAx)T A = 0. Since A is

symmetric,

(PAx)T A = xT (I − AA+)A = xT [A − AA+A] = 0.

2. Suppose that rank(A) = s. Then there exists an orthogonal (n × n)-
matrix P such that

PAPT = diag(λ1, . . . , λs, 0, . . . , 0),

where λi, i = 1, . . . , s, are nonzero eigenvalues of A.
For any i ∈ {1, . . . , s}, denote by ξi the eigenvector of A corresponding to

λi. Hence for any y ∈ Im(A), we have y ∈ Span{ξ1, . . . , ξs}. Note that Pξi,
i = 1, . . . , s, are eigenvectors of PAPT with respect to λi and, therefore,
Pξi = kiδi, where δi is the ith column of In, ki �= 0, i = 1, . . . , s. Since
Py ∈ Span{Pξ1, . . . , P ξs},

Py = [y1, . . . , ys, 0, . . . , 0]T .

For any x ∈ Im⊥(A), note that

(Px)T Py = xT PT Py = xT y = 0 ∀y ∈ Im(A),

and, therefore,
Px = [0, . . . , 0, xs+1, . . . , xn]T .

On the other hand, if

Px = [0, . . . , 0, xs+1, . . . , xn]T ∀x ∈ R
n,

then
xT y = xT PT Py = (Px)T Py = 0 ∀y ∈ Im(A),

i.e., x ∈ Im⊥(A).
Summarizing the above, we conclude that

x ∈ Im⊥(A) ⇔ Px = [0, . . . , 0, xs+1, . . . , xn]T .

Since

P [In − A+A]PT =
[
0

In−s

]
,

a straightforward computation shows

P [In − A+A]PT (Px) = P [In − A+A]x = Px.

Hence [In − A+A]x = x.
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Lemma 5.6. Assume that A1 and A2 hold. Then

inf
uP ∈B(L/2)∩Im⊥(R(x))

[a2(x) + bT (x)uP ] = inf
v∈B(L/2)

[a2(x) + b̄T (x)v],

where b̄(x) = (I − R+(x)R(x))b(x).

Proof. From item 2 of Lemma 5.5, for any uP ∈ Im⊥(R(x)),

uP = (I − R+(x)R(x))uP .

Note that

(I − R+(x)R(x))T = (I − R+(x)R(x)).

Then

inf
uP ∈B(L/2)∩Im⊥(R(x))

[a2(x) + bT (x)uP ]

= inf
uP ∈B(L/2)∩Im⊥(R(x))

[a2(x) + b̄T (x)uP ]

≥ inf
v∈B(L/2)

[a2(x) + b̄T (x)v].

On the other hand, by item 1 of Lemma 5.5, for any v ∈ B(L/2) ⊂ R
m, we

have

(I − R+(x)R(x))v ∈ Im⊥(R(x)).

Let

uP = (I − R+(x)R(x))v.

Note that

‖I − R+(x)R(x)‖ ≤ 1

for all x ∈ R
n; then v ∈ B(L/2) implies uP ∈ B(L/2). Therefore,

inf
v∈B(L/2)

[a2(x) + b̄T (x)v]

= inf
v∈B(L/2)

[a2(x) + bT (x)(I − R+(x)R(x))v]

≥ inf
uP ∈B(L/2)∩Im⊥(R(x))

[a2(x) + bT (x)uP ].

Summarizing the above arguments, we obtain the conclusion.

In terms of Lemma 5.6, inequality (4.12) is equivalent to

inf
v∈B(L/2)

[a2(x) + b̄T (x)v] < 0 ∀x �= 0. (5.12)
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From now on, we use inequality (5.12) instead of (4.12). Denote

K(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−
√

L

2

a2(x) +

√
a2
2(x) +

∥∥∥
√

L
2 b̄(x)

∥∥∥
4

∥∥∥
√

L
2 b̄(x)

∥∥∥
2
(

1 +

√
1 +

∥∥∥
√

L
2 b̄(x)

∥∥∥
2
) b̄(x) if b̄(x) �= 0,

0 if b̄(x) = 0.

Then Proposition 2.3 yields the following result.

Theorem 5.7. If A1, A2, and A4 hold, then a feasible control uP =
uP (x) such that uP (0) = 0 is given by

uP (x) = (I − R+(x)R(x))K(x), (5.13)

which takes values in B(L/2) and is continuous in R
n\{0}. Moreover, if

the LCF V satisfies the small control property, then uP (x) is continuous
in R

n.

6. Some illustrative examples

In this section, we give some examples. The first two examples demon-
strate the bounded continuous stabilizing control design technique obtained
in the previous sections. The latter example shows that assumption A4 is
only a sufficient condition of the existence of the continuous stabilizer, and
not a necessary condition.

Example 6.1. Consider the system
⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 =
x3

1x
2
2

(1 + x2
1 + x2

2)2
+

2x3
1 + x1x

2
2

1 + x2
1 + x2

2

u1 + x2
2u2 + x1u

2
1 + x1u

2
2,

ẋ2 = − x5
2

(1 + x2
1 + x2

2)2
+

x2
1x2

1 + x2
1 + x2

2

u1 + x1x2u2 + x2u
2
1 + x2u

2
2,

(6.1)

where x = [x1 x2]T ∈ R
2 is the state and

u = [u1 u2]T ∈ B(2) = {u ∈ R
2 | ‖u‖ = u2

1 + u2
2 < 2}

is the control input.
Take V = 1

2 (x2
1 + x2

2). Then

V̇
∣∣
(6.1)

=
x4

1x
2
2 − x6

2

(1 + x2
1 + x2

2)2
+

2(x4
1 + x2

1x
2
2)

1 + x2
1 + x2

2

u1

+ 2x1x
2
2u2 + (x2

1 + x2
2)u

2
1 + (x2

1 + x2
2)u

2
2.
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Using the notation of the previous sections, we have

a(x) =
x4

1x
2
2 − x6

2

(1 + x2
1 + x2

2)2
, b(x) =

⎡

⎣
2(x4

1 + x2
1x

2
2)

1 + x2
1 + x2

2
2x1x

2
2

⎤

⎦ ,

R(x) =
[
x2

1 + x2
2 0

0 x2
1 + x2

2

]
.

Obviously, R(x) > 0 for all x �= 0. We set

u1 = −x2
1/(1 + x2

1 + x2
2), u2 = 0.

Then

V̇ |(6.1) = − x6
1 + x6

2

(1 + x2
1 + x2

2)2
< 0 ∀x �= 0.

Moreover, note that ‖u‖2 = u2
1 + u2

2 < 1 and, therefore, V is a Lyapunov
control function for system (6.1). It is easy to see that u = [u1 u2]T is
continuous in R

2 and u(0) = 0 and, therefore, the LCF V satisfies the
small control property. Therefore, according to Theorem 3.2, system (6.1)
is globally asymptotically stabilized by the state feedback control u0 = u0(x)
with u0(0) = 0, where

u0(x) = −1
2

√
2(x2

1 + x2
2)

√
2(x2

1 + x2
2) +

√
x4

1

1 + x2
1 + x2

2

+
x2

1x
4
2

x2
1 + x2

2

− x4
1x

2
2 − x6

2

(1 + x2
1 + x2

2)2

·

⎡

⎢⎢⎣

2x2
1

1 + x2
1 + x2

2
2x1x

2
2

x2
1 + x2

2

⎤

⎥⎥⎦ ∀x �= 0,

which takes values in B(L) and is continuous in R
2.

Example 6.2. Consider the following system similar to system (6.1):
⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 =
x3

1x
2
2

(1 + x2
1 + x2

2)2
+

2x3
1 + x1x

2
2

1 + x2
1 + x2

2

u1 + x2
2u2 + x1u

2
1,

ẋ2 = − x5
2

(1 + x2
1 + x2

2)2
+

x2
1x2

1 + x2
1 + x2

2

u1 + x1x2u2 + x2u
2
1,

(6.2)

where x = [x1 x2]T ∈ R
2 is the state and

u = [u1 u2]T ∈ B(2) = {u ∈ R
2 | ‖u‖ = u2

1 + u2
2 < 2}

is the control input.
We take V = 1

2 (x2
1 + x2

2). Then

V̇ |(6.2) =
x4

1x
2
2 − x6

2

(1 + x2
1 + x2

2)2
+

2(x4
1 + x2

1x
2
2)

1 + x2
1 + x2

2

u1 + 2x1x
2
2u2 + (x2

1 + x2
2)u

2
1.
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Therefore,

a(x) =
x4

1x
2
2 − x6

2

(1 + x2
1 + x2

2)2
, b(x) =

⎡

⎣
2(x4

1 + x2
1x

2
2)

1 + x2
1 + x2

2
2x1x

2
2

⎤

⎦ ,

R(x) =
[
x2

1 + x2
2 0

0 0

]
.

Obviously, R(x) ≥ 0, i.e., assumption A2 holds. As in Example 6.1, we can
prove that V satisfies inequality (4.1), i.e., assumption A1 and the small
control property hold. Clearly,

R+(x) =

⎡

⎣
1

x2
1 + x2

2

0

0 0

⎤

⎦ , (R1/2)+(x) =

⎡

⎣
1√

x2
1 + x2

2

0

0 0

⎤

⎦ ∀x �= 0.

Hence (R1/2)+(x) is continuous in R
2\{0}, i.e., assumption A4 holds.

A straightforward computation shows that

1
2
‖(R1/2)+(x)b(x)‖ =

x2
1

√
x2

1 + x2
2

1 + x2
1 + x2

2

.

Note that
‖R1/2(x)‖ =

√
x2

1 + x2
2

and, therefore,
1
2
‖(R1/2)+(x)b(x)‖ ≤ ‖R1/2(x)‖.

Then we have

η(x) = a(x) − 1
4
bT (x)R+(x)b(x) = − x6

1 + x6
2

(1 + x2
1 + x2

2)2
.

It is easy to see that

bP (x) =
[
0 2x1x

2
2

]T
, a(x) − ‖bP (x)‖ =

x4
1x

2
2 − x6

2

(1 + x2
1 + x2

2)2
− 2|x1|x2

2.

If x1 �= 0, then

τ = τ(x) =
2x2

1(x
2
1 + x2

2)
1 + x2

1 + x2
2

, β = β(x) = x2
1 + x2

2, γ = γ(x) = 2|x1|x2
2.

(6.3)
Hence

ξ(x) = min
{
− x6

1 + x6
2

(1 + x2
1 + x2

2)2
,

x4
1x

2
2 − x6

2

(1 + x2
1 + x2

2)2
− 2|x1|x2

2, F̃ (x, z0)
}

,

where z0 is a unique real solution of Eq. (5.5) satisfying z0 ∈ (0, 1), where
τ , β, and γ are from (6.3). In turn,

a1(x) =
x4

1(x
2
1 + x2

2)
(1 + x2

1 + x2
2)2

− μ(x)ξα(x),
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a2(x) = − x6
1 + x6

2

(1 + x2
1 + x2

2)2
− μ(x)ξα(x).

According to Theorems 5.4 and 5.7, we have uI = uI(x) and uP = uP (x),
respectively, as follows:

uI(x) =

⎧
⎪⎨

⎪⎩
− 1

2

√
x2

1 + x2
2√

x2
1 + x2

2 +
√

μ(x)ξα(x)

[
2x2

1

1 + x2
1 + x2

2

0
]T

if x �= 0,

0 if x = 0

and

uP (x) =

⎧
⎪⎨

⎪⎩
− a2(x) +

√
a2
2(x) + 16x4

1x
8
2

4x2
1x

4
2(1 +

√
1 + 4x2

1x
4
2)

[
0 2x1x

2
2

]T if x1x2 �= 0,

0 if x1x2 = 0.

Therefore, system (6.2) is globally asymptotically stabilized by the
bounded continuous state feedback control u = uI(x) + uP (x), where uI(x)
and uP (x) are as above.

Example 6.3. Consider the following system:
⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 =
x1x

4
2

(1 + x2
1)2

+
2x3

1

1 + x2
1

u1 + x1u
2
1 + x2u

2
2,

ẋ2 = − x5
2

(1 + x2
1)2

+
x3

2

1 + x2
1

u1 + (x2 − x1)u2
2,

(6.4)

where x = [x1 x2]T ∈ R
2 is the state and

u = [u1 u2]T ∈ B(1) = {u ∈ R
2 | ‖u‖ = u2

1 + u2
2 < 1}

is the control input.
By the state feedback control law,

u1 = − x2
1

1 + x2
1

, u2 = 0, (6.5)

the closed-loop system of system (6.4) is

ẋ1 = −x1x
4
2 − x5

1

(1 + x2
1)2

, ẋ2 = −x2
1x

3
2 + x5

2

(1 + x2
1)2

. (6.6)

We take V = 1
2 (x2

1 + x2
2). Then a straightforward computation shows that

V̇ |(6.6) = −x6
1 + x6

2

1 + x2
1

< 0 ∀x �= 0.

Hence (6.5) is a bounded continuous stabilizer of system (6.4) and V =
1
2 (x2

1 + x2
2) is a Lyapunov control function of system (6.4) satisfying the

small control property. In the previous notation, it is easy to see that R(x) =
diag(x2

1, x2
2) ≥ 0 for all x ∈ R

2. Therefore, (R1/2)+(x) is not continuous
in R

2\{0}, i.e., assumption A4 does not hold. Therefore, assumption A4 is
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only a sufficient condition of the existence of the continuous stabilizer, and
not a necessary condition.

7. Conclusion

This paper considered the stabilization of quadratic-input nonlinear sys-
tems with bounded controls. According to the type of quadratic-input
forms, both positive definite and positive semi-definite cases are considered.
For the case of positive definiteness, we gave a universal formula for the
bounded continuous stabilizers of quadratic-input nonlinear systems with
bounded controls via a known Lyapunov control function. For the case of
positive semi-definiteness, a constructive parametrization of bounded con-
tinuous stabilizers was presented under the assumption that there exists a
known Lyapunov control function with respect to the set B(L/2) rather
than B(L). This is our basic assumption. In our approach, the factor 1/2
is maximum in B(L/2) in inequality (4.1) and the definition of ξ(x), and
cannot be relaxed to, say, ρ < 1. In fact, if B(L/2) is replaced by B(ρL)
with ρ < 1, then uI ∈ B(ρL) ∩ Im(R(x)) and uP ∈ B(ρL) ∩ Im⊥(R(x)).
In turn, u = uI + uP ∈ B(2ρL). To assure that this u is in the admissible
control set, B(L), ρ should satisfy ρ ≤ 1/2. Moreover, some illustrative
examples were included.
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