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Nonlinear systems possessing linear symmetry
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SUMMARY

This paper tackles linear symmetries of control systems. Precisely, the symmetry of affine nonlinear systems
under the action of a sub-group of general linear group GLðn;RÞ: First of all, the structure of state space
(briefly, ss) symmetry group and its Lie algebra for a given system is investigated. Secondly, the structure
of systems, which are ss-symmetric under rotations, is revealed. Thirdly, a complete classification of
ss-symmetric planar systems is presented. It is shown that for planar systems there are only four classes
of systems which are ss-symmetric with respect to four linear groups. Fourthly, a set of algebraic equations
are presented, whose solutions provide the Lie algebra of the largest connected ss-symmetry group. Finally,
some controllability properties of systems with ss-symmetry group are studied. As an auxiliary tool for
computation, the concept and some properties of semi-tensor product of matrices are included. Copyright
# 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Symmetry of dynamic systems under a group action is an important topic in both physics and
mathematics [1–4], because many systems in the nature do possess symmetry, and because
taking symmetry into consideration may simplify the system investigation tremendously.
Symmetry of control systems has also been investigated by many authors. For instance,
symmetric structure of control systems has been proposed and studied by Grizzle and Marcus
[5] and Xie et al. [6], controllability of symmetric control systems was investigated by Zhao and
Zhang [7], Respondek and Tall [8, 9] gave a complete description of symmetries around
equilibria of single input systems, the application of symmetry in optimal control problems has
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been studied by Jurdjevic [10] and Koon and Marsden [11], the symmetry of feedback
linearizable systems has been investigated by Gardner and Shadwick [12], etc.

The symmetry of dynamic systems considered in the paper is related to the action of a Lie
group on Rn: Let G be a Lie group. G is an action on Rn (or an open subset of Rn), if there exists
a mapping y : G� Rn ! Rn such that (i) yðeÞx ¼ x; 8x 2 Rn; (ii) for any a1; a2 2 G we have
yða1a2Þx ¼ yða1Þðyða2ÞxÞ:

For a control system we define two kinds of symmetries as follows:

Definition 1.1
Given an analytic control system

’x ¼ f0ðxÞ þ
Xm
i¼1

fiðxÞui; x 2 Rn ð1Þ

where fiðxÞ; i ¼ 0; . . . ;m are analytic vector fields. Let G be a Lie group acting on Rn (or an open
subset M � Rn).

(i) System (1) is said to be ss-symmetric with respect to G (or has an state space (ss)-
symmetry group G) if for each a 2 G

yðaÞ
*
fiðxÞ ¼ fiðyðaÞxÞ; i ¼ 0; . . . ;m

where yðaÞ
*
is the induced mapping of yðaÞ; which is a diffeomorphism on Rn: If fiðxÞ

satisfies the above equation (for a given a), fiðxÞ is said to be y(a) invariant.
(ii) System (1) is said to be symmetric with respect to G (or has a symmetry group G) if for

each a 2 G
yðaÞ

*
A ¼A

where

A ¼ f ðxÞ þ
Xm
i¼1

giðxÞui

�����u 2 Rm

( )

If G is a sub-group of the general linear group, i.e. G5GLðn;RÞ; then system (1) is said to be
linearly (ss-) symmetric with respect to G (or has a linear (ss-) symmetry group G:)

Remark 1.2

1. Definition (i) is proposed and used by Grizzle and Marcus [5] and Zhao and Zhang [7],
(ii) is from Respondek and Tall [9]. It is easy to see that ss-symmetry is a special case of
symmetry.

2. In this paper we consider linear symmetry(except Section 6), so the word ‘linear’ is omitted
(except Section 6).

In this paper linear ss-symmetries of nonlinear systems are investigated. The rest of the paper
is organized as follows. Section 2 investigates the general structure of ss-symmetric group and its
Lie algebra for a given system. In Section 3, we consider the ss-symmetry under rotations.
General structure of such symmetric systems is revealed. Section 4 studied the ss-symmetry of
planar systems. Four classes of symmetric systems with their corresponding symmetry groups
are obtained, which cover all possible planar ss-symmetric systems. Section 5 considers the
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linear ss-symmetry group for a given system. A system of linear algebraic equations
are constructed. Its solutions provide the Lie algebra of largest connected linear ss-symmetry
group. As an application, some controllability properties of ss-symmetric systems are studied in
Section 6.

2. STRUCTURE OF SYMMETRY GROUP AND ITS LIE ALGEBRA

In this section we consider ss-symmetry of system (1). For ss-symmetry the control is not
essential. So we may start with a free analytic system as

’x ¼ f ðxÞ; x 2 Rn ð2Þ

Using Taylor series expansion and denoting by Mp�q the set of real p� q matrices, we can
express f as

f ðxÞ ¼ f0 þ f1xþ f2x
2 þ � � � ð3Þ

where fi 2Mn�ni ; x ¼ ðx1; . . . ;xnÞ
T; and all the products are left semi-tensor product, which is

introduced in Appendix A.1.
Let a 2 GLðn;RÞ: ya : x/y ¼ ax: Then for f to be invariant under ya we need

ðyaÞ
*
ðf ðxÞÞ ¼ af ðxÞ ¼ af ða�1yÞ ¼ f ðyÞ 8y 2 Rn ð4Þ

It is equivalent to

af ðxÞ ¼ f ðaxÞ 8x 2 Rn ð5Þ

Now since ðyaÞ
*
does not change the degree of a homogeneous vector field, if (4) holds for f ; it

should also hold for each homogeneous component of f : That is,

afkxk ¼ fkðaxÞ
k; 8x 2 Rn; k ¼ 0; 1; . . . ð6Þ

Using the definition of semi-tensor products and formula (A6), we have

ðaxÞk ¼ axraxr � � �rax|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
k

¼ aðIn� aÞx2 axraxr � � �rax|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
k�2

¼ � � �

¼ ðaÞðIn� aÞðIn2 � aÞ . . . ðInk�1 � aÞxk

¼ða� InÞðIn� aÞ½ðIn2 � aÞ . . . ðInk�1 � aÞ�xk

¼ða� aÞ½ðIn2 � aÞ . . . ðInk�1 � aÞ�xk

¼ � � �

¼ ½a� a� � � � � a|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
k

�xk :¼ a�kxk
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It is clear that system (2) is a-invariant iff

afkxk ¼ fka�kxk; k ¼ 0; 1; . . . ð7Þ

Since xk is a generator of kth degree homogeneous polynomials, to avoid redundancy we use a
(conventional) basis. The basis, denoted by xðkÞ; is the set as

xðkÞ ¼
Yn
i¼1

xtii

�����X
n

i¼1

ti ¼ k

( )

xðkÞ is also used as a matrix. Then the elements in xðkÞ are arranged in alphabetic order. That is,
let b1 ¼ x

p1
1 � � � x

pn
n ; b2 ¼ x

q1
1 � � � x

qn
n : Define b1 � b2 if ps ¼ qs; s ¼ 1; . . . ; t and ptþ1 > qtþ1 for some

04t5n: So when xðkÞ is considered as a matrix, it is expressed as xðkÞ ¼ ðb1; . . . ; bd Þ
T:

It is easy to verify that for x 2 Rn the dimension of the vector space of kth homogeneous
polynomials is

d :¼ rkn ¼
ðnþ k� 1Þ!
ðn� 1Þ!k!

ð8Þ

We use a simple example to describe the generator xk and basis xðkÞ:

Example 2.1
Assume n ¼ 2 and k ¼ 3: Then x ¼ ðx1; x2Þ

T: Moreover, d ¼ ð2þ 3� 1Þ!=3! ¼ 4:

x3 ¼ ðx31 x21x2 x1x2x1 x1x
2
2 x2x

2
1 x2x1x2 x22x1 x32Þ

T

and

xð3Þ ¼ ðx31 x21x2 x1x
2
2 x32Þ

T

Then we can construct a matrix TNðn; kÞ 2Mnk�rkn
such that [13]

xk ¼ TNðn; kÞxðkÞ ð9Þ

Since the coefficients for a basis are unique, from (7) we have

Proposition 2.2
System (2) is a-invariant, iff

afkTNðn; kÞ ¼ fka�kTNðn; kÞ; k ¼ 0; 1; 2; . . . ð10Þ

Clearly, a sufficient condition for f to be a-invariant is that

afk ¼ fka�k; k ¼ 0; 1; 2; . . . ð11Þ

Using Proposition 2.2, we can reach the following result immediately.

Proposition 2.3
Let H be a subset of GLðn;RÞ; which consists of all a satisfying (10). Then H is a group.

Equation (10) provides a formula for solving a: But it is, in general, very difficult to solve such
an infinite set of algebraic equations. We have to find an alternative easy way to solve the
problem. We turn to Lie algebra approach.
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Denote by gðGÞ the Lie algebra of G; which is a Lie sub-algebra of glðn;RÞ:We refer to [14, 15]
for some other related concepts, notations and terminologies used in the sequel.

We prove following lemma, which is fundamental.

Lemma 2.4
Let G5GLðn;RÞ be a connected sub-group. System (2) (or briefly, vector field f ðxÞ) has
symmetry group G; iff

adVxf ðxÞ ¼ 0 8V 2 gðGÞ ð12Þ

where Vx is a linear vector field.

Proof
Let M be a given manifold. For a vector field X 2 VðMÞ; we denote its integral curve with initial
condition xð0Þ ¼ x by ft

X ðxÞ: Then it is well known that for any Y 2 VðMÞ

ðft
X Þ*YðxÞ ¼ Yðft

X ðxÞÞ

iff ½X ;Y � ¼ 0 [16]. Now the integral curve of Vx 2 VðRnÞ is eVtx: Hence

ðeVtÞ
*
f ðxÞ ¼ eVtf ðxðzÞÞ ¼ eVtf ðe�VtzÞ ¼ f ðzÞ

where z ¼ eVtx: Equivalently

eVtf ðxÞ ¼ f ðeVtxÞ

iff adVx f ðxÞ ¼ 0: &

Note that in Lemma 2.4 and thereafter discrete groups have been excluded.
Now consider system (1). Using Taylor series expansion to each fj ; j ¼ 0; 1; . . . ;m; we

denote

fj ¼
X1
k¼0

f jkx
k; i ¼ 0; . . . ;m

Since degðadVxf
j
kx

kÞ ¼ k; that is, adVx doesn’t change the degree of each term, we can define

Vj
k ¼ fV 2 glðn;RÞjadVxf

j
kx

k ¼ 0g

Using Jacobi identity, it is easy to see that Vj
k is a Lie algebra. According to Lemma 2.4, if

G5GLðn;RÞ is the largest ss-symmetry group of system (1), then its Lie algebra is

gðGÞ :¼V ¼
\m
j¼0

\1
k¼0

Vj
k

Then the corresponding connected group GðgÞ; which has g as its Lie algebra, can be constructed
as

GðgÞ ¼
Yk
i¼1

expðtiViÞ

�����Vi 2V; k51

( )
ð13Þ

Summarizing them yields the following result.
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Theorem 2.5
System (1) has a unique largest connected ss-symmetry group G5GLðn;RÞ; which has its Lie
algebra as

gðGÞ ¼
\m
j¼0

\1
k¼0

Vj
k ð14Þ

Finally, assume a Lie algebra, g� glðn;RÞ is given, we give an algebraic condition for the set
of vector fields, f ðxÞ; which have GðgÞ as their ss-symmetry group.

Denote by Hk
n the set of vector fields with components of kth degree homogeneous

polynomials. It is easy to see that Hk
n is a linear space over R and for any V 2 glðn;RÞ the

mapping adVx :H
k
n !Hk

n is a linear mapping. We refer to [14] for some details of Hk
n: Using

(8), dimension of Hk
n; denoted by dk

n ; is dk
n ¼ nðnþ k� 1Þ!=ðn� 1Þ!k!: Then a basis of Hk

n ;
denoted by the columns of matrix Hk

n ; can be obtained as

Hk
n ¼ In� xTðkÞ ð15Þ

It will be called the conventional basis of Hk
n : In the sequel, the adjoint representation of adVx

means the representation with respect to this conventional basis.
Now we can define a mapping from glðn;RÞ to the adjoint representations of the Lie

derivative, called the adjoint mapping, as

Definition 2.6
The adjoint mapping is defined as the following:

Fk
n : glðn;RÞ3V ! Fk

nðVÞ 2 glðd
k
n ;RÞ

where Fk
nðVÞ is the adjoint representation of adVx :H

k
n !Hk

n (with respect to the conventional
basis).

We give an example to illustrate it:

Example 2.7
Let n ¼ 2 and

V ¼
0 1
0 0

� �
ð16Þ

Then a straightforward computation shows that

Fk
2ðVÞ ¼

A �I
0 A

� �
ð17Þ

where

A ¼

0

k 0

k� 1 . .
.

. .
. . .

.

1 0

0
BBBBBBBBB@

1
CCCCCCCCCA

ð18Þ
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The following lemma is an immediate consequence of Lemma 2.4 and the definition
of Fk

n:

Proposition 2.8
Let G 2 GLðn;RÞ be a one-dimensional connected sub-group, and V 2 gðGÞ: A vector field f ðxÞ
with components of kth degree homogeneous polynomials is G-invariant, if and only if,
f ðxÞ 2 ðFk

nðVÞÞ:

Example 2.9
Recall Example 2.7 again. Let’s consider the ðFk

nðVÞÞ where V is given in (16). Using (17), we
have to solve the following:

A �I

0 A

 !
X

Y

 !
¼

0

0

 !

Then we have

Y ¼ AX

A2X ¼ 0

Using (18)

A2 ¼

0

0 0

kðk� 1Þ 0

. .
. . .

.

0 2� 1 0 0

0
BBBBBBBBB@

1
CCCCCCCCCA

So X ¼ ð0; . . . ; a; bÞT; Y ¼ AX ¼ ð0; . . . ; 0; aÞT; where a and b are any two real numbers. Recall
that ðcolðXÞ; colðYÞÞT is the coefficient with respect to conventional basis of Hk

2; it follows that

f ðxÞ ¼ ðax1xk�12 þ bxk2 ; ax
k
2Þ

T; k51 ð19Þ

According to Proposition 2.8, we conclude that such a vector field f ðxÞ has a one-dimensional
symmetry group G as

G ¼ exp
0 1

0 0

 !
t

" #
ð20Þ

3. SYMMETRY UNDER ROTATION

This section considers ss-symmetry under rotations. The motivation is from the following result.
Consider system (1) and assume n ¼ 2: Then the following result answers when it has

ss-symmetry group SOð2;RÞ:
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Theorem 3.1 (Xie et al. [6])
When n ¼ 2 system (1) has ss-symmetry group SOð2;RÞ; iff

fjðxÞ ¼
X1
i¼0

ðx21 þ x22Þ
i

aji bji

�bji aji

0
@

1
A x1

x2

 !
; aji ; b

j
i 2 R; j ¼ 0; . . . ;m ð21Þ

We consider when system (1) has an ss-symmetry group SOðn;RÞ: The problem discussed is a
generalization of [6]. Our necessary and sufficient condition is as follows.

Theorem 3.2
System (1) with n53 has an ss-symmetry group G ¼ SOðn;RÞ; iff

fjðxÞ ¼
X1
i¼0

aji jjxjj
2ix; aji 2 R; j ¼ 0; 1; . . . ;m ð22Þ

(The proof is in Appendix A.2.)

Remark 3.3
Comparing Theorem 3.2 with Theorem 3.1, one sees that for n ¼ 2 and n53; the corresponding
f ðxÞ are quite different. An intuitive reason may be found from the structures of their Lie
algebras. The centre of oð2;RÞ is

Zðoð2;RÞÞ ¼
a b

�b a

 !�����a; b 2 R

( )

while the centre of oðn;RÞ; n53 is

Zðoðn;RÞÞ ¼ frInjr 2 Rg

They are quite different. When n53 the oðn;RÞ does not have non-trivial centre. Roughly
speaking, there is no freedom for ‘swap’. For reader’s convenience, recall that the centre Z of a
Lie algebra L is [15]

Z ¼ fz 2 Ljj ½z; l� ¼ 0; 8l 2 Lg

4. SYMMETRY OF PLANAR SYSTEMS

This section considers the ss-symmetry of planar systems. The following main result
characterizes all the possible ss-symmetries.

Theorem 4.1
1. Assume system (1) with n ¼ 2 has a connected ss-symmetry group G5GLð2;RÞ: Then G is
conjugated to one of the following four groups:

G1 ¼ exp
l1 0

0 l2

 !
t

�����t 2 R

( )
ð23Þ
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with

l2
l1
¼

p

q
; q > 0; p40

where p and q are two integers, and if p ¼ 0; we set l2 ¼ 0:

G2 ¼ exp
0 1

0 0

 !
t

�����t 2 R

( )
ð24Þ

G3 ¼ exp
0 1

�1 0

 !
t

�����t 2 R

( )
¼ SOð2;RÞ ð25Þ

G4 ¼
Y
i51

expðAitiÞ

�����Ai ¼
1 0

0 0

 !
; or Ai ¼

0 1

0 0

 !
; ti 2 R

( )
ð26Þ

2. Assume system (1) with n ¼ 2 is ss-symmetric with respect to G ¼ TGiT
�1; for some

T 2 GLð2;RÞ; then (1) satisfies that

fj ¼
X1
n¼0

ajnp
i
nðT

�1yÞTBi
nT
�1y; j ¼ 0; . . . ;m; i ¼ 1; 2; 3; 4 ð27Þ

where

p1nðxÞ ¼ x
�np
1 x

nq
2 ; B1

n ¼
an 0

0 bn

 !

p2nðxÞ ¼ xn2; B2
n ¼

an bn

0 an

 !

p3nðxÞ ¼ ðx
2
1 þ x22Þ

n; B3
n ¼

an bn

�bn an

 !

p4nðxÞ ¼ xn2; B4
n ¼ I

(The proof is in Appendix A.3.)

Remark 4.2
If system (1) satisfies (27), then it is a straightforward verification to show that it has the
corresponding ss-symmetry group TGiT

�1: So Theorem 4.1 gives a complete description for all
planar ss-symmetric systems and their ss-symmetry groups.
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5. LARGEST SS-SYMMETRY GROUP

In this section we will find the largest connected ss-symmetry group for a given system. We need
some preparations.

Given a matrix AðxÞ 2Mp�q with smooth function entries ai;jðxÞ (x 2 Rn). We define the
differential of AðxÞ; denoted by DAðxÞ; as a p� nq matrix, obtained by replacing ai;j by its
differential ð@ai;j=@x1; . . . ; @ai;j=@xnÞ: The higher-order differentials can be defined recursively as

Dkþ1AðxÞ ¼ DðDkAðxÞÞ; k51

The advantage of this notation can be seen from the following observation: for Taylor series
expression (3), the coefficients can be obtained as

fk ¼
1

k!
Dkf ð0Þ; k ¼ 0; 1; . . .

Given a matrix A ¼ ðaijÞ 2Mm�n; its row staking form, VrðAÞ; and column staking form,
VcðAÞ; are defined as

VrðAÞ ¼ ða11; a12; . . . ; a1n; a21; . . . ; amnÞ
T

VcðAÞ ¼ ða11; a21; . . . ; am1; a12; . . . ; amnÞ
T

Using swap matrix W½m;n�; (see Appendix A.4 for swap matrix) we define two matrices as

Ck ¼
Xk
s¼0

Ins �W½nk�s;n�

En
k :¼ Ink�1 �W½nk�1;n�rVcðInk�1 Þ

Then we have

Theorem 5.1
Assume system (1) has an ss-symmetry group G with its Lie algebra gðGÞ: Then a 2 gðGÞ; iff
x ¼ VcðaÞ is the solution of the following linear algebraic equations.

ð½TT
Nðn; kÞ � ðf

j
kFk�1Þ�En

k � ½T
T
Nðn; kÞðf

j
kÞ

T� � InÞx ¼ 0

k ¼ 0; 1; 2; . . . ; j ¼ 0; 1; . . . ;m ð28Þ

We refer to (9) for the matrix TNðn; kÞ:
(See Appendix A.5 for the proof of Theorem 5.1.)
Theorem 5.1 provides a numerical method to calculate the largest connected ss-symmetry

group for system (1).

Example 5.2
Consider the following system:

’x ¼ f ðxÞ ¼ f3x
3; x 2 R3 ð29Þ
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where f3 ¼ ðfijÞ 2M3�27: Let C ¼ ðcijÞ 2M4�2 be a parameter set. We set the coefficient
matrix as

f1; 2 ¼ f1; 4 ¼ f1; 10 ¼ c1; 1 f1; 3 ¼ f1; 7 ¼ f1; 19 ¼ c1; 2

f2; 6 ¼ f2; 8 ¼ f2; 12 ¼ f2; 16 ¼ f2; 20 ¼ f2; 22 ¼ c2; 1 f3; 6 ¼ f3; 8 ¼ f3; 12 ¼ f3; 16 ¼ f3; 20 ¼ f3; 22 ¼ c2; 2

f2; 5 ¼ f2; 11 ¼ f2; 13 ¼ c3; 1 f3; 5 ¼ f3; 11 ¼ f3; 13 ¼ c3; 2

f2; 9 ¼ f2; 21 ¼ f2; 25 ¼ c4; 1 f3; 9 ¼ f3; 21 ¼ f3; 25 ¼ c4; 2

fi; j ¼ 0 for other ði; jÞ

A careful computation shows that such a group of parameters assure the existence of non-trivial
symmetric group.

According to Theorem 5.1, we can construct the matrix

S3
3 ¼ TT

Nð3; 3Þ � ðf3C2ÞE3
2 � ðT

T
Nð3; 3Þf

T
3 Þ � I3

and we have only to solve x for S3
3x ¼ 0:

Case 1: Let C be a set of randomly chosen parameters. Particularly, if we choose c12 ¼ 2 and
c21 ¼ c22 ¼ c31 ¼ c32 ¼ 3; and the other cij ¼ 1; then a computation via computer shows that S3

3

is an 30� 9 matrix. To save space, we listed its non-zero entries only

s1; 2 ¼ 3 s1; 3 ¼ 6 s4; 1 ¼ 3 s4; 5 ¼ 3 s4; 6 ¼ 6 s5; 2 ¼ 3 s5; 3 ¼ 18 s6; 2 ¼ 6

s6; 3 ¼ 15 s7; 1 ¼ 6 s7; 8 ¼ 3 s7; 9 ¼ 6 s8; 2 ¼ 12 s8; 3 ¼ 6 s9; 2 ¼ 18 s10; 4 ¼ 3

s10; 7 ¼ �3 s11; 1 ¼ 3 s11; 5 ¼ 3 s11; 6 ¼ 18 s11; 8 ¼ �3 s12; 1 ¼ 3 s12; 5 ¼ 6 s12; 6 ¼ 15

s12; 9 ¼ �3 s13; 4 ¼ �6 s13; 7 ¼ �12 s14; 1 ¼ 18 s14; 6 ¼ 6 s14; 8 ¼ �12 s14; 9 ¼ 18 s15; 1 ¼ 18

s15; 5 ¼ 18 s15; 6 ¼ �12 s15; 8 ¼ 6 s16; 4 ¼ �3 s16; 7 ¼ 9 s17; 1 ¼ 3 s17; 5 ¼ �3 s17; 8 ¼ 15

s17; 9 ¼ 6 s18; 1 ¼ 3 s18; 6 ¼ �3 s18; 8 ¼ 18 s18; 9 ¼ 3 s20; 4 ¼ 3 s21; 4 ¼ 3 s23; 4 ¼ 18

s23; 7 ¼ 3 s24; 4 ¼ 18 s24; 7 ¼ 3 s26; 4 ¼ 3 s26; 7 ¼ 18 s27; 4 ¼ 3 s27; 7 ¼ 18 s29; 7 ¼ 3

s30; 7 ¼ 3

The non-trivial solution is

x ¼ ð1 0 0 0 � 1 0 0 0 � 1ÞT

A program shows for random C this x is always the solution.
That is, the largest connected invariant linear group of the system (28) with above parameters

is

Gr ¼ exp

1 0 0

0 �1 0

0 0 �1

0
BBB@

1
CCCAt

���������
t 2 R

8>>><
>>>:

9>>>=
>>>;
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Case 2: Set cij ¼ 1; 8i; j: Then the 30� 9 matrix S3
3 has non-zero entries as

s1; 2 ¼ 3 s1; 3 ¼ 3 s4; 1 ¼ 3 s4; 5 ¼ 3 s4; 6 ¼ 3 s5; 2 ¼ 3 s5; 3 ¼ 6 s6; 2 ¼ 6

s6; 3 ¼ 3 s7; 1 ¼ 3 s7; 8 ¼ 3 s7; 9 ¼ 3 s8; 2 ¼ 3 s8; 3 ¼ 6 s9; 2 ¼ 6 s9; 3 ¼ 3

s10; 4 ¼ 3 s10; 7 ¼ �3 s11; 1 ¼ 3 s11; 5 ¼ 3 s11; 6 ¼ 6 s11; 8 ¼ �3 s12; 1 ¼ 3 s12; 5 ¼ 6

s12; 6 ¼ 3 s12; 9 ¼ �3 s14; 1 ¼ 6 s14; 6 ¼ 6 s14; 9 ¼ 6 s15; 1 ¼ 6 s15; 5 ¼ 6 s15; 8 ¼ 6

s16; 4 ¼ �3 s16; 7 ¼ 3 s17; 1 ¼ 3 s17; 5 ¼ �3 s17; 8 ¼ 3 s17; 9 ¼ 6 s18; 1 ¼ 3 s18; 6 ¼ �3

s18; 8 ¼ 6 s18; 9 ¼ 3 s20; 4 ¼ 3 s21; 4 ¼ 3 s23; 4 ¼ 6 s23; 7 ¼ 3 s24; 4 ¼ 6 s24; 7 ¼ 3

s26; 4 ¼ 3 s26; 7 ¼ 6 s27; 4 ¼ 3 s27; 7 ¼ 6 s29; 7 ¼ 3 s30; 7 ¼ 3

The solution is

x1 ¼ ð0 0 0 0 � 1 1 0 1 � 1ÞT

x2 ¼ ð�2 0 0 0 1 1 0 1 1ÞT

When we convert x1 and x2 back to matrices, still denote them by x1; x2 2 glðn;RÞ; then ½x1; x2� ¼ 0:
That is they are commutative, which means g ¼ Spanfx1; x2g is a Lie algebra. Then it is ready to
show that the largest connected invariant linear group of the system (28) for this set of
coefficients is

G1 ¼ exp

0 0 0

0 �1 1

0 1 �1

0
BB@

1
CCAt1 exp

�2 0 0

0 1 1

0 1 1

0
BB@

1
CCAt2

��������t1; t2 2 R

8>><
>>:

9>>=
>>;

We may explore Case 2 in a little bit more. A careful computation shows that

f ðxÞ ¼ f3x
3 ¼

3x21ðx2 þ x3Þ

3x1x
2
2 þ 6x1x2x3 þ 3x1x

2
3

3x1x
2
2 þ 6x1x2x3 þ 3x1x

2
3

0
BB@

1
CCA ¼ 3x1ðx2 þ x3Þ

1 0 0

0 1 1

0 1 1

0
BB@

1
CCA

x1

x2

x3

0
BB@

1
CCA :¼ pðxÞKx

Then it is easy to verify that the system satisfies (A22)–(A23). That is, pðxÞ is gðG1Þ invariant
and

1 0 0

0 1 1

0 1 1

0
BB@

1
CCA 2 ZðgðG1ÞÞ

6. SYMMETRY VS CONTROLLABILITY

In this section we briefly discuss some controllability properties of the affine nonlinear systems
possessing symmetry.
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First we consider a linear system

’x ¼ Axþ
Xm
i¼1

biui :¼ Axþ Bu; x 2 Rn; u 2 Rm ð30Þ

Its linear symmetry can be described by the following proposition.

Proposition 6.1
System (30) has a connected ss-symmetry group G5GLðn;RÞ; iff for any a 2 gðGÞ

aA� Aa ¼ 0

aB ¼ 0
ð31Þ

Proof
(Necessity) Since a 2 gðGÞ; eat 2 G; 8t 2 R: Since system is symmetric with respect to G; by
definition we have

ðeatÞ
*
ðAxþ BuÞ ¼ eatAe�atxþ eatB ¼ Axþ Bu 8x 2 Rn; u; v 2 Rm

Hence,

eatAe�at ¼ A

eatB ¼ B
ð32Þ

Differentiating both sides of the first equation in (32) with respect to t; we have

aeatAe�at � eatAae�at ¼ 0

Set t ¼ 0 yields the first equation of (31). Similarly, we can get the second one.
(Sufficiency) Using Taylor series expansion on eht; one sees easily that (31) implies (32). The

conclusion follows from the structure (13) of G: &

Expressing (31) into matrix form, we have

Corollary 6.2
System (30) has a non-trivial ss-symmetry group (G=fIng), iff the equation

AT� In � In� A

BT� In

 !
x ¼ 0 ð33Þ

has a non-zero solution.

Corollary 6.3
If system (30) is completely controllable, it doesn’t allow a non-trivial linear ss-symmetry
G5GLðn;RÞ:

Proof
Assume F 2 G: Then

FAF�1 ¼ A; FB ¼ B

NONLINEAR SYSTEMS POSSESSING LINEAR SYMMETRY 63

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2007; 17:51–81

DOI: 10.1002/rnc



Hence

FðAn�1B; . . . ;BÞ ¼ ðAn�1B; . . . ;BÞ

which leads to: F ¼ In: &

Now assume system (1) has an ss-symmetry group G (G may not be a linear group.) For any
a 2 G; the mapping ya : Rn ! Rn is a diffeomorphism. Denote

Ja ¼
@yaðxÞ
@x
ð0Þ; a 2 G

Using Taylor series expansion on ya and the system and verifying the linear terms, one can
easily prove the following result:

Proposition 6.4
Assume system (1) with f0ð0Þ ¼ 0 has an ss-symmetry group G: Then

1. GL :¼ fJaja 2 Gg5GLðn;RÞ is a Lie sub-group.
2. Let A ¼ @f0=@xð0Þ and bi ¼ fið0Þ; i ¼ 1; . . . ;m: Then the linear approximate system

’z ¼ Azþ
Xm
i¼1

biui

has GL as its ss-symmetry group.

The following result may be considered as a necessary condition for general symmetry.
(Where the GL; A; B are as in Proposition 6.4.)

Corollary 6.5
Assume system (1) with f0ð0Þ ¼ 0 has an ss-symmetry group G and ðA;BÞ is controllable.
Then

GL ¼ fIng

The following result adds some new (but related in certain sense) observation to [9]:

Proposition 6.6
Assume system (1) has a non-trivial ss-symmetry group G5GLðn;RÞ: Then it does not satisfy
accessibility rank condition [17] at the origin.

Proof
Since G is non-trivial, which means there exists 0=V 2 gðGÞ: Using Lemma 2.4,
we have

½Vx; fiðxÞ� ¼ 0; i ¼ 0; 1; . . . ;m

Using Jacobi identity, for accessibility Lie algebra

L ¼ ff0; f1; . . . ; fmgLA

we also have

½Vx;L� ¼ 0
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Now if dim SpanfLgð0Þ ¼ n; we can find Z1ðxÞ; . . . ; ZnðxÞ 2L which are linearly independent at
x ¼ 0: Express

ZiðxÞ ¼ Zið0Þ þOðjjxjjÞ; i ¼ 1; . . . ; n

Then

0 ¼ ½Vx; ZiðxÞ� ¼ �VZið0Þ þOðjjxjjÞ; i ¼ 1; . . . ; n

which implies that

VZið0Þ ¼ 0; i ¼ 1; . . . ; n

Therefore, V ¼ 0; which leads to a contradiction. &

Note that in fact the above Proposition says that system (1) does not satisfy accessibility rank
condition at any x0 2 Rn if it is ss-symmetric with respect to a non-trivial G5GLðn;RÞ about any
point x0: The statement ‘symmetric about point x0’ means for any a 2 G; the system is
ss- invariant under the action ya : x� x0/aðx� x0Þ:

7. CONCLUSION

This paper considered linear symmetries of nonlinear control systems. First of all, the state
space (ss) symmetry was investigated from two aspects: Lie group and its Lie algebra. Certain
necessary and sufficient conditions were obtained. Secondly, some special cases were considered:
(1) Assume the Lie group consisted of the rotations (SOðn;RÞ). Then the only possible form of
symmetric systems was obtained for n53: (2) The classification of ss-symmetries of planar
systems was obtained. It was shown that planar systems have only four classes of linear
ss-symmetries. Any symmetric planar dynamic systems should be conjugate to one of them.
Then a set of algebraic equations were given to calculate the Lie algebra of the largest
ss-symmetry group for a given system. From this Lie algebra the largest connected ss-symmetry
group of the system is easily constructible. Finally, certain controllability properties of
symmetric control systems were revealed.

Linear symmetry is co-ordinate dependent. Converting the results of linear symmetry to
co-ordinate free symmetries remains for further study.

APPENDIX A

A.1. Semi-tensor product of matrices

Here we briefly introduce the semi-tensor product of matrices. It can be considered as a
notation, and will be used as an auxiliary tool in our computations.

Definition A.1 (Cheng [13])
Let A 2Mm�n and B 2Mp�q: If n ¼ pt; i.e. p is a divisor of n; the left semi-tensor product (right
semi-tensor product) of M and N; denoted by MrN (MsN), is defined as

ArB ¼ AðB� ItÞ; ðAsB ¼ AðIt� BÞÞ ðA1Þ
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If nt ¼ p; then

ArB ¼ ðA� ItÞB; ðAsB ¼ ðIt� AÞBÞ ðA2Þ

In either (A1) or (A2) when n ¼ p; ArB becomes conventional matrix product. Hence, the
left semi-tensor product is obviously a generalization of the conventional matrix product. So in
the following we assume the default matrix product is the left semi-tensor product and use AB
for ArB: (In fact, the right semi-tensor product is also a generalization of conventional
product. But the left semi-tensor product has more nice properties [13]. It is, therefore, more
useful.)

We cite some fundamental properties of the semi-tensor product, which will be used in the
sequel.

Proposition A.2 (Cheng [13])
1. If A 2Mm�n and either m is a divisor of n or n is a divisor of m; then Ak (Ask) is defined as

A1 ¼A; ðAs1 ¼ A; Þ

Akþ1 ¼AkrA; ðAsðkþ1Þ ¼ AsksAÞ

Particularly if V is a row or column vector, then Vk is always well defined.
2. Denote by x ¼ ðx1; . . . ;xnÞ

T 2 Rn: Then xk is a redundant pseudo-basis of the kth
homogeneous polynomials. (A set is called a pseudo-basis if it contains a basis.) Therefore, a kth
homogeneous polynomial pkðxÞ can be expressed as

pkðxÞ ¼ fxk where f T 2 Rnk

But f is not unique because xk contains linearly dependent components.
3. Let A; B; C be three matrices with proper dimensions such that the involved left (right)

semi-tensor products are well defined, then

ArðBrCÞ ¼ ðArBÞrC ðAsðBsCÞ ¼ ðAsBÞsCÞ ðA3Þ

ðAþ BÞrC ¼ ArC þ BrC ððAþ BÞsC ¼ AsC þ BsCÞ ðA4Þ

ArðBþ CÞ ¼ ArBþ ArC ðAsðBþ CÞ ¼ AsBþ AsCÞ ðA5Þ

That is, the left (right) semi-tensor product is associative and distributive.
4. If x 2 Rt and A 2Mm�n; then

xrA ¼ ðIt� AÞrx ðA6Þ

Remark A.3
From the definition one sees that the semi-tensor product can be expressed directly
by tensor product and conventional product. One significant advantage of semi-tensor
product is that the associative rule holds between semi-tensor product and conventional
product because the conventional product can be considered as a particular case of the
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semi-tensor product, while the associativity doesn’t hold between tensor product and
conventional product.

A.2. Proof of Theorem 3.2

Definition A.4
A smooth function pðxÞ 2 VðRnÞ is A 2Mn�n invariant if

LAxpðxÞ ¼ 0 ðA7Þ

The meaning of ‘invariant’ is from the following observation: since LAxpðxÞ � 0; then
Lk
AxpðxÞ ¼ 0; k > 1: Using the Taylor series expansion, we have

ðft
AxÞ

npðxÞ ¼ pðeAtxÞ ¼
X1
k¼0

Lk
AxpðxÞ

tk

k!
¼ pðxÞ

That is, pðxÞ is invariant with respect to the integral curve of Ax:
In some literatures, pðxÞ is also called a first integral of the linear vector field Ax:

Lemma A.5
Let A ¼ 0

1
�1
0

� �
: Then A has no invariant polynomial of odd degrees.

Proof
We have only to prove the claim with respect to homogeneous polynomials. Assume
gðy1; y2Þ ¼

P2lþ1
i¼0 aiy

i
1y

2lþ1�i
2 and LAygðy1; y2Þ ¼ 0: Then

0 ¼ LAygðy1; y2Þ ¼
@g

@y

�y2

y1

 !
¼ �

X2lþ1
i¼0

iaiy
i�1
1 y2l�iþ22 þ

X2lþ1
j¼0

ð2l þ 1� jÞajy
jþ1
1 y2l�j2

¼ �
X2l�1
j¼0

ðj þ 2Þajþ2y
jþ1
1 y2l�j2 þ

X2l�1
j¼0

ð2l þ 1� jÞajy
jþ1
1 y2l�j2 � a1y

2lþ1
2 þ a2ly

2lþ1
1

Comparing the coefficients on both sides yields

a1 ¼ 0; a2l ¼ 0 ðj þ 2Þajþ2 ¼ ð2l þ 1� jÞaj ; j ¼ 1; 2; . . . ; 2l � 1

Hence,

ai ¼ 0; 04i42l þ 1 &

Lemma A.6
Let A be as in Lemma A.5. A has no invariant polynomial of even degree with odd powers on
both two variables.
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Proof
Set gðy1; y2Þ ¼

Pm�1
i¼0 a2iþ1y

2iþ1
1 y2m�2i�12 ; then

0 ¼ LAygðy1; y2Þ ¼
@g

@y

�y2

y1

 !

¼ �
Xm�1
i¼0

ð2i þ 1Þa2iþ1y2i1 y
2m�2i
2 þ

Xm�1
j¼0

ð2m� 2j � 1Þa2jþ1y
2jþ2
1 y2m�2j�22

¼ �
Xm�1
i¼1

ð2i þ 1Þa2iþ1y2i1 y
2m�2i
2 þ

Xm�1
i¼1

ð2m� 2i þ 1Þa2i�1y2i1 y
2m�2i
2

� a1y
2m
2 þ a2m�1y

2m
1

Comparing the coefficients yields

a1 ¼ 0; a2m�1 ¼ 0; ð2i þ 1Þa2iþ1 ¼ ð2m� 2i þ 1Þa2i�1; i ¼ 1; 2; . . . ;m� 1

which implies

a2iþ1 ¼ 0; 04i4m� 1 &

Lemma A.7
Consider oð3;RÞ; and a polynomial

gðx1; x2; x3Þ ¼
X

i1þi2þi3¼2k

ai1i2i3x
i1
1 x

i2
2 x

i3
3

If gðxÞ is oð3;RÞ invariant, then for the terms with at least one of i1; i2; or i3 is odd, we have

ai1i2i3 ¼ 0

Proof
Let v1; v2; v3 be a set of canonical basis of oð3;RÞ as

v1 ¼

0 0 0

0 0 �1

0 1 0

0
BB@

1
CCA; v2 ¼

0 0 1

0 0 0

�1 0 0

0
BB@

1
CCA; v3 ¼

0 �1 0

1 0 0

0 0 0

0
BB@

1
CCA

Then Lvixg ¼ 0; i ¼ 1; 2; 3:
Assume i1 is odd. From Lv1xg ¼ 0; we have

@g

@x

0

�x3

x2

0
BB@

1
CCA ¼ 0

Using Lemma A.5, we have ai1i2i3 ¼ 0:
Similarly, when i2 or i3 is odd, we also have ai1i2i3 ¼ 0: &
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Lemma A.8
Let f 2H2k

3 be expressed as

f ðxÞ ¼

f1

f2

f3

0
BB@

1
CCA; fi ¼

X
i1þi2þi3¼2k

aii1i2i3x
i1
1 x

i2
2 x

i3
3 ; i ¼ 1; 2; 3

Assume it is oð3;RÞ invariant, i.e.

½vix; f � ¼
@f

@x
vix� vif ¼ 0; i ¼ 1; 2; 3

Then f ðxÞ � 0:

Proof
Since

@f

@x
vix ¼ vif ; i ¼ 1; 2; 3

a straightforward computation yields the following;

@f1
@x

0

�x3

x2

0
BB@

1
CCA ¼ @f2@x

x3

0

�x1

0
BB@

1
CCA ¼ @f3@x

�x2

x1

0

0
BB@

1
CCA ¼ 0 ðA8Þ

@f2
@x

0

�x3

x2

0
BB@

1
CCA ¼ �f3; @f3

@x

0

�x3

x2

0
BB@

1
CCA ¼ f2;

@f3
@x

x3

0

�x1

0
BB@

1
CCA ¼ �f1 ðA9Þ

Consider (A8). According to Lemma A.7, every variable in each non-zero term of fi should
have even degree.

Observe (A9). On the left-hand side of the equation, each term has at least one variable with
odd degree, while on the right-hand side the degrees of all variables are even. It follows that

f1 ¼ f2 ¼ f3 � 0; ) f � 0 &

Lemma A.9
Given a polynomial

gðx1; x2; x3Þ ¼
X

i1þi2þi3¼2kþ1

ai1i2i3x
i1
1 x

i2
2 x

i3
3

and assume Lv1xg ¼ 0: Then

g ¼
X

j1þj2þj3¼k

bj1j2j3x
2j1
1 x2j22 x2j33

 !
x1 ðA10Þ
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Proof
Since Lv1xg ¼ 0; we have

@g

@x

0

�x3

x2

0
BB@

1
CCA ¼ 0

If i1 is even, then i2 þ i3 is odd. From Lemma A.7, we have ai1i2i3 ¼ 0:
If i1 is odd, then either both i2 and i3 are odd, or both i2 and i3 are even. In the first case,

according to Lemma A.6, ai1i2i3 ¼ 0: In the second case assume i1 ¼ 2j1 þ 1; i2 ¼ 2j2; i3 ¼ 2j3; it
follows that

bj1j2j3 ¼ að2j1þ1Þð2j2Þð2j3Þ; j1 þ j2 þ j3 ¼ k

The conclusion follows. &

Remark A.10
If Lvixg ¼ 0; i ¼ 2 or i ¼ 3; similar argument shows that

g ¼
X

j1þj2þj3¼k

bj1j2j3x
2j1
1 x2j22 x2j33

 !
xi

Lemma A.11
Let f ðxÞ 2H2kþ1

3 be expressed as

f ðxÞ ¼

f1

f2

f3

0
BB@

1
CCA

where f1; f2; f3 are 2kþ 1 homogeneous polynomials. If

@f

@x
vix ¼ vif ; i ¼ 1; 2; 3

then

f1 ¼
X

j1þj2þj3¼k

aj1j2j3x
2j1
1 x2j22 x2j33

 !
x1

f2 ¼
X

j1þj2þj3¼k

bj1j2j3x
2j1
1 x2j22 x2j33

 !
x2

f3 ¼
X

j1þj2þj3¼k

cj1j2j3x
2j1
1 x2j22 x2j33

 !
x3

ðA11Þ

Moreover, if ak00 ¼ 0; then

aj1j2j3 ¼ 0; bj1j2j3 ¼ 0; cj1j2j3 ¼ 0
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Proof
From Equation (A8) and Lemma A.9 we have (A11). Then using

@f ðxÞ
@x

v3x ¼ v3f ðxÞ

the following can be deduced directly.

@f2
@x

�x2

x1

0

0
BB@

1
CCA ¼ f1 ðA12Þ

@f1
@x

�x2

x1

0

0
BB@

1
CCA ¼ �f2 ðA13Þ

It follows from (A12) and (A13), respectively, thatX
j1þj2þj3¼k

�bj1j2j3ð2j1Þx
2j1�1
1 x2j2þ22 x2j33 þ

X
j1þj2þj3¼k

bj1j2j3 ð2j2 þ 1Þx2j1þ11 x2j22 x2j33

¼
X

i1þi2þi3¼k

ai1i2i3x
2i1þ1
1 x2i22 x2i33

¼
X

i1þi2þi3¼k
i14k�1; i251

½�2ði1 þ 1Þbði1þ1Þði2�1Þi3 þ ð2i2 þ 1Þbi1i2i3 �x
2i1þ1
1 x2i22 x2i33 þ bk00x

2kþ1
1 ðA14Þ

and

�
X

j1þj2þj3¼k

ð2j1 þ 1Þaj1j2j3x
2j1
1 x2j2þ12 x2j33 þ

X
j1þj2þj3¼k

ð2j2Þaj1j2j3x
2j1þ2
1 x2j2�12 x2j33

¼ �
X

i1þi2þi3¼k

bi1i2i3x
2i1
1 x2i2þ12 x2i33

¼
X

i1þi2þi3¼k
i151; i24k�1

½�ð2i1 þ 1Þai1i2i3 þ 2ði2 þ 1Þaði1�1Þði2þ1Þi3 �x
2i1
1 x2i2þ12 x2i33 þ a0k0x

2kþ1
2 ðA15Þ

Comparing coefficients on both sides of (A14), we have

ð2i2 þ 1Þbi1i2i3 � 2ði1 þ 1Þbði1þ1Þði2�1Þi3 ¼ ai1i2i3

i1 þ i2 þ i3 ¼ k; i14k� 1; i251

bk00 ¼ ak00 ¼ 0

ðA16Þ

Similarly, (A15) provides

ð2i1 þ 1Þai1i2i3 � 2ði2 þ 1Þaði1�1Þði2þ1Þi3 ¼ bi1i2i3

i1 þ i2 þ i3 ¼ k; i151; i24k� 1

b0k0 ¼ a0k0

ðA17Þ
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Therefore,

2ði2 þ 1Þaði1�1Þði2þ1Þi3 ¼ ð2i1 þ 1Þai1i2i3 � bi1i2i3

ð2i2 þ 1Þbi1i2i3 ¼ ai1i2i3 þ 2ði1 þ 1Þbði1þ1Þði2�1Þi3

ak00 ¼ bk00 ¼ 0

ðA18Þ

It follows that ai1i20 ¼ bi1i20 ¼ 0; i1 þ i2 ¼ k:
Similarly, we have

2ði3 þ 1Þaði1�1Þi2ði3þ1Þ ¼ ð2i1 þ 1Þai1i2i3 � ci1i2i3

and

ð2i3 þ 1Þci1i2i3 ¼ ai1i2i3 þ ð2i1 þ 1Þcði1þ1Þi2ði3�1Þ

and hence

ai1i2i3 ¼ ci1i2i3 ¼ 0; i1 þ i3 ¼ k� i2 or i1 þ i2 þ i3 ¼ k

Similarly, we also have

bi1i2i3 ¼ 0 &

The following lemma is motivated by the main result of [6].

Lemma A.12
Consider the following system

’x ¼ f ðxÞ ¼
Xt
i¼1

piðxÞKix; x 2 Rn; t 2 Zþ ðA19Þ

where piðxÞ is a polynomial and Ki 2Mn�n: System (A19) is ss-symmetric with respect to
G5GLðn;RÞ if

1. piðxÞ; i ¼ 1; . . . ; t are gðGÞ invariant;
2. Ki; i ¼ 1; . . . ; t are in the centre of gðGÞ [15], where gðGÞ is the Lie algebra of G:

Proof
Let V 2 gðGÞ:

adVx f ðxÞ ¼
Xt
i¼1

ðLVxpiðxÞKixþ piðxÞadVxKixÞ

¼
Xt
i¼1

ðLVxpiðxÞKix� piðxÞ½V ;Ki�xÞ ¼ 0

The conclusion follows from Lemma 2.4. &

Lemma A.13
System (1) with n ¼ 3 has an ss-symmetry group G ¼ SOð3;RÞ; iff

fjðxÞ ¼
X1
i¼0

ajkjjxjj
2ix; ajk 2 R; j ¼ 0; 1; . . . ;m ðA20Þ
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Proof
(Sufficiency) The sufficiency follows from Lemma A.12.

(Necessity) Consider system (1) with n ¼ 3: Assume it is state space symmetric with respect to
G ¼ SOð3;RÞ; and

fjðxÞ ¼
X1
r¼0

f jr ðxÞ

where f jr ðxÞ 2H
r
n: Now if r is even, according to Lemma A.8, f jr ¼ 0: So we assume r ¼ 2kþ 1:

Denote the coefficient of x2kþ11 in f j2kþ1ðxÞ by ak ¼ ak00: Set

gj2kþ1ðxÞ ¼ f j2kþ1ðxÞ � akjjxjj
2kx

According to Lemma 2.4, a straightforward computation shows

@g2kþ1
@x

vix ¼ vig2kþ1; i ¼ 1; 2; 3

Now Lemma A.9 assures

g2kþ1ðxÞ � 0

It follows that

f2kþ1ðxÞ ¼ akjjxjj
2kx &

Proof of Theorem 3.2
From the proof of Lemma A.13 one sees easily that the basic trick used in the proof is
comparing a pair of variables. It is obvious that this method can be extended to the case of n > 3:
Theorem 3.2 follows. &

A.3. Proof of Theorem 4.1

First, we want to show that if system (1) with n ¼ 2 is ss-symmetric, then it can be expressed in a
particular form, satisfying certain conditions. To get a motivation for this form we recall (21). It
is easy to see that (21) has the form as

fjðxÞ ¼
X1
n¼0

pjnðxÞB
j
nx; x 2 R2; j ¼ 0; . . . ;m ðA21Þ

(Since the following argument is independent of j; for notational ease, j is omitted in the rest of
this proof.) Moreover, for any S 2 soð2;RÞ; or, equivalently, simply choose a basis as

S ¼
0 1

�1 0

 !

we have

LSxpnðxÞ ¼ 0 ðA22Þ

½S;Bn� ¼ 0 ðA23Þ
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According to Lemma A.12, (1) has ss-symmetry group soð2;RÞ if it has the form (A21),
satisfying (A22)–(A23).

In the following lemma we claim that the aforementioned form and conditions are universal
for all planar ss-symmetric systems.

Lemma A.14
Let V 2 glð2;RÞ and G ¼ feVtjt 2 Rg: A planar system

’x ¼ f ðxÞ; x 2 R2 ðA24Þ

is symmetric with respect to G; iff

(i) f ðxÞ can be expressed as (A21);
(ii) pn and Bn satisfy (A22) and (A23), respectively.

Proof
Note that adVx does not change the degree of each homogeneous component in f ðxÞ; so we can
simply assume f ðxÞ is a homogeneous vector field. That is, set

f ðxÞ ¼

Pn
i¼1 aix

n�i
1 xi2Pn

j¼1 bjx
n�j
1 xj2

 !
ðA25Þ

To begin with, we assume V is in a Jordan canonical form.
Case 1: Assume

V ¼
l1 0

0 l2

 !

Using Lemma 2.4, ½Vx; f � ¼ 0 yields

ððn� i � 1Þl1 þ il2Þai ¼ 0

ððn� jÞl1 þ ðj � 1Þl2Þbj ¼ 0; i; j ¼ 0; . . . ; n
ðA26Þ

To get non-zero ai; bj ; we need

det
n� i � 1 i

n� j j � 1

 !
¼ ðj � i � 1Þðn� 1Þ ¼ 0 ðA27Þ

If n ¼ 1; f ðxÞ is linear, and the conclusion comes from a straightforward computation. We
consider n > 1 case. From (A27) we have

j � i � 1 ¼ 0 ðA28Þ

From (A26) we also have

ðn� jÞl1 þ ðj � 1Þl2 ¼ 0 ðA29Þ

Since l1 and l2 cannot be zero simultaneously, we may assume l1=0; and set m ¼ l2=l1:
According to (A29), m is a rational number. First, we assume l2=0: Then there exist two
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co-prime integers p; q; such that

m ¼
p

q
ðA30Þ

Then (A29) yields that

i ¼ j � 1 ¼ tq; q > 0; p50

n ¼ tðq� pÞ þ 1; t ¼ 1; 2; . . .

The form of f ðxÞ follows as

ftðq�pÞþ1ðxÞ ¼ x
�tp
1 x

tq
2

at 0

0 bt

 !
x1

x2

 !
; t ¼ 1; 2; . . . ðA31Þ

On the other hand, consider V-invariant polynomial. Assume

pn�1ðxÞ ¼
Xn�1
k¼0

ckx
n�k�1
1 xk2

From LVxpn�1ðxÞ ¼ 0 we have that

ðn� k� 1Þl1 þ kl2 ¼ 0 ðA32Þ

Comparing (A32) with (A29), one sees easily that x
�tp
1 x

tq
2 is the set of solutions of (A22) under

this pair of ðl1; l2Þ: Moreover assume l1=l2: Then (A31) presents all the solutions satisfying
(A22)–(A23).

Now assume l2 ¼ 0: It is easy to see that the vector fields, satisfying (A26), have the form as

ftðxÞ ¼ xt�12

at 0

0 bt

 !
x1

x2

 !
ðA33Þ

which is the set of solutions of (A22)–(A23) with respect to l2 ¼ 0:
Finally, assume l1; l2 are complex numbers. We may allow f ðxÞ to have complex coefficients.

Then the above argument remains available. Say, l1;2 ¼ a	 bJ; where J ¼
ffiffiffiffiffiffiffi
�1

p
: Then from

(A29)–(A30) we have a ¼ 0; m ¼ �1: It implies that

V ¼
J 0

0 J

 !
ðA34Þ

Case 2: Assume

V ¼
l 1

0 l

 !

Lemma 2.4 yields

lðn� 1Þai þ ðn� i þ 1Þai�1 � bi ¼ 0

lðn� 1Þbi þ ðn� i þ 1Þbi�1 ¼ 0; i ¼ 0; . . . ; nþ 1
ðA35Þ

where for notational ease, we use a�1 ¼ b�1 ¼ anþ1 ¼ bnþ1 ¼ 0:
First, we assume l=0: Using the second equation of (A35) and setting i ¼ 0; we get b0 ¼ 0:

Then we can show recursively that all bi ¼ 0: Then the first equation implies all ai ¼ 0: So there
is no non-trivial solution. Next, let l ¼ 0: The second equation provides non-zero solution as
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bn=0 and bi ¼ 0; i=n: Plugging them into the first equation yields: an=0 and an�1 ¼ bn=0;
ai ¼ 0; i4n� 2: Then the non-trivial solution fn becomes

fn ¼
bnx1x

n�1
2 þ anx

n
2

bnx
n
2

0
@

1
A ¼ xn�12

bn an

0 bn

0
@

1
A x1

x2

 !
ðA36Þ

Similarly, we can prove that it consists of all the solutions of (A22)–(A23).
Finally, we consider the case if V is not in the Jordan canonical form. Taking a linear

transformation y ¼ Tx; equation (12) becomes

½T
*
ðVxÞ;T

*
ðf ðxÞÞ� ¼ 0

Now assume f ðxÞ has the form as in (A25). Then

T
*
ðVxÞ ¼ TVT�1y

T
*
ðf ðxÞÞ ¼

Pn
i¼1 *aiy

n�i
1 yi2

Pn
j¼1

*bjy
n�j
1 yj2

0
B@

1
CA

We, therefore, can assume TVT�1 has a Jordan canonical form. Assume it is symmetric with
respect to a one-dimensional group

G ¼ feTVT
�1tjt 2 Rg

then the original system is obviously symmetric with respect to

G ¼ feVtjt 2 Rg

because (12) is co-ordinate independent. Moreover, since under y the system has the form of
(A21), then

T�1
*
ðfjðyÞÞ ¼ T�1

*
ðpnðyÞBnyÞ ¼ pnðTxÞT�1BnTx

That is, the original system also has the form of (A19). Since (A22) and (A23) are co-ordinate
independent, they hold for the original system too. The proof is completed. &

The following generalization is an immediate consequence of the proof of Lemma A.14.

Lemma A.15
A planar system

’x ¼ f ðxÞ; x 2 R2 ðA37Þ

has a symmetry group G5GLð2;RÞ; iff

(i) f ðxÞ can be expressed as (A21);
(ii) the pn and Bn satisfy (A22) and (A23) with respect to any S 2 gðGÞ:

Next, we consider a possible symmetry group, G; of dimension greater than one. Let 0=A 2
gðGÞ: gðGÞ is the Lie algebra of G:
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Case 1: Assume

A ¼
l1 0

0 l2

 !

From Lemma A.14 we have

f ¼
X1
i¼0

cipiðxÞ
ai 0

0 bi

 !
x1

x2

 !

where piðxÞ ¼ x
�tp
1 x

tq
2 : Let

B ¼
b11 b12

b21 b22

 !
2 gðGÞ

Then

LBxpiðxÞ ¼ �tpx
�tp�1
1 x

tq
2 ðb11x1 þ b12x2Þ þ tqx

�tp
1 x

tq�1
2 ðb21x1 þ b22x2Þ ¼ 0 ðA38Þ

If p=0; it follows that

�b11pþ b22q ¼ 0

b12 ¼ b21 ¼ 0

which implies that

b22

b11
¼

p

q
¼

l2
l1

That is A and B are linearly dependent, and dimðGÞ ¼ 1:We have to assume p ¼ 0 for exploring
new elements. It implies that

A ¼
l1 0

0 0

 !
equivalently A ¼

1 0

0 0

 !

Then from (A38), we have b21 ¼ b22 ¼ 0: That is,

B ¼
b11 b12

0 0

 !

To make

B;
ai 0

0 bi

 !" #
¼ 0

it is obvious that if b12=0 then ai ¼ bi: We conclude that

g ¼ Span
1 0

0 0

 !
;

0 1

0 0

 !( )
ðA39Þ
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and the corresponding system is

’x ¼
X1
i¼0

aix
i
2

x1

x2

 !
ðA40Þ

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1
In Case 1, if l2=0; we can exchange x1; x2 to get the required form. In fact, Cases 1, 2, and 4
are discussed in above. The only new thing is Case 3. Previously, it was treated as a special case
of Case 1 with complex eigenvalues. Starting from Case 1 with V as in (A34), we can do the
following transformation: Set

x ¼ Ty ¼
1 1

J �J

 !

Then

T
*
ðVyÞ ¼ TVT�1x ¼

0 1

�1 0

 !
x

and

ðT�1Þnp2nðyÞ ¼ p2nðT�1xÞ ¼
an

2n
ðx21 þ x22Þ

n

which is the required form. &

A.4. Swap matrix

Definition A.16 (Cheng [13], Magnus and Neudecker [18])
A swap matrix, W½m;n� 2Mmn�mn; is constructed in the following way: index its columns by
ð11; 12; . . . ; 1n; . . . ;m1;m2; . . . ;mnÞ and its rows by ð11; 21; . . . ;m1; . . . ; 1n; 2n; . . . ;mnÞ: Then the
elements of W½m;n� are defined as

wðIJÞ;ðijÞ ¼ dI ;Ji;j ¼
1 I ¼ i and J ¼ j

0 otherwise

(
ðA41Þ

(In [18] it is called the permutation matrix. But we reserve this name for general permutation
case.)

We cite some basic properties of the swap matrix here.

Proposition A.17

1.

WT
½m;n� ¼W�1

½m;n� ¼W½n;m� ðA42Þ

2. Given a matrix A 2Mm�n with its row staking form VrðAÞ and column staking form VcðAÞ:
Then

VcðAÞ ¼W½m;n�VrðAÞ; VrðAÞ ¼W½n;m�VcðAÞ ðA43Þ

D. CHENG, G. YANG AND Z. XI78

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2007; 17:51–81

DOI: 10.1002/rnc



3. Let V 2 Rt and A 2Mm�n: Then

VA ¼ ðIt� AÞV ðA44Þ

A.5. Proof of Theorem 5.1

A straightforward computation shows the following lemma:

Lemma A.18
The differential of a product of two matrices of function entries satisfies the following:

DðAðxÞBðxÞÞ ¼ DAðxÞrBðxÞ þ AðxÞDBðxÞ ðA45Þ

Using (A45), we can prove the following differential formula inductively:

Lemma A.19

Dðxkþ1Þ ¼ Ckðxk� InÞ ¼ Ckrxk ðA46Þ

Combining (A46) with (A44), it is easy to prove the following formula:

LVxfkx
k ¼ fkCk�1x

k�1Vx� Vfkx
k ¼ fkCk�1ðInk�1 � VÞxk � Vfkx

k; k ¼ 1; 2; . . . ðA47Þ

Now to get unique solution, we convert it back to the conventional basis as

LVxfkx
k ¼ ½fkCk�1ðInk�1 � VÞ � Vfk�TNðn; kÞxk; k ¼ 1; 2; . . . ðA48Þ

Therefore, the derivative is zero, iff

½fkCk�1ðInk�1 � VÞ � Vfk�TNðn; kÞ ¼ 0; k ¼ 1; 2; . . . ðA49Þ

To simplify (A49) we need the following formula [13], which can be proved via direct
computation.

Lemma A.20
Let A 2Mm�n; B 2Mq�p; and Z 2Mn�q: Then the column stacking form of the product is

VcðAZBÞ ¼ ðBT� AÞVcðZÞ ðA50Þ

Using (A44) again, (A49) can be converted as

LVxfkx
k ¼ ðTT

Nðn; kÞ � ðfkCk�1ÞÞVcðInk�1 � VÞ � ððTT
Nðn; kÞf

T
k Þ � InÞVcðVÞ ¼ 0

k ¼ 1; 2; . . . ðA51Þ

To convert (A51) to a standard linear equation, we need one more formula, which itself is
important.

Proposition A.21
Let A 2Mm�n and B 2Mp�q: Then

VcðA� BÞ ¼ ðIn�W½m;q�ÞrVcðAÞrVcðBÞ

¼ ðIn�W½m;q�ÞrW½pq;mn�rVcðBÞrVcðAÞ ðA52Þ
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VrðA� BÞ ¼W½mp;nq�ðIn�W½m;q�ÞrW½m;n�rðImn�Wp;qÞ

rVrðAÞrVrðBÞ

¼W½mp;nq�ðIn�W½m;q�ÞrW½m;n�rðImn�Wp;qÞ

rW½pq;mn�rVrðBÞrVrðAÞ ðA53Þ

Proof
We prove the first formula of (A52) only. The others are the immediate consequences of it.

To begin with, we assume n ¼ 1: Then it is obvious that

VcðAÞrVcðBÞ ¼ colða11B1; . . . ; a11Bq; . . . ; am1B1; . . . ; am1BqÞ

and

VcðA� BÞ ¼ colða11B1; . . . ; am1B1; . . . ; a11Bq; . . . ; am1BqÞ

Note that they consist of the same set of p-dimensional vectors but with different order of
double indexes. A straightforward computation shows that

VcðA� BÞ ¼W½m;q�rVcðAÞrVcðBÞ

Now for general case, we have only to do the swap for n blocks. The first formula of (A52)
follows immediately.

Denote by

En
k :¼ Ink�1 �W½nk�1;n�rVcðInk�1 Þ

Then using (A52), we have

VcðInn�1 Þ � V ¼ ErVcðVÞ

Plugging it into (A51) yields Theorem 5.1. &
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