
J Control Theory Appl 2008 6 (1) 123–133

DOI 10.1007/s11768-008-7190-z

Logic and logic-based control

Hongsheng QI, Daizhan CHENG,

(Institute of Systems Science, Chinese Academy of Sciences, Beijing 100080, China)

Abstract: This paper gives a matrix expression of logic. Under the matrix expression a general description of the

logical operators is proposed. Using the semi-tensor product of matrices, the proofs of logical equivalences, implications,

etc., can be simplified a lot. Certain general properties are revealed. Then, based on matrix expression, the logical operators

are extended to multi-valued logic, which provides a foundation for fuzzy logical inference. Finally, we propose a new type

of logic, called mix-valued logic, and a new design technique, called logic-based fuzzy control. They provide a numerically

computable framework for the application of fuzzy logic for the control of fuzzy systems.

Keywords: Semi-tensor product; Matrix expression of logic; Mix-valued logic; Logic-based fuzzy control

1 Introduction
Mathematical logic [1] is the foundation for designing

logic-based intelligent systems [2] and fuzzy control [3∼5].

However, unlike standard logic, the multi-valued logic does

not have an axiomatic foundation yet. Moreover, there ex-

ists a gap between fuzzy logic and fuzzy control.

Recently, a new matrix product, called semi-tensor prod-

uct (STP) and denoted by � has been proposed and ap-

plied to several control and related problems [6∼8]. We re-

fer to [6] for the basic concepts and properties of STP.

Under the matrix expression with semi-tensor product the

properties of logical operators can be revealed or proved

easily by matrix computation without any special knowl-

edge on logic.

Moreover, this expression can easily be extended to

multi-valued logic. Using some examples, we show that un-

der matrix expression, the fuzzy logical inference can be

converted to some matrix calculations.

Then, a new type of logic, called mix-valued logic, is

introduced. It can be considered as a sub-Morgan algebra

of the fuzzy algebra. Therefore, all the properties of fuzzy

logic are true for mix-valued logic. With this, a new tech-

nique, called logic-based fuzzy control, is proposed. Com-

pared with the existing method, it is more convenient and

more widely applicable.

In brief, the purpose of this paper is to provide a new

mathematical foundation for logic, multi-valued logic, and

mix-valued logic via a matrix form of logic and semi-tensor

product of matrices. They are useful for logic-based fuzzy

inference and fuzzy control.

The rest of the paper is organized as follows: Section 2

gives a matrix expression for logical operators. The struc-

ture matrix and its properties of logic are investigated in

Section 3. In Section 4, the basic properties of logic are

re-visited and proved via their matrix expressions. Section

5 presents a canonical matrix form for all logical expres-

sions. In Section 6, most results in previous sections are ex-

tended to multi-valued logic. Section 7 proposes a new type

of logic, called mix-valued logic, which is a sub-Morgan al-

gebra of fuzzy logic. Finally, in Section 8, logic-based fuzzy

control is proposed and investigated via mix-valued logic. It

is not only easy in computation but also more widely appli-

cable. Section 9 is the conclusion.

2 Matrix expression of logical operators
Definition 1 1) A classical/logical domain, denoted by

D�, is defined as

D� = {T = 1, F = 0} ; (1)

2) A classical/logical variable, P , is a variable taking

values in D�, i.e., P ∈ D�;

3) A fuzzy logical domain, denoted by Df , is defined as

Df = {μ | 0 � μ � 1} ; (2)

4) A fuzzy logical variable, P , is a variable taking values

in Df , i.e., P ∈ Df .

5) A k-valued logical domain, denoted by Dk, is defined

as

Dk =
{

i

k − 1

∣∣∣∣ i = 0, 1, · · · , k − 1
}

; (3)

6) A k-valued logical variable, P , is a variable taking

values in Dk, i.e., P ∈ Dk.

It is obvious that a classical/logical variable is a k-valued

logical variable with k = 2; and a k-valued logical variable

is also a fuzzy logical variable.

Received 14 September 2007.

This work was partly supported by the National Natural Science Foundation of China (No.60274010, 60343001, 60221301, 60334040).



124 H. QI et al. / J Control Theory Appl 2008 6 (1) 123–133

We reserve T0 ≡ T ≡ 1 and F0 ≡ F ≡ 0 as constant

variables for “True” and “False” respectively.

Definition 2 1) An r-ary logical operator is a mapping

σ : Df × Df × · · · × Df︸ ︷︷ ︸
r

→ Df .

2) An r-ary k-valued logical operator is a mapping

σ : Dk × Dk × · · · × Dk︸ ︷︷ ︸
r

→ Dk. Here, k = 2 is allowed.

In the rest of this section we consider the classical logic

only. To use matrix expression we identify logical values as

T := 1 ≡
[

1

0

]
, F := 0 ≡

[
0

1

]
. (4)

Definition 3 A 2× 2r matrix Mσ is called the structure

matrix of an r-ary logical operator σ if

σ(P1, · · · , Pr)=Mσ�P1�· · ·�Pr :=MσP1 · · ·Pr. (5)

Note that all the matrix products throughout this paper

are STP and we omit the symbol � hereafter (as in the last

term of (5)).

First, we consider how to construct the structure matrix

for an operator. Consider the four fundamental binary oper-

ators [9]: Disjunction, P ∨ Q; Conjunction, P ∧ Q; Impli-

cation, P → Q; Equivalence, P ↔ Q.

Their truth tables are as in Table 2 [9].

Table 1 Truth tables.

P Q P ∨ Q P ∧ Q P → Q P ↔ Q

1 1 1 1 1 1

1 0 1 0 0 0

0 1 1 0 1 0

0 0 0 0 1 1

According to the truth tables, we can produce the struc-

ture matrix easily. Taking “∨” (disjunction) as an example,

Its values in the truth table are (1, 1, 1, 0)T. Then we define

a matrix as

Md =

[
1 1 1 0

0 0 0 1

]
.

In general, if the truth table of an r-ary operator σ is

(s1, s2, · · · , s2r )T, then its structure matrix is:

Mσ =

[
s1 s2 · · · s2r

1 − s1 1 − s2 · · · 1 − s2r

]
. (6)

The following result is fundamental, which is a conse-

quence of the structure of truth tables and the associativity

of the semi-tensor product of matrices.

Theorem 1 The Mσ defined in (6) is the structure ma-

trix of σ. That is, for this Mσ the equation (5) holds.

Proof Split Mσ into two 2 × 2r−1 blocks as Mσ =
(M1

σ , M2
σ). Then the right hand side of (5) becomes[

M1
σ M2

σ

]
P1P2 · · ·Pr =

([
M1

σ M2
σ

]
P1

)
P2 · · ·Pr. (7)

Now if P1 = (1, 0)T, (7) becomes M1
σP2 · · ·Pr, which

corresponds to the block where the first variable P1 = 1.

When P1 = (0, 1)T, (7) becomes M2
σP2 · · ·Pr, which cor-

responds to the block where the first variable P1 = 0. Con-

tinuing this procedure of deduction, finally, it will get the

precise value in the truth table for corresponding values of

variables.

Using Theorem 1, the structure matrices of four funda-

mental binary operators are as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M∨ := Md =

[
1 1 1 0

0 0 0 1

]
,

M∧ := Mc =

[
1 0 0 0

0 1 1 1

]
,

M→ := Mi =

[
1 0 1 1

0 1 0 0

]
,

M↔ := Me =

[
1 0 0 1

0 1 1 0

]
.

(8)

In the following, we would like to answer the question:

How many logical operators in general do we have?

Theorem 2 1) A logical operator σ has a unique struc-

ture matrix. 2) A 2 × 2r matrix is a structure matrix of a

logical operator, iff all its columns are elements in D�.

Proof 1) By the construction, it is obvious because the

truth table for any σ is unique.

2) Let ξs be the s-th column of the 2× 2r matrix M . Ex-

press s − 1 into binary form as s1s2 · · · sr. (Note that since

s − 1 � 22r − 1, the length, l, of s − 1 in binary form is

less than or equal to 2r. If l < 2r, add 2r − l zeros ahead

of it to form a binary number of length 2r, e.g., say r = 2
and s = 6, then s − 1 = 101, and set s1s2s3s4 = 0101). If

si = 0 choose Pi = (1, 0)T; if si = 1, choose Pi = (0, 1)T.

(For our example of r = 2 and s = 6, P1 = (1, 0)T,

P2 = (0, 1)T, P3 = (1, 0)T, and P4 = (0, 1)T). Then it

is easy to check that

MσP1P2 · · ·Pk = ξs.

Hence, ξs ∈ D�.

Conversely, assume all the columns of M are in D�, and

denote the first row of M by M1. Set the truth table of σ be

MT
1 , then according to the proof of Theorem 1, it is obvious

that M = Mσ .

3 General structure of logical operators
Theorem 2 provides a general picture for the set of log-

ical operators. In fact, we know now there are 2r different

variable cases, and corresponding to each variable case we

have 2 possible values to be assigned to an operator. Hence,

there are totally 22r

different r-ary logical operators. (There



H. QI et al. / J Control Theory Appl 2008 6 (1) 123–133 125

are kkr

for r-ary k-valued logic operators).

In this section, we consider them case by case for r = 1
and r = 2.

First, consider r = 1. In general, we can have four oper-

ators:

Table 2 Unary logical operators.

P σ1
0 σ1

1 σ1
2 σ1

3

F0 ¬ ≡ T0

1 0 0 1 1

0 0 1 0 1

The structure matrices of these unary logical operators

are as follows,

MF0 =

[
0 0

1 1

]
, Mn =

[
0 1

1 0

]
;

Mid =

[
1 0

0 1

]
, MT0 =

[
1 1

0 0

]
.

Only “¬” is commonly used. However, for completeness

and convenience in later use, the other three are also pre-

sented here.

Next, we consider binary operators: We summarize them

in Table 3.

Table 3 Truth tables for binary operators.

P Q σ2
0 σ2

1 σ2
2 σ2

3 σ2
4 σ2

5 σ2
6 σ2

7

F0 ↓ −∗ ¬1 − ¬2 � ↑
1 1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 1 1 1 1

0 1 0 0 1 1 0 0 1 1

0 0 0 1 0 1 0 1 0 1

P Q σ2
8 σ2

9 σ2
10 σ2

11 σ2
12 σ2

13 σ2
14 σ2

15

∧ ↔ Q → P →∗ ∨ T0

1 1 1 1 1 1 1 1 1 1

1 0 0 0 0 0 1 1 1 1

0 1 0 0 1 1 0 0 1 1

0 0 0 1 0 1 0 1 0 1

In addition to using some meaningful symbols for the op-

erators, we also propose a notation as σi
j . It is very conve-

nient in use. Here the superscript i indicates the degree of

the operator and the subscript j, when converted to the bi-

nary form, is the truth table of the operator. Using this, the

structure matrix of σi
j can be obtained immediately.

Example 1 Consider ¬2, its alterative notation is σ2
5 .

Now 5 = 101 = 0101, so

M¬2 =

[
0 1 0 1

1 0 1 0

]
.

4 Some properties of basic logical operators
According to the structure of the truth tables of the basic

logical operators, we have the following negation property.

Proposition 1 Given an r-ary logical operator, σr
a, its

negation operator is σr
22r−a−1

. That is,

¬σr
a(P, Q) = σr

22r−a−1(P, Q). (9)

Proof Since 22r −1 = 1 1 · · · 1︸ ︷︷ ︸
2r

. Express a into binary

form as (by possibly adding zeros ahead of the number) 2r

digital binary number as:

a = a1a2 · · · a2r .

Then, (a1, a2, · · · , a2r )T is the truth table of σr
a. Now in

binary form

22r − 1 − a = (1 − a1)(1 − a2) · · · (1 − ar),

which is the binary form of 22r − a− 1. In other words, the

truth table of σr
22r−a−1

is (1−a1, 1−a2, · · · , 1−ar)T. (9)

follows immediately.

Definition 4 Two logical expressions are said to be (ab-

solute) logically equivalent, if they have the same logical

value for all possible values of the variables in D� (Df ).

Proposition 2 Assume two logical expressions contain

same number of logical variables and each variable appears

to each expression only once. Then they are absolute logi-

cally equivalent, iff they are logical equivalent.

Proof Under the matrix expression one sees that a log-

ical expression is a linear mapping about each individual

variable as long as this variable appears in the expression

only once. Now the conditions assure that both expressions

are multi-linear about all its variables. If their matrix expres-

sions are equal for Pi = (1, 0)T and Pi = (0, 1)T, a linear

combination shows that they are equal for Pi = (μ, 1−μ)T,

0 � μ � 1.

Proposition 3 The following are absolute logical

equivalence:

1) ¬¬P ⇔ P ;

2) (P ∧ Q) ∧ R ⇔ P ∧ (Q ∧ R);
3) (P ∨ Q) ∨ R ⇔ P ∨ (Q ∨ R);
4) ¬(P ∧ Q) = ¬P ∨ ¬Q;

5) ¬(P ∨ Q) ⇔ ¬P ∧ ¬Q;

6) P → Q ⇔ ¬P ∨ Q;

7) ¬(P → Q) ⇔ P ∧ ¬Q;

8) P → Q ⇔ ¬Q → ¬P ;

9) P → (Q → R) ⇔ (P ∧ Q) → R;

10) ¬(P ↔ Q) ⇔ P ↔ ¬Q;

Proof We prove (8) only, and by Proposition 2, we have

only to prove it is logically equivalent.

RHS = MiMnQMnP = MiMn(I2 ⊗ Mn)QP

= MiMn(I2 ⊗ Mn)W[2]PQ.



126 H. QI et al. / J Control Theory Appl 2008 6 (1) 123–133

Since

MiMn(I2 ⊗ Mn)W[2]

=

[
1 0 1 1

0 1 0 0

][
0 1

1 0

] ⎡
⎢⎢⎢⎢⎣

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦

=

[
1 0 1 1

0 1 0 0

]
= Mi,

(8) follows.

Definition 5 An r-ary operator is said to be symmetric

if

MσP1P2 · · ·Pk = MσPλ(1)Pλ(2) · · ·Pλ(k), ∀λ ∈ Sk, (10)

where Sk is the k-th order permutation group.

Proposition 4 A binary basic operator is symmetric, iff

in its truth table (s1, s2, s3, s4)T

s2 = s3.

Proof Note that the structure matrix of this operator, σ,

is

Mσ =

[
s1 s2 s3 s4

1 − s1 1 − s2 1 − s3 1 − s4

]
,

σ(P, Q) = MσPQ = MσW[2]QP

=

[
s1 s3 s2 s4

1 − s1 1 − s3 1 − s2 1 − s4

]
QP

= MσQP = σ(Q, P ).

Example 2 Consider the binary operators in Table 3. A

straightforward computation shows that among them F0, ↓,

�, ↑, ∧, ↔, ∨, and T0 are symmetric.

Proposition 5 The following are logical equivalence:

1) P ∨ P ⇔ P ;

2) P ∧ P ⇔ P ;

3) R ∨ (P ∧ ¬P ) ⇔ R;

4) R ∧ (P ∨ ¬P ) ⇔ R;

5) P ∧ (Q ∨ R) ⇔ (P ∧ Q) ∨ (P ∧ R);
6) P ∨ (Q ∧ R) ⇔ (P ∨ Q) ∧ (P ∨ R);
7) P ↔ Q ⇔ (P → Q) ∧ (Q → P );
8) P ↔ Q ⇔ (P ∧ Q) ∨ (¬P ∧ ¬Q).
Proof We prove (3) only. Let R = (δ, 1 − δ)T and

P = (μ, 1 − μ)T. Then

LHS = M∨RM∧PM¬P

=

[
1 1 1 0

0 0 0 1

][
δ

1 − δ

][
1 0 0 0

0 1 1 1

][
μ

1 − μ

]

·
[

0 1

1 0

][
μ

1 − μ

]

=

[
δ + (1 − δ)μ(1 − μ)

(1 − δ)[μ2 + μ(1 − μ) + (1 − μ)2)]

]
.

As long as μ ∈ {0, 1} we have LHS = (δ, 1 − δ)T = R.

Proposition 6 The following logical implications are

true.

1) P ∧ Q ⇒ P ;

2) P ∧ Q ⇒ Q;

3) P ⇒ P ∨ Q;

4) Q ⇒ P ∨ Q;

5) ¬P ⇒ P → Q;

6) Q ⇒ P → Q;

7) ¬(P → Q) ⇒ P ;

8) ¬(P → Q) ⇒ ¬Q;

9) ¬P ∧ (P ∨ Q) ⇒ Q;

10) P ∧ (P → Q) ⇒ Q;

11) ¬Q ∧ (P → Q) ⇒ ¬P ;

12) (P → Q) ∧ (Q → R) ⇒ P → R;

13) (P ∨ Q) ∧ (P → R) ∧ (Q → R) ⇒ R.

Proof We prove (13) only. Assume the right hand side

is false, i.e., R = (0, 1)T, we check the left hand side:

(P ∨ Q) ∧ (P → R) ∧ (Q → R)
= M∧M∨PQM∧M→PRM→QR

=

[
1 0 0 0

0 1 1 1

][
1 1 1 0

0 0 0 1

][
p

1 − p

][
q

1 − q

][
1 0 0 0

0 1 1 1

]

�

[
1 0 1 1

0 1 0 0

][
p

1 − p

][
0

1

][
1 0 1 1

0 1 0 0

][
q

1 − q

][
0

1

]

=

[
(p + q − pq)(1 − p)(1 − q)

p2q2 − 2p2q − 2pq2 + p2 + q2 + 3pq − p − q + 1

]
.

We have four cases to check

1) p = 0, q = 0,

2) p = 0, q = 1,

3) p = 1, q = 0,

4) p = 1, q = 1.

In each case, the last matrix is (0, 1)T.

Finally, we consider some equivalences to EOR, NAND,

and NOR. Using the matrix expression, the proofs of the

following are similar.

Proposition 7 The following are logically equivalent.

1) P � Q ⇔ Q � P ;

2) (P � Q) � R ⇔ P � (Q � R);
3) P ∧ (Q � R) ⇔ (P ∧ Q) � (P ∧ R);
4) P � Q ⇔ (P ∧ ¬Q) ∨ (¬P ∧ Q);
5) P � Q ⇔ ¬(P ↔ Q);
6) P ↑ Q ⇔ Q ↑ P ;

7) P ↓ Q ⇔ Q ↓ P ;

8) P ↑ (Q ↑ R) ⇔ ¬P ∨ (Q ∧ R);
9) (P ↑ Q) ↑ R ⇔ (P ∧ Q) ∨ ¬R;

10) P ↓ (Q ↓ R) ⇔ ¬P ∧ (Q ∨ R);



H. QI et al. / J Control Theory Appl 2008 6 (1) 123–133 127

11) (P ↓ Q) ↓ R ⇔ (P ∨ Q) ∧ ¬R.

5 Canonical logical expression
This section considers the statement deduction.

Lemma 1 A logical statement with r variables

σ(A1, · · · , Ar) can always be expressed as

σ(A1, · · · , Ak) = MσAp1
1 Ap2

2 · · ·Apr
r , (11)

where Mσ is a 2 × 2p1+···+pr structure matrix.

Proof Using the matrix expression of each operator, a

logical expression can always be expressed as

σ(A1, · · · , Ak) = Mi1Ai1 · · ·MisAis , (12)

where

Aij ∈ {A1, A2, · · · , Ak}.
Since the STP of matrices is associative, (12) can be trans-

formed as

σ(A1, · · · , Ak) = MAi1 · · ·Ais
. (13)

We can prove the following fact: Let Ai ∈ R
n, i = 1, · · · , s.

Define

P = In ⊗ · · · ⊗ In︸ ︷︷ ︸
i−1

⊗W[n] ⊗ In ⊗ · · · ⊗ In︸ ︷︷ ︸
s−i−1

,

then

PA1 · · ·AiAi+1 · · ·As = A1 · · ·Ai+1Ai · · ·As. (14)

Note that P−1 = P . Using it and (14), (13) can be easily

converted into (11).

Lemma 2 Given a matrix expression of a logic state-

ment as MA2, where M is a p × 4q matrix. Spliting M as

M =
[
M1 M2 M3 M4

]
with Mi as a p×q matrices, then

MA2 =
[
M1 M4

]
A. (15)

Proof Using the property of semi-tensor product of ma-

trices, it is easy to verify that (15) holds for both A =
(1, 0)T and A = (0, 1)T.

Motivated by Lemma 2, we define a matrix, called the

power-reducing matrix, as

Mr =

⎡
⎢⎢⎢⎢⎣

1 0

0 0

0 0

0 1

⎤
⎥⎥⎥⎥⎦ . (16)

Its name is from the following property, which is an imme-

diate consequence of Lemma 2.

Lemma 3 Let A be a logical variable. Then for any

p × 4q matrix Ψ

ΨA2 = ΨMrA. (17)

In a logical expression, a logical variable is constant if

its value is assigned in advance, and it is called a free vari-

able if its value can be arbitrary. Using this concept and the

above Lemmas, we have

Theorem 3 Any logical expression L(P1, · · · , Pr)
with free logical variables P1, · · · , Pr can be uniquely ex-

pressed in a canonical form as

L(P1, · · · , Pr) = MLP1P2 · · ·Pr, (18)

where ML is a 2 × 2r structure matrix.

Proof Use Lemma 1 to convert the matrix expression

as (11). Then, use Lemma 3 (i.e., equation (16)) to reduce

the power of each variable to 1. Note that the dimension

requirement for the STP is automatically satisfied. Finally,

since the expression (18) is a bilinear form with respect to

distinct variables, it should be unique.

In the following application, we try to use Mc, Md, and

Mn to express Mi and Me.

Proposition 8 Mi and Me can be expressed by Mc,

Md, and Mn respectively as

Mi = MdMn (19)

and

Me = McMi(I4 ⊗ Mi)(I2 ⊗ Mr)(I2 ⊗ W[2])Mr

= McMdMn(I4 ⊗ MdMn)(I2 ⊗ Mr)(I2 ⊗ W[2])Mr.

(20)

Proof Note that P → Q ⇔ ¬P ∧ Q. Expressing

it in matrix form, we have MiPQ = Md(MnP )Q =
MdMnPQ. (19) follows immediately. As for (20), we have

P ↔ Q ⇔ (P → Q) ∧ (Q → P ). So we have

MePQ = Mc(MiPQ)(MiQP ).

Now the right hand side is

McMiPQMiQP

= McMdMn(I4 ⊗ MdMn)PQQP

= McMdMn(I4 ⊗ MdMn)P (Mr)QP

= McMdMn(I4 ⊗ MdMn)(I2 ⊗ Mr)PW[2]PQ

= McMdMn(I4 ⊗ MdMn)(I2 ⊗ Mr)(I2 ⊗ W[2])PPQ

= McMdMn(I4 ⊗ MdMn)(I2 ⊗ Mr)(I2 ⊗ W[2])MrPQ.

(20) is proved.

Remark 1 From (19), (20), one can easily verify that

the structure matrices of all binary operators can be ex-

pressed by Mc, Md, and Mn. This is not surprising because

{∨,∧,¬} is an adequate set. But later on, they can be used

to define corresponding operators for the multi-valued and

mix-valued cases.

Next, we use the following example to show the applica-

tion of Theorem 3.

Example 3 Person A said that person B is a liar, person

B said person C is a liar, and person C said that both persons

A and B are liars. Who is a liar ?

Denote A: person A is honest; B: person B is honest; and

C: person C is honest. Then the logical expression is

(A ↔ ¬B) ∧ (B ↔ ¬C) ∧ (C ↔ ¬A ∧ ¬B). (21)



128 H. QI et al. / J Control Theory Appl 2008 6 (1) 123–133

The problem becomes finding when (21) is true. The matrix

expression of (21) is

M2
c MeAMnBMeBMnCMeCMcMnAMnB

=

[
1 0 0 0

0 1 1 1

]2 [
1 0 0 1

0 1 1 0

]
A

[
0 1

1 0

]
B

·
[
1 0 0 1

0 1 1 0

]
B

[
0 1

1 0

]
C

�

[
1 0 0 1

0 1 1 0

]
C

[
1 0 0 0

0 1 1 1

][
0 1

1 0

]
A

[
0 1

1 0

]
B. (22)

Now we have to reduce it to the normal form as (18). A

straightforward computation shows that (22) equals to[
0 0 0 0 0 1 0 0

1 1 1 1 1 0 1 1

]
ABC. (23)

(23) is the canonical form of (22). To make (23) true (i.e.,

(23) = (1, 0)T) the only solution is

A =

[
0

1

]
, B =

[
1

0

]
, C =

[
0

1

]
.

So person A and person C are liars and person B is honest.

The following two formulas are used to reduce the com-

plexity of computation:

Proposition 9⎧⎪⎪⎨
⎪⎪⎩

W[n,nk] =
k−1∏
i=0

Ink−1−i ⊗ W[n] ⊗ I2i ,

W[nk,n] =
0∏

i=k−1

Ink−1−i ⊗ W[n] ⊗ I2i .
(24)

6 Multi-valued logic
One of the advantages of the matrix form of logic is that

it can easily be extended to multi-valued logic. Assume P

and Q are two k-valued logical variables, i.e., they take val-

ues from Dk (k � 2). The first generalization is, using scale

form, we define some basic operations as:

Definition 6 Let P and Q be two k-valued logical vari-

ables. Then their disjunction is defined as

P ∨ Q = max(P, Q); (25)

their conjunction is defined as

P ∧ Q = min(P, Q). (26)

The negation is defined as

¬P = 1 − P. (27)

To use the matrix expression, we have to give the logical

values a vector form, which is the counterpart of (4). We

define
i

k − 1
≡ dk

k−i, i = 0, 1, · · · , k − 1, (28)

where dk
j is the j-th column of the identity matrix Ik. Pre-

cisely, we have

1 ≡

⎡
⎢⎢⎢⎢⎢⎣

1

0
...

0

⎤
⎥⎥⎥⎥⎥⎦ ;

k − 2
k − 1

≡

⎡
⎢⎢⎢⎢⎢⎣

0

1
...

0

⎤
⎥⎥⎥⎥⎥⎦ ; · · · ; 0 ≡

⎡
⎢⎢⎢⎢⎢⎣

0

0
...

1

⎤
⎥⎥⎥⎥⎥⎦ .

Using vector form of logic values, the matrices of the op-

erators defined in Definition 6 can be easily calculated.

For notational ease, in most places of this section, we as-

sume k = 3. All the arguments are applicable to any k � 2.

Proposition 10 Assume k = 3. Then the structure ma-

trices for disjunction, conjunction and negation are

M3
d =

⎡
⎢⎢⎣

1 1 1 1 0 0 1 0 0

0 0 0 0 1 1 0 1 0

0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎦ ; (29)

M3
c =

⎡
⎢⎢⎣

1 0 0 0 0 0 0 0 0

0 1 0 1 1 0 0 0 0

0 0 1 0 0 1 1 1 1

⎤
⎥⎥⎦ ; (30)

M3
n =

⎡
⎢⎢⎣

0 0 1

0 1 0

1 0 0

⎤
⎥⎥⎦ . (31)

Definition 6 is a natural generalization of the classical

logic and widely used. However, the implication can be de-

fined in various ways. Hence, there are many different 3-

valued logics. For instance, three known 3-valued logics,

Kleene-Dienes-type (KD), Luekasiewic-type (L), Bochvar-

type (B) are listed as follows (T = 1, U = 0.5, F = 0) [4].

Table 4 3-valued logics.

KD L B

P Q → ↔ → ↔ → ↔
T T T T T T T T

T U U U U U U U

T F F F F F F F

U T T U T U U U

U U U U T T U U

U F U U U U U U

F T T F T F T F

F U T U T U U U

F F T T T T T T

For k-valued logic, it is reasonable to define logical oper-

ators via their structure matrices.

Now let us use (19) to define the implication for k = 3. It

is easy to calculate that

M3
i =

⎡
⎢⎢⎣

1 0 0 1 0 0 1 1 1

0 1 0 0 1 1 0 0 0

0 0 1 0 0 0 0 0 0

⎤
⎥⎥⎦ . (32)



H. QI et al. / J Control Theory Appl 2008 6 (1) 123–133 129

We can also use (20) to define the structure matrix of

equivalence. We need one more notation. Let dk
i be the i-

th column of Ik, i = 1, · · · , k. It is easy to prove that the

power-reducing matrix for k-valued logic is

Mk
r =

⎡
⎢⎢⎢⎢⎣

dk
1 0 · · · 0

0 dk
2 · · · 0

0 0 0

0 0 · · · dk
s

⎤
⎥⎥⎥⎥⎦ . (33)

Note that using the same argument one sees easily that k-

valued logic (20) becomes

Me = McMi(Ik2 ⊗ Mi)(Ik ⊗ Mr)(Ik ⊗ W[k])Mr. (34)

Using this formula, we can calculate that

M3
e =

⎡
⎢⎢⎣

1 0 0 0 0 0 0 0 1

0 1 0 1 1 1 0 1 0

0 0 1 0 0 0 1 0 0

⎤
⎥⎥⎦ . (35)

It is obvious that the implicitly defined 3-valued logic co-

incides with the Kleene-Dienes type logic.

We use the following example to show how to use the

matrix expression to perform fuzzy logical inference.

Example 4 [4] A detective has the following clues for a

murder:

1) 80% sure that either A or B is the criminal;

2) If A is the killer, it is very likely that the committing

time is not before midnight;

3) If B’s statement is true, the room’s light at midnight

was on;

4) If B’s statement is false, it is very likely that the com-

mitting time is before midnight;

5) There is evidence to assure that the room’s light was

off at midnight;

We assume (as a common understanding) “very likely”

is stronger than “80%”, and quantize: “T”, “very likely”,

“80%, “1−80%”, “very unlikely”, “F” as 6 logic levels and

consider the problem over 6-valued logic. Denote the state-

ment propositions as:

1) A: A is the killer;

2) B: B is the killer;

3) M : The committing time is before midnight;

4) S: B’s statement is true;

5) L: The room’s light was on at midnight;

Then we have the following fuzzy logical equations⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

A ∨ B = (0, 0, 1, 0, 0, 0)T,

A → ¬M = (0, 1, 0, 0, 0, 0)T,

S → L = (1, 0, 0, 0, 0, 0)T,

¬S → M = (0, 1, 0, 0, 0, 0)T,

¬L = (1, 0, 0, 0, 0, 0)T.

(36)

We use the matrix expression to perform the fuzzy logical

inference. First, from ¬L = (1, 0, 0, 0, 0, 0)T we have L =
(0, 0, 0, 0, 0, 1)T. Then from S → L = (1, 0, 0, 0, 0, 0)T we

have the matrix form as M6
i SL = M6

i W[6]LS := Ψ1S =
(1, 0, 0, 0, 0, 0)T. It is easy to calculate that

Ψ1 = M6
i W[6]L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then S can be solved as S = (0, 0, 0, 0, 0, 1)T. Similarly,

from ¬S → M = (0, 1, 0, 0, 0, 0)T we have M6
i M6

nSM =
(0 1 0 0 0 0)T. Then M can be solved as

M = (0, 1, 0, 0, 0, 0)T.

Consider A → ¬M = M6
i AM6

nM = (0, 1, 0, 0, 0, 0)T.

Using some properties of semi-tensor product, we have

M6
i AM6

nM = M6
i (I6 ⊗ M6

n)AM

= M6
i (I6 ⊗ M6

n)W[6]MA

:= ψ2A.

Since ψ2 is easily computable, then A can be solved as

A = (0, 0, 0, 0, 1, 0)T. Finally, from A ∨ B = MdAB =
(0, 0, 1, 0, 0, 0)T we can solve B = (0, 0, 1, 0, 0, 0)T. We

conclude that “very unlikely” that A is the killer, and 80%
possibly B is the killer.

Comparing our inference with it in [4], one sees that [4]

created several un-axiomatic artificial rules for fuzzy logi-

cal inference and then used them in the previous example.

However, we do not need any of them and obtained the same

conclusion.

Next, we consider the canonical form of a logic expres-

sion. Extracting the same argument shows that Theorem 3

remains true. Precisely,

Theorem 4 Any k-valued logical expression L(P1, · · · ,

Pr) with free logical variables P1, · · · , Pr can be uniquely

expressed in a canonical form as

L(P1, · · · , Pr) = MLP1P2 · · ·Pr, (37)

where ML is a k × kr structure matrix.

Finally, we mentioned before that multi-valued logics

(25)∼(27) and (34) are commonly used. However, the im-

plication has various forms. They are useful in some cases,

emphasizing certain logical properties. So far, for simplicity

we use only (19). We list some others [10] with their struc-

ture matrices for k = 3. They are useful for fuzzy control,

etc.



130 H. QI et al. / J Control Theory Appl 2008 6 (1) 123–133

· Zadeh: A → B = ¬A ∨ (A ∧ B),

MZ
i =

⎡
⎢⎢⎣

1 0 0 0 0 0 1 1 1

0 1 0 1 1 1 0 0 0

0 0 1 0 0 0 0 0 0

⎤
⎥⎥⎦ ;

· Lukasiewicz: A → B = (¬A + B) ∧ T0,

ML
i =

⎡
⎢⎢⎣

1 0 0 1 1 0 1 1 1

0 1 1 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎦ ;

· Mamdani: A → B = A ∧ B,

MM
i = M3

c , in (30);

· Gaines-Rescher: A → B =

{
T0, A � B,

0, otherwise,

MGR
i =

⎡
⎢⎢⎣

1 0 0 1 1 0 1 1 1

0 0 0 0 0 0 0 0 0

0 1 1 0 0 1 0 0 0

⎤
⎥⎥⎦ ;

· Gödel: A → B =

{
T0, A � B,

B, otherwise,

MGl
i =

⎡
⎢⎢⎣

1 0 0 1 1 0 1 1 1

0 1 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0 0

⎤
⎥⎥⎦ ;

· Kleene-Dienes: A → B = ¬A ∨ B,

MKD
i = M3

i , in (32).

This is what we use throughout the paper.

· Wang: A → B =

{
T0, A � B,

¬A ∨ B, otherwise,

MW
i =

⎡
⎢⎢⎣

1 0 0 1 1 0 1 1 1

0 1 0 0 0 0 0 0 0

0 0 1 0 0 1 0 0 0

⎤
⎥⎥⎦ .

Among these implications only MZ
i , MM

i , and MKD
i in-

volve standard logical operations. MKD
i is what we used

mostly in this paper; MM
i = Mc. As for MZ

i , it is easy to

prove that

MZ
i = MdMn(Ik ⊗ Mc)Mr. (38)

For k > 3, the corresponding structure matrices of impli-

cation can also be easily figured out. Then all other binary

operators can be defined via their structure matrices.

Next, we extend all the binary operators to k-valued logic.

They can be done via corresponding structure matrices. Of

course, we need the operator “negation”, which is defined

in (27). Now, σ8 = ∧ and σ14 = ∨ have been defined in

(26) and (25), respectively. Then for any k, their structure

matrices can be calculated easily. The structure matrices for

σ0 = F0, σ15 = T0, σ3 = ¬1,

σ5 = ¬2, σ10 = Q, σ12 = P

can be constructed easily.

Now, the implication σ11 is defined variously as in the

above. Then for equivalence, Me can be calculated by using

(34). Finally, for EOR (σ6), NAND (σ7), NOR (σ1), NIMP

(σ4), NIIMP (σ2), ICOD (σ13), their structure matrices can

be calculated by their definitions respectively.

Now, all the binary operators are well defined so it is nat-

ural to ask such a question: which formulas in section 4 re-

main available? Of course, it depends on the definition of

implication. Under some implications there are no tautolo-

gies (or A → A �⇔ T0). In the following, we consider the

basic properties of some multi-valued logics with tautolo-

gies.

Example 5 Consider Propositions 3, 5, and 6 for Gödel

(Gl), Lukasiewicz (L), Wang (W), and Gaines-Reescher

(GR). Using structure matrices, it is easy to check whether

the expressions are correct (denoted by “T”) or not (denoted

by “F”):

Table 5 Check Proposition 3 for some multi-valued logics.

1) 2) 3) 4) 5) 6) 7) 8) 9) 10)

Gl T T T T T F F F T F

L T T T T T F F T F F

W T T T T T F F T F F

GR T T T T T F F T F F

Table 6 Check Proposition 5 for some multi-valued logics.

1) 2) 3) 4) 5) 6) 7) 8)

Gl T T F F T T T F

L T T F F T T T F

W T T F F T T T F

GR T T F F T T T F

Table 7 Check Proposition 6 for some multi-valued logics.

1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13)

Gl T T T T F T F T F T F T T

L T T T T T T T T F F F F F

W T T T T T T T T F F F F F

GR T T T T F F F F F T T T T



H. QI et al. / J Control Theory Appl 2008 6 (1) 123–133 131

7 Mix-valued logic
In fuzzy control, it happens frequently that the variables

can take different numbers of values. Formally, in a prob-

lem, the logical variables, Pi, i = 1, · · · , s, may take values

from Dki
, where ki may differ from each other. We give a

precise definition:

Definition 7 A mix-valued logic is a quartet: Lm :=
{Dk1

⋃ · · ·⋃ Dks , ∧, ∨, ¬}. A logical variable P in this

logic can take values from Dk1

⋃ · · ·⋃ Dks
. The operations

∧, ∨, ¬ are defined as in (26), (25), and (27) respectively.

It is easy to see that a logical variable in this logic may

take a value from D�, where � may differ from all ki,

i = 1, · · · , s. Since {0, 1} are assumed to be common ele-

ments in Dk, ∀ k, we have

min{ki | 1 � i � s} � � �
s∑

i=1

ki − 2s + 2. (39)

Note that since Dk1

⋃ · · ·⋃ Dks
⊂ Df , the following is

obvious.

Proposition 11 Lm is a sub-algebra of the Morgan al-

gebra {Df , ∧, ∨, ¬}.

From Proposition 11, all the results in fuzzy logic can be

used for mix-valued logic Lm without any further require-

ment.

However, a significant advantage of mix-valued logic is

that the matrix approach is available. Therefore, it is conve-

nient in both theoretical analysis and numerical realization.

The rest of this section is devoted to the matrix expression

of the operators in Lm.

First, we consider the structure matrix of binary opera-

tors.

Definition 8 Let P ∈ Dk, Q ∈ Dμ. A binary operator

σ is a mapping Dk ×Dμ → Dk

⋃
Dμ, defined uniquely by

its structure matrix, Mσ .

We give an example to describe it.

Example 6 Assume P ∈ D3 and Q ∈ D4. Then

D3

⋃
D4 = {0, 1/2, 1}⋃{0, 1/3, 2/3, 1}

= {0, 1/3, 1/2, 2/3, 1} � D5.

Note that in fuzzy logic, the real values in Dk are meaning-

less; only the order of the entries is important. Therefore, we

can convert entries into their vector form by the order only.

Then we can construct the structure matrix of disjunction,

∨, denoted by M
(3,4)
d , as

M
(3,4)
d =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (40)

Similarly, the structure matrix of conjunction, ∧, denoted

by M
(3,4)
c , is

M (3,4)
c =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0

0 0 1 0 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (41)

Using the same technique, the structure matrices of all bi-

nary operators (and hence the operator itself) can be defined.

Say, the structure matrix of implication, →, (in KD sense),

denoted by M
(3,4)
i , is

M
(3,4)
i =M

(3,4)
d M3

n =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1 0 0 0 1 1 1 1

0 1 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(42)

A binary operator σ : Dk × Dμ → D� is symmetric if

PσQ = QσP, or σ(P, Q) = σ(Q, P ).

To check the symmetry of an operator, we have

Proposition 12 A binary operator σ : Dk × Dμ → D�

is symmetric, iff its structure matrix satisfies

M (k,μ)
σ W[μ,k] = M (μ,k)

σ . (43)

Proof Let P ∈ Dk and Q ∈ Dμ. Symmetry means

M (k,μ)
σ PQ = M (μ,k)

σ QP.

Since

LHS = M (k,μ)
σ W[μ,k]W[k,μ]PQ = M (k,μ)

σ W[μ,k]QP,

the conclusion follows.

The canonical expression form remains true for mix-

valued logic:

Theorem 5 Let Pi ∈ Dki , i = 1, · · · , r be a set of

multi-valued logic variables.
r⋃

i=1

Dki
� D�. Then any logic

expression L(P1, · · · , Pr) can be uniquely expressed as

L(P1, · · · , Pr) = MLP1P2 · · ·Pr, (44)

where ML is a unique �×
r∏

i=1

ki matrix, called the structure

matrix of L.

8 Logic-based fuzzy control
Review a fuzzy control system [5, 11], and one sees eas-

ily that what was really used is mix-valued logic, including

multi-valued logic as its particular case.

A fuzzy (control) system is described in Fig.1, where r(t)
is a reference input; u(t) ∈ U is the control; y(t) ∈ Y is

the output; FC is the fuzzy controller; F, LBR, and DF are

fuzzification, logic-based rule, and defuzzification, respec-

tively.



132 H. QI et al. / J Control Theory Appl 2008 6 (1) 123–133

Fig. 1 A fuzzy control system.

The goal of a fuzzy control is to get control u(y) via fuzzy

logic-based rule. We give a formal description as:

· Output Space: Y (e.g., Y ⊂ R
p);

· Input (Control) Space: U (e.g., U ⊂ R
m);

· Linguistic Propositions (w.r.t Y and U respectively):

AY = {A1, A2, · · · , As}; BU = {B1, · · · , Bt};
· Corresponding membership functions:

μAi
(y) ∈ Df , y ∈ Y ; μBj

(u) ∈ Df , u ∈ U ;

· Linguistic Rules:

If A1
1, · · · , A1

s1
satisfy R1, then B1;

...

If At
1, · · · , At

st
satisfy Rt, then Bt, where Ai

j ∈ A;

· Corresponding to Ri, the logical expression is Li,

i = 1, · · · , t.

Linguistic Rules are expressed in logical expression as⎧⎪⎪⎨
⎪⎪⎩

L1(A1
1, · · · , A1

s1
) → B1,

...

Lt(At
1, · · · , At

st
) → Bt.

(45)

Using Mandani implication (which is commonly used in

fuzzy control), the membership degree for i-th Rule is

μRi =μAi
1
(y) ∧· · ·∧ μAi

si
(y) ∧ μBi(u), i=1, · · ·, t. (46)

Then a defuzzification method is used to convert deci-

sions into actions. Say, center of gravity (COG) is used, then

ucrisp =
t∑

i=1

Bi

�
μ(i)/

t∑
i=1

�
μ(i). (47)

Or using center-average (CA), we have

ucrisp =
t∑

i=1

BiμRi
/

t∑
i=1

μRi
. (48)

In most fuzzy control problems, (45) is replaced by a

lookup rule table. In fact, such rules do not reveal the input-

output logical connection. Therefore, it is essentially an

experience-based fuzzy control.

The logic-based fuzzy control, to be proposed in the se-

quel, is to realize (45) by a mix-valued logical expression.

The expression is defined on Ds × Dt, and will produce

feedback control u from y directly.

We use a simple example to show how convenient

and powerful the logic-based fuzzy control is over the

experience-based fuzzy control.

Example 7 [5] 23∼47 Consider an inverted pendulum

on a cart. Let e(t), ė(t), and u(t) be error, change-in-error,

and force, respectively. The input membership functions are

as in Fig.2 (note that e and ė have the same membership

function with different unions), and the output membership

function is as in Fig. 3.

Fig. 2 Input membership functions.

Fig. 3 Output membership function.

The rule table used in [5] is as in Table 7.

Table 8 Rule table for inverted pendulum. u

ė
e

−2 −1 0 1 2

−2 2 2 2 1 0

−1 2 2 1 0 −1

0 2 1 0 −1 −2

1 1 0 −1 −2 −2

2 0 −1 −2 −2 −2

Note that from Table 7 one sees easily that, roughly

speaking, u(t) is logically related to e(t) + ė(t). Formally,

we normalize (re-scaling) e and ė as E = 4e/π, Ė = 8ė/π.

Then we use Ai and Bi, i = 1, 2, 3, 4, 5 for E + Ė and u(t)
to be NL, NS, Z, PS, PL respectively. Then A,B ∈ D5. The

logical rule of (45) can be easily obtained as

B = ¬A. (49)

In the following, let us see how to design a logic-based

fuzzy control.

Using classical membership function for E + Ė, we have

Fig. 4 Membership function of E + Ė.

In Table we choose some particular values of e and ė to

compare the controls u(t) with experience-based (E-B) and

logic-based (L-B) approaches, respectively.



H. QI et al. / J Control Theory Appl 2008 6 (1) 123–133 133

Table 9 Comparing fuzzy controls via experience-based approach vs logic-based approach. u

e −3π/8 0 5π/16

ė −π/32 3π/32 9π/32 −π/32 3π/32 9π/32 −π/32 3π/32 9π/32

E-B 16.84 3.18 −10 8.68 −6.82 −18.06 −5 −20 −20
COG

L-B 16.67 2.5 −10 8.33 −7.5 −18.33 −5 −20 −20

E-B 16.82 6.82 −6.82 3.18 −6.82 −20 −10 −20 −20
CA

L-B 17.5 7.5 −7.5 2.5 −7.5 −20 −10 −20 −20

Remark 2 1) From Example 7, one can see easily that

designing logic-based fuzzy control requires less computa-

tion. 2) The method has wide applicability, e.g., most of the

examples in [5] can be treated in this way. 3) Obviously, the

logic-based approach can be used for more general logical

relations, where the experience-based one is not applicable.

9 Conclusions
A new matrix product, called the semi-tensor product,

was introduced for the matrix expression of logical op-

erations. It was proved that it is very convenient in per-

forming logical operators, simplifying logical expressions,

proving formulas, etc. Then the method was extended to

multi-valued logic. Through some examples, we show that

the matrix expression is very convenient in (fuzzy) logical

inference, because it converts the problem to solving lin-

ear algebraic equations. Finally, to meet the requirement in

fuzzy control, we introduced a new type of logic, called

the mix-valued logic. Certain properties have been inves-

tigated via its matrix expression. A framework for logic-

based fuzzy control was introduced and compared with tra-

ditional experience-based fuzzy control.

References
[1] A. G. Hamilton. Logic for Mathematicians[M]. Revised ed.

Cambridge: Cambridge University Press, 1988.

[2] K. Truemper. Design of Logic-based Intelligent Systems[M]. New

Jersey: John Wiley & Sons, 2004.

[3] J. Han, Y. Li. Fuzzy Control Technology[M]. Chongqing: Chongqing

University Press, 2003 (in Chinese).

[4] Z. Liu, Y. Liu. Fuzzy Logic and Neural Network[M]. Beijing: Beihang

Press, 1996 (in Chinese).

[5] K. M. Passino, S. Yurkovich. Fuzzy Control[M]. California: Addison

Wesley Longman, Inc., 1998.

[6] D. Cheng. Matrix and Polynomial Approach to Dynamic Control
Systems[M]. Beijing: Science Press, 2002.

[7] D. Cheng, Y. Dong. Semi-tensor product of matrices and its

applications to physics[J]. Methods and Applications of Analysis,

2003, 10(4): 565 –588.

[8] D. Cheng, X. Hu, Y. Wang. Non-regular feedback linearization of

nonlinear systems via a normal form algorithm[J]. Automatica, 2004,

40(3): 439 – 447.

[9] L. Rade, B. Westergren. Mathematics Handbook for Science and
Engineering[M]. 4th ed. New York: Springer, 1998.

[10] G. Wang. Non-Classical Mathematical Logic and Fuzzy
Reasoning[M]. Beijing: Science Press, 2000 (in Chinese).

[11] R. Babuska. An overview of fuzzy modeling and model-based

fuzzy control[M]//Fuzzy Logic Control, Advances in Applications.

Singapore: World Scientific Publishing, 1999.

Hongsheng QI was born in 1982 in Anhui,

China. He received the B.S. degree from Anhui

University in 2003. He is currently a Ph.D. stu-

dent in Institute of Systems Science, Chinese

Academy of Sciences. His research interests

include nonlinear control, logic-based control.

Daizhan CHENG received his Ph.D. degree

from Washington University, St. Louis, in

1985. He is currently a professor with Institute

of Systems Science, Chinese Academy of Sci-

ences, Chairman of Technical Committee on

Control Theory (2003-), Chinese Association

of Automation, Chairman of IEEE CSS Bei-

jing Chapter, and IEEE Fellow. His research

interests include nonlinear systems, numerical

method, logic-based control etc.


