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Stability and Stabilization of Block-cascading Switched
Linear Systems

Ya-Hong Zhu*, Dai-Zhan Cheng

Institute of Systems Science, Chinese Academy of Sciences, Beijing 100080, PRC

Abstract: The main purpose of this paper is to investigate the problem of quadratic stability and stabilization in switched
linear systems using reducible Lie algebra. First, we investigate the structure of all real invariant subspaces for a given
linear system. The result is then used to provide a comparable cascading form for switching models. Using the common
cascading form, a common quadratic Lyapunov function is (QLFs) is explored by finding common QLFs of diagonal blocks.
In addition, a cascading Quaker Lemma is proved. Combining it with stability results, the problem of feedback stabilization

for a class of switched linear systems is solved.
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1 Introduction

In recent years the investigation of switched sys-
tems has attracted more and more attention, we refer
to [1] and the references therein. This is due to the
fact that a wide variety of natural and engineering sys-
tems are inherently multi-model®~4. One important
topic in investigating switched systems is stability. To
solve this problem, an unnecessary but natural way is
to find a common Lyapunov function for all switch-
ing models. Such a Lyapunov function suffices for the
stability of systems under arbitrary switchings. For lin-
ear switching models, a quadratic Lyapunov function
(QLF) plays an important role.

Definition 1. Consider a switched linear system

T = Ag(t)x, xr eR"? (1)
where o(t) : [0 o0) — A is a right continuous mea-
surable mapping, and A = {1,2,---,N}. (1) is said
to be quadratically stable if there is a positive definite
matrix P > 0 such that

PA;+AfP<0, i=1,---,N. (2)
If (2) holds, we say that A;, 7 =1,---, N share a com-
mon QLF. The problem of finding a common QLF has
been studied for a long time. Many different methods
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have been used to solve itl®>7). Recently, a necessary

and sufficient condition for the existence of a common
QLF for a set of stable matrices was presented in [8].
In fact, [8] provides a numerical method for verifying
such an existence, and when n = 2 this becomes an
easily verifiable necessary and sufficient condition.

In general, stabilization in switched systems is an
even harder problem. We state it formally as follows:

Definition 2. Consider a switched linear system

T = Aa(t)x + Ba(t)ua(t), zeR"ueR™ (3)
where o(t) : [0 o0) — A is a right continuous measur-
able mapping, and A = {1,2,---, N}. The quadratic
stabilization problem is: find the feedback controls
u; = Kyz and ¢ = 1,---, N, and a positive definite
matrix P > 0, such that A, = A; + BjK;,i=1,---,N
share a common QLF 2T Pz.

For planar switched linear systems, a necessary and
sufficient condition was given in [9]. For n > 2, the
problem remains open.

A useful result, which may simplify the quadratic
stability and stabilization problem significantly, is the
following:

Theorem 18, Let 4;, i = 1,---,N be a set of
Hurwitz matrices with the same block upper triangu-
lar structure, i.e.,

Azu Al12 R Alls

0  A22 ... A2s
A= . “l i=1 N @)

0 0 - A
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where Afk, k=1,---,s are ng X ni matrices. Then
A; share a common QLF, iff A¥* share a common QLF
forall k=1, ---,s.

The purpose of this paper is to investigate when
the switched linear system (1) or closed-loop of (3) can
have the cascading form (4). Then Theorem 1 can be
used to test the quadratic stability of system (1), or
the stabilization of system (3).

This paper is organized as follows. Section 2 consid-
ers the relationship between cascading form and invari-
ant subspaces. Section 3 provides a complete descrip-
tion of the invariant subspaces of a given linear system.
Section 4 investigates quadratic stability by using cas-
cading realization. Section 5 considers the quadratic
stabilization problem by using a cascading form. Sec-
tion 6 provides a conclusion.

2 Cascading form vs. invariant subsp-
ace

In this section, we show that for a given matrix its
cascading form is closely related to its invariant sub-
spaces, which are defined as follows.

Definition 3[!% . 1. For a linear system

= Ax, zeR" (5)
a subspace V' C R" is called A-invariant if
AV C V.
2. For a linear control system
&= Ax+ Bu, xz€R" ueR™ (6)
a subspace V' C R™ is called (A, B)-invariant, if
AV CV +B (7)

where B = (b, -+, b,,) and B is the subspace spanned
by {b1,--,bm}.

When we consider the feedback case, the following
fact is important:

Lemma 1. (Quaker Lemma)'® A subspace V
is (A, B)-invariant, iff there exists a feedback control
u = Kz, such that

(A+ BK)V C V. (8)

Next, we consider when A; in system (1) can be
converted into cascading form (4) simultaneously.

Proposition 1. A;, i € A can be converted into
cascading form (4), iff there exists

0CNGWHG SV GVi=R"  (9)

to which all A; are invariant.
All proof in this paper is in the Appendix.

3 Structure of invariant subspaces

In this section, we investigate the structure of all
real invariant subspaces of given matrix A.
Suppose the minimum polynomial of a matrix A is

mA) = A= A)BA =) (A = \p)lex
()\ — a1 + ﬂli)cl ()\ — Q] — 512‘)01 s
(N —as + Bs1) (N — as — Bs1) (10)

where A\, t = 1---k, aj £ 844, j = 1,---,5 are two
groups of distinct real and complex eigenvalues of A
respectively.

Throughout this paper, we denote v; = a; + f5j1,
% = aj — Bji, and By = A2 — (y; + ;) A + |y1*] =
A? —2ajA+(a?+ﬁj2.)I,j= 1,---,s.

First, we need the following two decomposition re-
sults; they are well known facts in Linear Algebra.

Lemma 2], The whole space R” can be decom-
posed into several kernel subspaces as

R" =ker(A =MD" @ - @ ker(A — N ) @
ker(B1)* @ --- @ ker(Bs)® =

VieV,o---oVioW oW, @@ W,
(11)

where V; = ker(A — \)', t = 1,---,k, and W; =
ker(B;)%,j=1,---,s.

Lemma 31!, If a subspace H C R" is A-invariant,
then

H=HnNV)® --®HNV,)S(HNW)E---&(HNW;)

where V; and W; are as in (11).

Now we are ready to consider the set of all real in-
variant subspaces of A.

First, we consider the case in which matrix A has a
unique real eigenvalue.

Assumption 1. Matrix A has a unique real eigen-
value, and under basis e},---,ef', -+, el - esm A
can be expressed in Jordan canonical form, T-'AT =
diag{J1, -, Jm}, with

A1 0 -~ 0 O
0 X 1 0 O
Ji(A) = :
0 00 Al
000 0 A/ v
m
1=1,- ,m,zsi:n (12)
i=1
where T' = [e], -+, €', -+ ek -+ eim]
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Definition 4. For a vector £ € R™, the smallest
subspace Z (£, A) containing £ and A invariant is called
the A-cyclic subspace of &.

Remark 1. Let ¢ > 0 be the smallest integer such
that

Spa‘n{ga Afv Tt Atilf} = Span{fa A§7 e 7At§}

Then subspace Z(£, A) = Span{¢, AE, -+, A¥=1¢} and
dim(Z (£, A)) = t. The following lemma is obvious (or
a well known fact).

Lemma 4. If subspace H C R™ is A-invariant,
then H can be decomposed into the direct sum of sev-
eral A-cyclic subspaces.

Now we are ready to find any t¢-dimensional A-
invariant subspace, say H. Recalling matrix (12), we
denote: s = max{s;|i =1,---,m}, C = A — \l. Using
Z for the set of positive integers, we define

={k:(k1,k2,---,k7)eer

< m,
Zk‘j Zt,o < k‘j < kj+1 < S}
j=1

For each k € K, our purpose is to find k;, j =
1,---,7, dimensional linearly independent A-invariant
subspaces such that H is a direct sum of these linearly
independent subspaces.

Construct a set of vectors §; € R"

k;

m
:Z Czyleb .]: 7"')7- (13)

i=1 [=1

c!

=1 m,l=1,---,k;, are parameters with at

least one ¢ such that c7 # 0. Then, by straightfor-
ward computing we know that

& € ker(C*i)\ker(C*~1).
In addition, one sees easily that

Z(&;,0) = Span{&;, C&;, -+, CM 715} = Z(¢5, A).
(14)
Then we have the following result, which shows H can
be constructed by using such blocks.

Proposition 2. Assume Assumption 1 holds
for A. Then for each k¥ € K;, we can construct a
t-dimensional A-invariant subspace H C R" as a di-
rect sum of Z(¢;,C), that is, H = &7_,Z(§;,C), if
[67 & ,ch o ,c7m7kj] ,j=1,---,7 are linearly inde-

endent where & € R™ is constructed as in (13), and
Z(&;,C) is defined as in (14).

Proposition 3. Assume Assumption 1 holds

for A, and H C R” is a t-dimensional A-invariant

subspace. Then there exists a k£ € K; and a set
of hnearly independent vectors [c{ K, . ey ,c7m’ kj]T,
j=1,---,7, such that H = @j_lZ(ﬁg, ) where §; is

deﬁned as in (13), and Z(§;,C) is defined as in (14)
and 7 is a positive number determined by H itself.

Proposition 3 shows that the searching procedure
proposed in Proposition 2 can be used to find all A-
invariant subspaces.

Second, we consider the case in which matrix A has
a unique pair of complex eigenvalues.

Assumption 2. Matrix A has a unique pair of
conjugate complex eigenvalues o + 3; (v = a + 5;),

and under basis 77%,"',77%@1,"'7777171’" ,m25m A can
be expressed as diag{J1,- -, Jm}, where

a B 0 0 ,---, 0 O

-6 « 1 0 ,---, 0 O

0O 0 a B ,--+, 0 0

o 0 - a ,---, 0 0
Ji =

o o o o0 ,---, 0 O

o o o o ,---, 1 0

o o o 0 ,-, «a g

0 0 0 0 [ _6 @ 25, X2s;

m
i=1,--,m, Y si=n. (15)
=1

The canonical real Jordan block as in (15) is not
very convenient. We propose another canonical real
Jordan block as follows, which itself is interesting:

T AT =
a B 0 0 0 0
B a 1 0 0 0
0 0 a 8 0 0
0 0 -0 « 0 0
0O 0 0 0 0 0
0O 0 0 O 1 0
0 0 0 0 a 8
0O 0 0 0 -0 « 26, X 25
m
i=1,---,m, Zsizn. (16)
i=1

We prove it by constructing the transfer matrix 7". De-
note

Yy=a+Bi, y=a-pi, B=A"—(y+7)A+yI.

Then we define the transformation by

2L 2s; 28i—1 _ (A—al) 25, —2 _ B .,
s _nls , ls 6 i25i7€i8 ﬂnls ,
, B(A —al v B?

6?5173 — ( )7]281;61'251' 4= 25;

52 i 52771 3y
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B! B" YA —al v
62 25,761 — ( o )nfsl

% 571 nz % ﬂn
Then it is ready to verify that using linear transforma-
tion

T:[e%,. %Sl,...,el 623”’”]

m? »Em

we have the canonical form (16). The canonical form
(16) will be used in the sequel.

Now we find any 2¢-dimensional A-invariant sub-
space, say H. We define s and K; as before, similar to
the real eigenvalue case. For each k € Ky, our purpose
is to find 2k;, j = 1,---,7 dimensional linearly inde-
pendent A-invariant subspaces, such that H is a direct
sum of these linearly independent subspaces.

Construct a set of vectors &; € R?",

m  2k;
=> > cel, j=1-,1 (17)
i=1 =1
where cjl7 i=1,---,m,l=1,---,2k;, are parameters

with at least one i, such that ¢/ i 20, — 1 #0or C‘Z 2%k, #0.
Then, by straightforward computlng we know that

& € ker(B")\ker(B" 1),

Then we have the following result, which shows that
H can be constructed by using this set of vectors.

Z(fjaA) = Span{€j7x4§j, e 7A2kj_1€4} =
A—al), B, B(A—al), B
Span{¢;, %fﬁ Efja %fg, 7 — 5
BYL BRYA—al
e e ) (18)

Proposition 4. Assume Assumption 2 holds for
A. Then for each k € K, we can construct a 2t-
dimensional real A-invariant subspace H C R?" as a
direct sum of Z(§;, A), that is H = ®]_; Z(&;, A), if ;
is constructed as in (17), Z(¢;, A) is defined as in (18),
and the set of 27 vectors

(Ci,zkj—la ) CJm,zkj—lv Ci,zkjv T ij,ij)v
(C{,Qk ,—C7m72kj71),j =17

are linearly independent.

Proposition 5. Assume Assumption 2 holds for
A. If a 2t-dimensional real subspace H C R?" is A-
invariant, then there exist a k € K; and a set of 27
linearly independent vectors

)t acym,zkjv_ci,zkﬁp e

J

(C{,zkrlv"ﬁcjm 2k, 717‘3] 2k; a"'vcjm,zkj)a
J & J J -
(Cl,ij’ Ok O 2k 107 7_Cm,2k_7~—1)aj =17

such that H = &7_;Z(&;,A4), and & is defined as in
(17), where 7 is a positive number determined by H
itself, and Z(¢;, A) is defined as in (18).

The proof is similar to that in Proposition 3.

Propositions 2~5 provide a complete description of
the ¢ dimensional invariant sub-spaces of matrix A,
whose Jordan blocks have only one real eigenvalue,
or are only a pair of conjugate complex eigenvalues.
Now we can put blocks of different eigenvalues together.
Combining Lemma 3. and the Propositions 2~4 yields
our main result for invariant subspaces. To state it we
need a new notation. Denote Zy as the set of non-
negative integers, and define an index set as

My ={p= (1, pies 1,
Nl+"'+ﬂk+2(ﬂk+1+"'

s likts) € 257
+ pigys) =t}

Theorem 2. Assume that matrix A has its min-
imum polynomial as (10), and R™ is decomposed as
n (11). Then a t-dimensional real A invariant sub-
space H is a direct sum of H;, ¢t = 1,---,k + s. Each
set of {H;} is determined by one pu € M;. That is,
a set of u;-dimensional subspaces H;, i = 1,---, k are
obtained from V;, and a set of 2uy;-dimensional sub-
spaces Hg4i, t = 1,---,s are obtained from W;.

Remark 2. If we replace the real basis with a
complex basis, using a similar approach we can find all
complex invariant subspaces.

Finally, we consider the Lie algebra generated by
{A;}, and have the following.

Proposition 6. If switched linear system (1) has
a cascading form and A = {Ax|A € A} then the new
system with an enlarged set of switching models

z= A(;(t)z, z€R"” (19)
also has a cascading form, where §(¢) : [0, o0) — A
is a right continuous measurable mapping.
4 Cascading realization vs. quadratic

stability

In this section, we consider the quadratic stability
of system (1) via a cascading transformation. Recall
Theorem 1, and assume that Afk, i=1,---, N, share
common QLFs P, k=1,---,s. Then Az share a com-
mon quadratic P. In the following, we will first con-
struct P.

Denote V¥ = —(P AR 4 (AF*YT Py); then V¥ > 0,
so there exists a positive number ¢; such that all the
eigenvalues of Vik, 1 = 1,---,N are greater than .
Then we denote

k—1
=max |Z Ajk TPQAJkH i=1,---,N
Jj=1
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k=2---,s (20)
and define a set of positive numbers as:

€
0<d) < ——
s —

0<6
USRSy

(s —k)’
(21)
Using (20) and (21), another sequence of positive
numbers can be defined recursively as

p1 =1
2 — Op b —
uk>max{6:‘j1;kMk, g/:fll},kzz,...,s_l.
Hs—1
M5>5571€S s

(22)

Using (22), we can construct a common QLF as
follows.

Lemma 5. Assume that AF* i =1,... N share
a common QLF P for each £k = 1,---,s, and that
there is a sequence {p; | ¢ = 1,---, s} defined through
(20)~(22). Then P = diag{p1 P, -, psPs} is a com-
mon QLF of A;, i = 1,---, N, where A¥* and A; are
defined as in Theorem 1.

Remark 3. A simple way to choose {4;} is to

let 9 = 6 < min{2(ssii) | ¢ = 1,---,5s — 1},

j=1,---,s. Then the sequence {y;} will also be sim-
plified significantly.

Remark 4. In searching for a common QLF,
P ~ kP, k>0, where ” ~” stands for equivalence.

Next, we give a step-by-step algorithm for con-
structing a common QLF via cascading form.

Algorithm 1.

Step 1. For each A;, find a set of basis under which
A; can be expressed in Jordan canonical form.

Step 2. Compute all invariant subspaces of A;.

1) Assume A; has eigenvalues A1, -+, A,. (For no-
tational ease, without loss of generality we can as-
sume w = 2.) Then, under basis e}, -
(s +t=mn), A; can be expressed as

s L1 t
©5 61,62, 1, €9,

Ai = diag{F1(\1), F2(A2)}
where

Fi(\) = diag{Js, (A1), -, Js,, (A1)}
Fy(\2) = diag{Ji,(A2)," -+, Ji,(A2)}

and Ji(\;) is in Jordan canonical form as in either (12)
or (15), s1+,- -, +s8m =8, t1 + -+, +t, = ¢, and

Ai[e%a"'veﬂ = [e%v"'aeﬂFl(/\l)
t

Ai[eéa o '762] = [657 o 'aeg]FQ(/\Q)'

2) Denote Wy = Span{ei, - -

{e3, eb}.

-, e5}, Wa = Span
Using Propositions 2 and 4, we can

°k k=2,---,5—1

find a p-dimensional A;-invariant subspace U }i in Wh,
pw = 1,--- s, and a v-dimensional A;-invariant sub-
space U2 in Wo, v=1,---,t.

3) Using Lemma 3, an h-dimensional A;-invariant

subspace can be obtained as V) = U, ® U, where
uw+v=nh.

Step 3. By looking for all possible V}! = V2 = ... =
VhN7 h=1,---,n—1, we can find whether there is an
h-dimensional A;-invariant (¢ = 1,---, N) subspace V,.

Step 4. If we can find 0 & Vi, G Vi, &

S Vi, = R", to which all A; are invariant,
where V3, = Span{ey,---,en,}, then under the basis
T = [e1," *,€hyy€hytls " €hay  *,En] A; can be si-

multaneously converted into cascading form (4), ¢ =
1,---,N.

Step 5. Using the method mentioned in [8] and
Lemma 5, we may find a common QLF Q of T~ 'A;T.

Step 6. With reference to the original coordi-
nate frame, (T71)TQ(T~1) is a common QLF of A;,
i=1,---,N.

Example 1. Let

10 —-105 7 )
10 1 10 9
_ 3 3 3
Sl IE I S R
3 3
40 =375 20 -—17
=7 3 -3 2
0 —4 0 0
A= 8 8§ -9 4
55 55 0
3 3 3

Under basis e; = (1,0,2,5)T, es = (3,2,3,5)T, e3 =
(9,8,5,10)T, ey = (5,2,6,16)T, A; can be converted
into Jordan canonical form as

-1 1 0 0
0o -1 0 O
0o 0 -1 0
o 0 0 -2

Under basis 1 = (1,0,2,5)T, o = (—1,0,1,0)7,
ns = (2,2,0,0)T, ny = (—2,0,—4,-9)T, Ay can be

converted into Jordan canonical form as

-3 1 0 0
0 -3 0 O
0 0 -4 0
o 0 0 -4

We will find common invariant sub-spaces of A; and
As.
1) 1-dimensional invariant sub-space of A;.
V= Span{aie; + bires}
V2 = Span{es}
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1-dimensional invariant sub-space of As.

Ull = Span{cins + dina}
U? = Span{m}

2) 2-dimensional invariant sub-space of A;

Vi =Span{aie; + bies, aze; + boes} =
(where (a1, b1) (a2, bs) are linearly independent)
Span{ey,es}

Vi =Z(eg + bey + ces, Ay — (—1)1y) =
Span{ea + bey + ces,e1}

Vi =V} @ V2

2-dimensional invariant sub-space of As

Uy = Span{n,n2}
U3 = Span{ns,na}
Us =Ul U}

3) 3-dimensional invariant sub-space of Aj.

V31 = Span{ey,es, ea}
‘/32 _ ‘/21 @ V12
‘/233 _ V22 @ V12

3-dimensional invariant sub-space of As

U =Uy0U]
Us =Uz U}

By solving a system of algebraic equations, we can
find all common invariant spaces of A; and As. Pre-
cisely, since U3 = V3!, if we choose a; = 1,b; = 0,
ag = —1,bp = 1, and ¢; = 1,d; = 0, then under
T = [m,n3,M2,M4], A1 and Az have the same block
upper triangle structure as

-1 1 -4 =5

0 -1 0 -1
—1 o
T=AT=4 o 1 o |
0 0 -2
3 0 1 0
0 -4 0
—1 o
T=&T= 4 o 3 ¢
0 0 0 -4

According to Theorem 1, if

-1 1
= ()

have a common QLF, and

22_ _]. 0 22_ _3 0
Al_(o o) =0

have a common QLF, then so do A; and As. Using the
method proposed in [8], we can find common QLF Py
and P as

10 30
as(on) m=(0)

It is easy to check that

PIAY + (AP = <_12 _14) <0
11 11\T _ —6 0
Py As +(A1)P1_<O 16 <0
P2 4 (42— (0 0 ) g
2 L0z 0 —16

-18 0
g prr = (0 ) <o

According to Lemma 5, for a large enough ps > 0,
Q = diag{ Py, uP>} is a common QLF of T-'A;T and
T-1A,T. With a direct computation we can choose
61 = 1.5, €2 = 5, and My = 44, so us > 8 is enough.
Choosing p2=10, and referring back to the original co-
ordinate frame, we have

P=(THTQT™) =
133.4444 —133.4444 113.4444 —72.6667
—133.4444 133.9444 —113.4444 72.6667
113.4444 —113.4444 123.4444 —72.6667
—72.6667 72.6667 —72.6667 44.0000

Then we can check that

PA; + ATP =
—555.1098 555.2764 —503.1108 315.6667
555.2764 —556.4431 503.2774 —315.666 7
—503.1108 503.2774 —511.1118 307.6667
315.6667 —315.6667 307.6667 —188.0000

0
PA; + ATP =103«
—1.0189 1.0189 —0.9019 0.5680
1.0189 —1.0229 0.9019 —0.5680 <0
—0.9019 0.9019 —0.9649 0.5700 '
0.5680 —0.5680 0.5700 —0.3440
Hence P is a common QLF of A; and As. ]

5 Quadratic stabilization

In this section, we consider the problem of the feed-
back quadratic stabilization of a switched linear system
(3). Consider system (6), for a given sequence of nested
subspaces of R™,

O O R S (S S A
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We look for feedback u = Kz, such that a sequence
of nested subspaces become the quasi-flag of the feed-
back closed-loop of (6). That is, there exists K such
that

(A+BEK)V; €V, i=1,-,s. (23)

In the following proposition, we will construct the ma-
trix K.

Proposition 7. (Cascading Quaker Lemma) For
a given sequence of nested subspaces of R"

0V ERE -GV GV =R"

there exits feedback K such that (23) holds, iff V; is
(A, B) — invariant, i =1,---,s — 1.

From the previously described coordinate frame, we
can find K such that A + BK has block upper trian-
gular form

A o X

x A2 ... X
A+ BK = : +

X X x A

Bl

32
: (Kl K2 ... K®) =

BS

A oL x
0 AQQ e X
: . . 24
0 0o --- 0 A% 24)

Then we have the following

Proposition 8. Assume there exists K such that
(24) holds. Moreover, (A“, BY),i=1,--- s are stabi-
lizable. Then system (6) is stabilizable.

Using the above approach to a switched linear sys-
tem (3), we have the following.

Proposition 9. Assume that there exists a quasi-
flag and with respect to this flag all switched models
are (Ayg, Bi) — invariant such that Ay + Bp K, k € A
have the form (24). Then system (3) is quadratically
stabilizable if

3=Al24+ Biu;, k€A i=1,--- s

are quadratically stabilizable.
6 Conclusion

This paper provides a systematic method to find
all possible real quasi-flags for a given matrix. With it,
all block upper triangular forms are obtained. It fol-
lows that all comparable upper triangular forms for a
set of matrices can also be obtained. When the Lie

algebra generated by a set of matrices is reducible,
a switched linear system can always be expressed in
cascading form. Using this form the verification of
quadratic stability for a switched system can be sim-
plified. A detailed algorithm is provided for this proce-
dure of cascading transformation. Finally, a cascading
Quaker Lemma is proven, and by combining it with
stability results a quadratic stabilization problem was
investigated.

Appendix

Proof of Proposition 1.

A; has the form (4). Let V; = Span col{(%j)},

j=1,---,5, where dj = ny +---+n;. Then it is easy
to see that for each V; € {V;}, V; is A, invariant.
(Sufficiency) Construct an n x n matrix T as

T:(g% }Ll 5% 22 N S 535)

where the set {£1, -, f,lll, e 5{, e fflj} is the ba-

sis of Vj, j = 1,---,s. Then it is easy to check that

T~1A;T has the form (4). O
Proof of Proposition 2. Note that

(Necessity) Assume

H > ET:Z(fj,C)

Jj=1

and dim(H) = t, dim(Z(&;,C)) = kj, and > _k; = t.
j=1

So to prove H = &7_; Z(§;,C), it suffices to show that

all {Z(¢;,C)|1 < j < 7} are linearly independent.

Therefore, it is enough to show that

Cu:=Z(£,,C)N >
v={1,,7H\u
u=1---,T. (A1)
We prove (Al) by contradiction. Assume C,, # {0}. A
simple computation shows that

Z(&,C) | =10}

A1 0 -0 0

0 A 1 -~ 0 0
AT =T |

0 0 0 Al

0 0 0 0 A/ 4,

where T = [CFi—1¢; CRi=2¢, .-+ C&;,&]. Tt is ob-
vious that the restriction of A to Z(¢;,C), denoted
by Alze, c), has only one eigenvector C’kf’lfj =

3

tor set of 30,1 .\, Z(&, C) is

D :zspan{C'kl_lfl, N O
Ck/wlilgqulv Ty Ck‘rilf‘r}

Yoy CZ,kj€17 j = 1,---,7. Meanwhile, the eigenvec-
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Because C,, # {0}, C*F+~1¢, € D. Therefore, we have
the following equation

Yo alhTle =0T (A2)

v={1,,7H\u

Denote
E, =

C%;kd’ ) quy;ifl T;i+1’ T C‘{,kT

C71n,kl’ T CZm_,klu,l 17::_]@1,”1’ ) C;m,kT mx (7—1)

Denoting X, = (a1, -+, Gu_1,0us1, - a7)", Yy =
(cFe oo BT (A2) becomes

E, X, =Y,

Because (c{’kj, - ,cz;l’kj)T,j =1,---,7 are linearly in-

dependent, rank(E,|Y,) # rank(E,). Hence (A2) has
no solution. It follows that C*+~1¢, doesn’t belong to
D, which leads to a contradiction. So C,, = {0}. This
ends the proof. O

Proof of Proposition 3. Using Lemma 4, H can
be decomposed as the direct sum of several (we say
7) A-cyclic subspaces, that is, H = ®7_,Z(§;, C), and
dlm(Z(gj,C)) = kj, j=1,-- 7. Since gj e R”, gj

m s

can be expressed as §; = E E cgleé, with a direct
i=1 I=1

computation we know

dim (Z(&;,C)) = maz{ 1 | ¢], #0,

1‘!

i=1,m, l=1,s}=Fk.  (A3)

Soc{l =0,l=Fk;+1,---,8;,i=1,---,m, then we es-
tablish that &; has the form (13). Since {Z(;,C)|1 <
j < 7} are linearly independent, that is, C,, = 0, by
the proof of Proposition 2 we know E, X, =Y, has no

solution, and [cj1 kj,c;kj,-'-,cjm kj]T, j=1,...,7 are
linearly independent. This ends the proof. U

Proof of Proposition 4. Similar to the proof of
Proposition 2, the dimension estimate shows that to
prove

H=©j,72(&,4)

we have only to show that { Z(¢;,A)|j=1,---,7} are
linearly independent. So it suffices to show that

Cu =2 (&, A) N Y Zk (6, A) | =
v={1,,7\u

{0}, w=1,--- 7 (A4)

We prove (A4) by contradiction. Assume C,, # {0}. A
straightforward computation shows that

AT =
a B 0 0 ,---, 0 0
-3 a 1 0 ,---, 0 O
0o 0 o B ,---, 0 0
o 0 -6 a ,---, 0 0
Tl -
0O 0 0 0 ,--, 0 0 (A5)
o o o O ,---, 1 O
o 0o 0 0 ,-, a p
0 0 0 0, =8 « 2k, x 2k
where
BFi—Y (A —al) BF—! B?
T:[ ﬂkj gjv 6]%,,1 fjv"'vﬁfja
B(A—al), B, (A—al)
e =, 285 6]

B2 A
Denote Q; as the restriction of A to Z(A4,§;), ie.
Qj = Alzag,), j=1,-++,7. From (A5) we know that
ker (Q? —2aQ; + (a® + ﬂQ)I) is spanned by a set of
linearly independent real vectors, and one of these sets
is
Bk)j*l m .

oj1 = ij = Z (Cz,zqu@zl + Cg,zkjeg)

i=1

BFi—1(A — al LN ,
dj2 = %fﬂ‘ = Z(Cg,zkjezl - Cz,zquezz)
=1

Meanwhile, if we denote Q, = A| ,
) > 26,4

v={1,-,7N\u
then the set of ker (Qi —2aQ, + (a® + BQ)I) is

D := span{dy1,0p2 | v=1,---;u—lju+1,---,7}.

Because C,, # {0}, it is easy to verify that C, is A-
invariant, then dim(Cy) = 2, so 0,1 € D and d,2 € D.
Hence, we have the following two equations:

Z av(svl + bv6v2 - 5u1 (AG)
v={1,,7H\u
Z CU51)1 + dv6v2 = 511,2- (A7)
v={1,,7\u
Denote (A8) (A9).
Define
Xul = (ala Cy Qy—1, Ayu41, 00, a’T)T
Xu2 = (bla Y buflv bu+17 R bT)T
Y = (Cizkuqv --,C%,%ufl)
Y2 = (le,zkua ) an,zku)T'
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Then (A6) becomes

<Eu1 Eu2 ) (Xu1> _ (Yu1>
Eu2 _Eul Xu2 B Yu2 .

Siﬁce 4 [C{ 2k; 71’.”’ij 2k; 71aci,2kjv"'vcjm,2kj]v
[C{,ij7”"cym,2k,7 CiQk —1v" " ij,2kj71]v J =
1,---, 7, are linearly mdependent, (A6) has no solution.

Similarly, (A7) has no solution. This leads to a contra-
diction. So C, = {0}, and hence H = &7_;Z(§;, A).
a

Proof of Proposition 6. Note that the prod-
uct of the same structures of upper triangular matrixes
makes the structure unchanged, as with the Lie bracket
[A, Bl = AB — BA. O

Proof of Lemma 5. Denote H; = PA; + A} P;
then (A10).

To show H; < 0, choose & € R™, k =1,---,s.
Then

&
@ nm | 2] =
5;
—Zukka f/ﬁ’z Z g
J=1 k=j+1

13 (A?’“)TP-fj + € PA?’C@] <

—Zukékvk wZ Z 15016517+

Jj=1k=j+1

Sl ()T PG =
J

& (—mVi' + (s = 1)01 1y, a1+

k—
Z (= (AT P2 AT gy, (Al1)

(5

Then it is easy to check that when (20) is satisfied,

—mV + (s — 1)011,, is a symmetric negative defi-

nite matrix, and so are the matrixes —u(V:¥ — (s —
k—1

k)(sklnk) + Z/’L](d (Ajk)TPZAjk) k = 2) T, S It
j=1 J

follows that H; < 0.
Proof of Proposition 7. Necessity is obvious,
we prove sufficiency. Suppose Vi = Span{es,---,en, },

‘/2 = Vvl U Span{enlJrlv"'aenz}v Ty stl =
VS—Z U Span{ens_g-i-h Y ens_1}7 Ve = Ve 1 U
Span{en, 41, - ,en.}. Because V; is (A4,B) —
invariant,

Ae; =wy — Bpy, where wy €V

Aen, =wn, — Bpn, where wp, €V;

Aen,+1 = Wny41 — Bltn,+1  where wy,, 41 € Va

Aens—l = Wny_y

Setting K = (Mlvﬂ% Mgy Bng_141s 7 '7Mns)(61a
'767%»)71) where fn, 41, Un,_1+2,° ", bn, are arbi-

trary m — dimensional vectors, it is easy to check that

(A+ BK)V, €V, i=1,---,s. O

— Bpp,_ , where w,,_, € Vs_1.
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