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Accessibility of Switched Linear Systems

Daizhan Cheng, Yuandan Lin, and Yuan Wang

Abstract—This note considers the controllability of switched linear sys-
tems. The structure of accessibility Lie algebra is revealed. Some accessi-
bility properties are proved. Certain necessary and sufficient conditions for
(local or global, weak or normal) controllability of a large class of switched
linear systems are obtained.

Index Terms—Accessibility, controllability, Lie algebra, switched linear
system.

I. INTRODUCTION

Consider a switched linear system

_x(t) = A�(t)x(t) +B�(t)u(t); x(t) 2 n
; u(t) 2 m

(1)

where the switching functions �(t) : [0;1) ! � are piecewise con-
stant, right continuous mappings with � = f1; 2; . . . ; Ng, and where
controls u(t) : [0;1) ! m are piecewise constant functions. We
use x(�; t0; x0; u; �) to denote the solution of the system satisfying the
initial value x(t0) = x0 with the switching function � and the input
functionu. The controllability property of such switched linear systems
was investigated by many authors, e.g., [3], [13], [8], [9], and [14]. The
following notion of controllability was adopted in [9] and [14].

Definition 1.1: Consider system (1). A state p 2 n is controllable
at time t0, if there exist a time instant tf > t0, a switching path � :
[t0; tf ] ! �, and an input function u(t), such that x(tf ; t0; p; u; �) =
0. The set of controllable points is a vector space. The largest subspace
V of n in which every point is controllable is called the controllable
subspace. The system is controllable if V = n.

Let L = hA1 � � �AN jB1; . . . ; BNi, the smallest space containing
the column vectors of B1; . . . ; BN that is invariant under the transfor-
mations A1; . . . ; AN . The following result, a significant contribution
of [9], reveals the structure of the controllable subspace of the system.

Theorem 1.2: [9] The controllable subspace of system (1) is L.
Hence, the system is controllable if and only if dim(L) = n.

It can be seen that the controllability notion given in Definition 1.1
is an analogue of the linear case. It deals only with controllability at
the origin. We would like to point out that a switched linear system
is essentially a nonlinear system with the switching functions acting
as controls. For a nonlinear system, controllability at the origin is in
general not sufficient to describe reachability or controllability at other
points. The following example shows how the controllable subspace at
(or the reachable subspace from) 0 and the reachable sets from other
points may be unrelated.
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Example 1.3: Consider the following system:

_x = A�(t)x; x 2 2 (2)

for which � = f1; 2; 3g and

A1;2 = �I2; A3 =
0 1

�1 0
:

By Theorem 1.2, the controllable subspace is f0g. However, it is easy
to see that the submanifold Mc = 2nf0g is a controllable sub-man-
ifold in the sense that every point q on Mc can be reached from any
other point p on Mc: With A1 and A2, a trajectory can go in the radius
direction (either increasing or decreasing), and with A3 it can go along
a circular path. So, for any two points p; q 2 Mc, there is a switching
law that drives a trajectory from p to q.

The previous example shows that even though the controllable sub-
space is f0g, the reachable set of a point p 6= 0 still consists of almost
every point in the state–space.

For general nonlinear control systems, a main tool for investigating
their controllability is the accessibility Lie algebras generated by the
vector fields of the systems (cf., [10] and [12]). The purpose of this
note is to apply the Lie algebra approach for controllability of general
nonlinear control systems to switched linear systems. We are particu-
larly interested in the case when the accessiblity rank condition fails.

The rest of the note is organized as follows. In Section II, we discuss
some preliminaries for the Lie algebras associated with the controlla-
bility of nonlinear systems and the integrability of Lie algebras. In Sec-
tion III, we study the structure of accessibility Lie algebras for switched
linear systems. In Section IV, we investigate the controllability, in-
cluding global, local, weak and normal types, of switched linear sys-
tems. A topological structure of the controllable sub-manifolds and
some necessary and sufficient conditions for certain controllability are
obtained there. In Section V, we provide an illustrating example. In
Section VI, we summarize the main conclusions.

II. LIE ALGEBRA AND ITS INTEGRABILITY

Consider a nonlinear control system

_x = f(x; u); x 2 n (3)

where f is assumed to be analytic and defined on n+m. The controls
are piecewise constant, right continuous functions from [0;1) to U �
m. If f is affine in u, (3) becomes an affine nonlinear system

_x = f(x) +

m

i=1

gi(x)ui := f(x) + g(x)u: (4)

A switched linear system as in (1) can be treated as a nonlinear
system as follows:

_x(t) =

N

i=1

�i(t)(Aix(t) +Biu(t))

where the controls of the system are (�; u) with � = (�1; �2; . . . ; �N),
taking values in the set S := f(�1; �2; . . . ; �N) : �k = 1; �i = 0 if
i 6= k; 1 � k � Ng.
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Definition 2.1: Consider system (3).
1) A point q is reachable from p at a given time T > 0, denoted

by q 2 RT (p), if for some control function the corresponding
trajectory satisfies

x(0) = p and x(T ) = q:

A point q is reachable from p, denoted by q 2 R(p), if q is reach-
able from p at some time T .

2) The system is said to be controllable at p if R(p) = n. The
system is said to be controllable if R(p) = n, for all p 2 n.
A control system is said to be T-controllable at p if RT (p) =

n.
The system is said to be T-controllable if RT (p) = n for all
p 2 n.

3) A point q is weakly reachable from p, denoted by q 2WR(p), if
there exist p0 = p; p1; . . . ; ps = q such that either pi 2 R(pi�1)
or pi�1 2 R(pi); i = 1; . . . ; s.
A point q is weakly T-reachable from p, denoted by q 2WRT (p)
if there exist p0 = p; p1; . . . ; ps = q such that either pi 2
RT (pi�1) or pi�1 2 RT (pi); i = 1; . . . ; s, and s

i=1
Ti = T .

4) The system is said to be weakly controllable at p ifWR(p) = n.
The system is said to be weakly controllable if WR(p) = n for
all p 2 n.
The system is said to be weakly T-controllable at p if WRT (p) =
n. The system is said to be weakly T-controllable if WRT (p) =
n for all p 2 n.

Observe that WR defines an equivalent relation. Consequently, if a
system is weakly controllable at a point p, then it is weakly controllable.

It was proved in [9] that for system (1) global weak T -controllability
is equivalent to controllability.

The controllability of systems (3) and (4) via the Lie algebra ap-
proach has been discussed thoroughly in the 1970s and 1980s (cf.,
[10]–[12] and [5]).

We briefly review the construction of Lie algebras related to the con-
trollability of nonlinear systems. For system (3) (assuming that con-
trols are piecewise constant functions taking vaules in an open subset
U � m), let

F = ff(x; a)ja 2 Ug:

Then F is a set of analytic vector fields. The accessibility Lie algebra
of system (3) is defined to be the Lie algebra generated by F :

La = fFgLA: (5)

The strong accessibility Lie algebra of the system is the Lie sub-
algebra of La defined by

Lsa =

k

i=1

liXi + Y

Xi 2 F;

k

i=1

li = 0; k <1; Y 2 [La;La] : (6)

For an affine nonlinear system (4), a straightforward computation
shows the following.

Proposition 2.2: For (4), the accessibility Lie algebra is

La = ff(x); g(x)gLA; (7)

and the strong accessibility Lie algebra is

Lsa = adkfg(x)jk � 0
LA

: (8)

For (3), if the rank of the (strong) accessibility Lie algebra is n at
a point p it is said that the system satisfies the (strong, respectively)
accessibility rank condition at p. A basic result about accessibility is as
follows.

Theorem 2.3: [10] If (3) satisfies the accessibility rank condition at
p, the reachable set R(p) contains a nonempty set of interior points.
If system (3) satisfies strong accessibility rank condition at p, then for
any T > 0, the reachable setRT (p) contains a nonempty set of interior
points.

The key point in the relationship between the controllability prop-
erties and the Lie algebras is the integrability of Lie algebras. Chow’s
Theorem plays a fundamental role in this context (cf. [5] and [12]).

Theorem 2.4: (Chow’s Theorem) [4] Let M be an n-dimensional
C1 manifold, L = fX1; . . . ; Xkg � V1(M) a set of C1 vector
fields, and L = fX1; . . . ; XkgLA the Lie algebra generated by L.
Assume dim(L(p)) = constant � n on M , and for any p0 2 M ,
denote by I(L)(p0) the largest integral submanifold of L. Then, for
any p 2 I(L)(p0) there exist Xi ; . . . ; Xi 2 L and t1; . . . ; ts 2 ,
such that

p = e
X

t � � � e
X

t (p0): (9)

Remark 2.5: [2] (Generalized Chow’s Theorem) When the man-
ifold and the distribution are analytic, the regularity assumption
(dim(L(p)) = constant) can be removed.

From Chow’s Theorem one sees that for (3) and a given point p, its
weakly reachable set is the largest integral manifold of the accessibility
Lie algebra passing through p, assuming either La is regular or the
system is analytic.

Lemma 2.6: [6] (Generalized Frobinius’ Theorem) Let M be an
n-dimensional C! (analytic) manifold, and � an analytic involutive
distribution. Then, for any p 2 M there exists a largest integral man-
ifold of �, passing through p. The following lemma is an immediate
consequence of the Campbell–Baker–Hausdorff formula [7].

Lemma 2.7: Let � be an analytic involutive distribution, and X 2
� an analytic vector field. Assume p1 and p2 are two points connected
by an integral curve of X , i.e., there exists t > 0 such that the inte-
gral curve eXt (p) of X satisfies eXt (p1) = p2, then dim(�(p1)) =
dim(�(p2)).

III. ACCESSIBILITY VERSUS ITS LIE ALGEBRA

When applying the definition of the accessibility algebra to system
(1), one sees that the accessibility Lie algebra for system (1) is given
by

La := fAix+Biu j i = 1; . . . ; N; u = constantgLA: (10)

In analogue toLsa defined for affine systems, we adopt the following
natural definition of strong accessibility algebra for a switched system
as in (1).

Definition 3.1: For (1), the strong accessibility Lie algebra is the set
of constant vector fields given by

L�sa := f� j � 2 hA1; . . . ; AN jB1; . . . ; BNig: (11)

Indeed (11) may be considered as a generalization of (8), which can
be expressed alteratively as Lsa := hf(x) j g(x)iLA.



1488 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 51, NO. 9, SEPTEMBER 2006

Denote A = fA1; A2; . . . ; ANg. The collection A is said to be
symmetric if �Ai 2 A for all i.

We consider Ai; i = 1; . . . ; N as the elements of the Lie algebra
gl(n; ), and denote by A the Lie sub-algebra generated by A. That
is, A = fA1; . . . ; ANgLA � gl(n; ). Then, we define the set of
linear homogeneous vector fields, denoted by

LH( n) = fgjg(x) = Ex 8x; some E 2Mng

where Mn is the set of n�n matrices. A straightforward computation
shows that LH( n) � V !( n) is a Lie sub-algebra of V !( n) (the
Lie algebra of the analytic vector fields on n). Define a mapping,
� : LH( n) ! gl(n; ) by �(Ex) := �E. It is easy to prove
the following lemma.

Lemma 3.2: For the map �, the following statements hold.
1) The map � : LH( n)! gl(n; ) is a Lie algebra isomorphism.
2) Let L � gl(n; ) be a Lie sub-algebra, then its inverse image

��1(L) is a Lie sub-algebra of V !( n), which can be expressed
as ��1(L) = Lx.

Theorem 3.3: For system (1) the accessibility Lie algebra can be
expressed as

La = fPx+Q jP 2 A; Q 2 L�sa g : (12)

Proof: Observe that the “�” relation is obvious because Px 2
La for any P 2 A, and consequently

La � fPx +Q jP 2 A; Q 2 L�sa g :

Next, we consider the structure of vector fields in La. It is easy to see
that Aix 2 La; Bi 2 La; i = 1; . . . ; N . Then since Aix + Biu is a
linear combination of Aix and Bi, we have that

La = fAix; Bi j i = 1; . . . ; NgLA: (13)

Consider a bracket-product of Aix and Bi. A straightforward compu-
tation shows that: (a) a product containing more than one Bi is zero;
b) a product containing oneBi, using Jacobi identity, can be expressed
as the sum of terms of the form

Ai � � �Ai Bi (14)

which is obviously contained inL�sa; and c) a product containing noBi
is in A, because Lemma 3.2 says that

fA1x; . . . ; ANxgLA = Ax: (15)

From (14) and (15), any � 2 La can be expressed as � = Px + Q,
where P 2 A and Q 2 L�sa, which proves “�” relation.

Next, we prove a result which is the counterpart of Theorem 2.3 of
nonlinear systems.

Proposition 3.4: If (1) satisfies accessibility rank condition at p0,
then the reachable setR(p0) contains a nonempty set of interior points.
If system (1) satisfies strong accessibility rank condition at p0, then for
anyT > 0 the reachable setRT (p0) contains a nonempty set of interior
points.

Proof: Note that each switching model is an analytic system. De-
noteL = fAix+Biuju = constant 2 mg. Then, every vector field

in L is a vector field of (1) with a suitable choice of constant controls
and switching laws.

Assume that (1) satisfies accessibility rank condition at p0, then there
exists a neighborhood U of p0 such that dim(La(p)) = n for all
p 2 U . Choose any nonzero vector fieldX1 2 L and denote its integral
curve as �1(t1; x(0)) = e

X

t (p0). If all X 2 L are linearly dependent
withX1 in U , then dim(La(p)) = 1; p 2 U , which is a contradiction.
So, there exists a t01, a vector field X2 2 L, such that at p1 = e

X

t
(p0)

the vectors X1(p1) and X2(p1) are linearly independent. Therefore,
we can construct a mapping as �2(t1; t2; x(0)) = e

X

t e
X

t (p0), such
that its Jacobian matrix J� (t01; 0) has full rank. So it is a local diffeo-
morphism. Same argument shows that we can find (t01; t

0
2) andX3 2 L

(t01 may not be the same as before), such that �3(t1; t2; t3; x(0)) =
e
X

t e
X

t e
X

t (p0) is a local diffeomorphism at (t01; t
0
2; 0). Repeating the

same procedure, one can construct a mapping

�n(t1; t2; . . . ; tn; x(0)) = e
X

t � � � eXt e
X

t (p0) (16)

which is a local diffeomorphism at (t01; . . . ; t
0
n) 2

n. Then there ex-
ists an open neighborhood V of (t01; . . . ; t

0
n), such that ��1n (V ) �

R(p0) is an open set. The conclusion follows.
Next, we prove the second part of the proposition. Assume (1) satis-

fies strong accessibility rank condition at x0. Similar to the discussion
for nonlinear systems [12], an additional variable xn+1 = t can be
added to the original system to get an extended system as

_x = A�(t)x+B�(t)u

_xn+1 = 1:
(17)

It is easy to show that the extended system satisfies the accessibility
rank condition at (p0; T ) for any T > 0. Recall the aformentioned
proof for the first part of this proposition. It is easy to see that in the
mapping (16), t1 + t2 + � � � + tn > 0 can be arbitrarily small.

Now, consider a moment T0 > 0 and T0 < T . Since (17) satisfies
accessibility rank condition at (p0; T0), (16) can be constructed for t1+
t2 + � � � + tn < T � T0. (Precisely, for (17) the mapping should be
from (t1; . . . ; tn+1) to n, and where tn+1 = T0+ t1+ � � �+ tn.) So,
(17) has a nonempty interior at T0 + t1 + � � �+ tn := T1 < T , which
implies that for (1) RT (p0) has a nonempty interior. Since T1 < T ,
choosing u(t) and �(t) such that

A�(t) +B�(t)u(t) 6= 0; T1 � t � T

then RT (p0) is diffeomorphic to RT (p0). The conclusion follows.
An alternative (more direct) proof of the second part of Proposition

3.4 can be found in [9].
Using generalized Chow’s theorem, we have the following result.
Proposition 3.5: Consider system (1). The weakly reachable set of

any p 2 n, denoted by WR(p), is the largest integral submanifold of
La passing through p.

IV. CONTROLLABILITY AND WEAK CONTROLLABILITY

In this section, we will first reveal a topological structure of
(weak) controllable submanifolds for a switched linear system with
dim(La) < n.

Let V be the controllable subspace of system (1) (defined as in Defi-
nition 1.1). The following proposition is an immediate consequence of
Theorem 1.2.

Proposition 4.1: Consider (1). The controllable subspace is V =
I(L�sa)(0), i.e.,the integral submanifold of the strong accessibility Lie
algebra passing through 0.
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Now, the state–space can be split as x = (x1; x2), where x1 is the
coordinates of V . Since V contains Bi and is Ai invariant for all i,
system (1) can be expressed as

_x1

_x2
=

A11
�(t) A12

�(t)

0 A22
�(t)

x1

x2
+

B�(t)

0
u: (18)

The following proposition gives a partition for possible (weakly)
controllable submanifolds.

Proposition 4.2: Consider (1). For any p0 2 n, if p0 62 V , then
WR(p0) \ V = ;.

Proof: Case 1) Assume Ap0 2 L�

sa(p0) for all A 2 A. By
Lemma 2.7, at any point p 2 WR(p0)

dim(La(p)) = dim(La(p0)) = dim (L�

sa(p0)) :

Since L�

sa consists of constant vector fields, one sees that
dim(La(p)) = dim(L�

sa(p)) for all p 2 WR(p0), that is

dim(La(p)) = dim (L�

sa(p)) 8 p 2 I(La)(p0):

Consequently, I(La)(p0) = I(L�

sa)(p0). Again, since L�

sa consists of
constant vector fields, it follows that I(L�

sa)(p0) = p0 + V . Hence,
WP (p0) � I(La)(p0) = p0+ V . Since p0 62 V; (p0+ V )\ V = ;.

Case 2) Assume Ap0 6� L�

sa(p0), then

dim(La(p0)) > dim(L�

sa(p0)): (19)

If WR(p0) \ V 6= ;, then p0 2 WR(0). By Lemma 2.7 and the fact
that La(0) = L�

sa(0)

dim(La(p0) = dim(La(0)) = dim (L�

sa(0))

which contradicts (19).
Remark 4.3: From Proposition 4.2, it is clear that if the initial point

x(0) = p0 62 V there is no piecewise constant control which can drive
it to zero.

From the decomposed form of (18), we denote

A0 := A22
i i = 1; . . . ; N

LA
: (20)

Then, we can define a projection � : A ! A0 in a natural way by let-
ting �(Ai) = A22

i ; i = 1; . . . ; N . Note that the projection � is defined
under a chosen coordinate frame. However, it is easy to prove that this
projection is coordinate independent, because the quotient space n=V
is Ai invariant. Let Lo

a = f(0;w)T jw = Ex2; E 2 A0g. Then, one
can see the following.

Proposition 4.4: The mapping � is a Lie algebra homomorphism.
Moreover, La = Lo

a + L�

sa.
It is obvious that A0 is uniquely determined by

A0 := fAi j 1 � i � N ;Ai 62 ker(�)g:

Remark 4.5: From Proposition 4.2 and the structure ofLa, the topo-
logical structure of the (weak) controllability sub-manifolds is charac-
terized as follows.

• System (1) is globally controllable if and only if dim(La) = n.

• As dim(La) < n, (1) cannot even be globally weakly control-
lable. In this case, the state space is split into two disjoint parts:
Subspace V and its complement V c = nnV .

• With (18), let V = fx 2 njx2 = 0g, so V c = fx 2 njx2 6=
0g. Assume dim(V ) = n � k. If k > 1; V c is a pathwise con-
nected open set, and if k = 1; V c is composed of two path-wise
connected open sets: fxjx2 < 0g and fxjx2 > 0g.

Based on the previous argument, it is clear that the (weak) control-
lability of (1) is determined by its (weak) controllability on V c. In a
later discussion, we assume V c is a pathwise connected open set. As
for k = 1, it will be replaced by two pathwise connected open sets:
fxjx2 < 0g and fxjx2 > 0g.

Definition 4.6: For a subspace W � n, a transformation P is
called W -invariant if PW � W .

Definition 4.7: System (18) is V -invariant, feedback block diago-
nalizable, if there exist a V -invariant transformation P , feedback con-
trols ui = Kix+vi; i = 1; . . . ; N such that the feedback models have
block-diagonal form. That is, with z = Px, (18) becomes

_z1

_z2
=

A11
�(t) 0

0 A22
�(t)

z1

z2
+

B�(t)

0
v

(21)

where the matricesA11
� ; A

22
� andB� , using same notations for the sake

of simplicity, are different from those in (18).
The following lemma is necessary for proving the main result in this

section.
Lemma 4.8: Consider system (3). Let U be a pathwise connected

open set, and dim(La(p)) = n for all p 2 U . Then, for any p 2 U , the
largest integral submanifold of the Lie algebra satisfies I(La)(p) � U .

Proof: If it is not true, there exists a point q 2 U , which is also on
the boundary of I(p), i.e., q 2 I(p)nI(p), where we have used I(p) to
denote I(La)(p) for simplicity of notations. Since dim(La(q)) = n
onU; I(q) contains a neighborhood of q, and consequently, there exists
q0 2 I(p) \ I(q). It then follows that I(p) [ I(q) is a connected
integral manifold of La passing through p, and it is larger than I(p),
which is a contradiction.

By slightly abusing notations, we say that a subset S � n is
controllable (weakly controllable) if R(p) = S (WR(p) = S
respectively) for all p 2 S. The following is the main result about
controllability.

Theorem 4.9: For (21), assume that dim(V ) = n � k, and V c is
pathwise connected. Then, the following hold.

i) V c is weakly controllable if and only if

dim(A0p) = k; p 2 V c: (22)

ii) AssumeA0 is symmetric, then V c is controllable if and only if
(22) holds.

Proof: i) (Necessity) If there exists a p0 2 V c with
dimA0(p0) = s < k, then, WR(p0) = I(La)(p0), and ac-
cording to the generalized Chow’s theorem, the right-hand side is a
submanifold of dimension n�k+s < n. Thus, V c can not be weakly
controllable. (Sufficiency) Let p; q 2 V c. We have to find a T > 0, a
switching law �(t) with switching moments

0 = t0 < t1 < � � � < ts = T

and a switched vector field

X(t) = A�(t) +B�(t)u�(t); 0 < t < T
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such that q = x(T ) = eXd � � � eXd (p), where Xi = X(t); ti�1 �
t < ti; di = ti � ti�1.

Denote the starting point and the destination as

p =
x10
x20

q =
x11
x21

:

We design the control in three steps. First, since V is controllable, we
can find switching law and controls such that at a moment T0 we have
x1(T0) = 0. Note that x2(T0) is determined accordingly.

Now, by controllability [9], there are X1
k = A11

i x + Bi ui ; k =
1; . . . ; s, such that

x11 = x1(T2) = e
X

d � � � e
X

d (0) (23)

for some T2. Let fs1; . . . ; slg � f1; 2; . . . ; sg be such that

As 2 A0; j = 1; . . . ; l:

Define

x22 := e
X

�d � � � e
X

�d x21 (24)

where X2
s = A22

s x2.
Then, in step 2), x2(T0) can be steered to x22 (in the weak sense) in

time T1 for some T1. This can be done because of Lemma 4.8. Note
that in step 2), the first component of states x1 can be kept in the origin
by setting all controls vi = 0. Now, in step 3), we use the controls in
(23) to move x1 to the destination x11. At the same time, according to
(24), x2 moves from x22 to x21.

ii) Same argument for weak controllability can be used for control-
lability. The only difference is, now sinceA0 is symmetric, by Chow’s
theorem, x22 is reachable from x2(T0).

Next, we define the local controllability.
Definition 4.10: System (1) is locally controllable at p0, if there

exists a neighborhood U of p0 such that

p 2 R(p0) 8p 2 U:

The system is locally weakly controllable at p0, if there exists a neigh-
borhood U of p0 such that

p 2WR(p0) 8p 2 U:

Using the similar argument as in Theorem 4.9, we can easily prove
the following local controllability result.

Corollary 4.11: For (21), assume dim(V ) = n � k.
i) For a point p0 2 V c, the system is weakly locally controllable

at p0 if and only if

dim(A0p0) = k: (25)

ii) Assume A0 is symmetric. Then, the system is locally control-
lable at x0 if and only if (25) holds.

It was remarked by an anonymous referee for the original version of
this note that “how to verify (25) in finite steps is a major question. For

second-order systems, [15] has addressed this in detail.” We give the
following proposition for verifying it.

Since A0 � gl(k; ) is a finite dimensional Lie algebra, it is easy
to find its basis. Let E1; . . . ; Et be a basis of A0. Then, we have the
following.

Proposition 4.12: DefineM(x0) :=
t

i=1 Eix0x
T
0 E

T
i . Then, (25)

holds if and only if det(M(x0)) > 0.
Proof: It is obvious that (25) holds iff

�T (E1x0; . . . ; Etx0) = 0

implies � = 0. Since

M(x0) = (E1x0; . . . ; Etx0)(E1x0; . . . ; Etx0)
T

the conclusion follows.
Finally, we consider a stabilization problem for (21).
Definition 4.13: A controllable switched linear system is said to

be proper if there exist two K-functions '1 and '2 such that for any
x0 2

n, there is a reachable time T (x0) (under suitable control and
switching for x0 to reach zero) satisfies the following:

T (x0) � '1(kx0k)

kx(t)k � '2(kx0k); 0 � t � T (x0) (26)

(and x(T (x0)) = 0.)
For the z2-subsystem in (21):

_z2(t) = A22
�(t)z

2(t); z2(t) 2 n (27)

we have the following result which by itself is interesting.
Proposition 4.14: For (27), assume that: i) (22) holds; and ii)A0 is

symmetric. Then the system is exponentially stabilizable.
Proof: Let y(t; p; �) denote the solution of the z2-subsystem with

the initial state z2(0) = p corresponding to the switching law �. Let
S = fp 2 n�k : jpj = 1g. Then, by Theorem 4.9, for each q 2 S,
there exists some switching function �q that steers q to a point inside
the neighborhood B(0; 1=2) := fp : jpj < 1=2g of 0 in time Tq
for some Tq > 0. By continuity, one sees that for each q, there ex-
ists a neighborhood Nq such that �q steers every point p 2 Nq into
B(0; 1=2) in time Tq . Let fNq g

l
i=1 be a finite cover of S. Denote �q

by �i; Tq by Ti, and Nq by Ni. For each p 2 S; p 2 Ni for some
i, and jy(� ; p; �i)j = 1=2 for some � � Ti. If p 2 Ni \ Nj , choose
either �i or �j for p.

Assume now that p 2 n�k; p 6= 0. Choose ~�1 2 f�1; . . . ; �lg such
that jy(t1; p=jpj; ~�1)j = 1=2 for some t1 � T := maxfT1; . . . ; Tlg.
By linearity, jy(t1; p; ~�1)j = jpj=2. Let p1 = x(t1; p; �). Repeat
the process with pk�1 replaced by pk for k � 1 inductively.
Let �(t) = ~�i(t) on [ti�1; ti). Let M = max1���NfjA

22
� jg.

Then jy(tk; p; �)j � jpj=2k for each k, and for t 2 [tk�1; tk);
jy(t; p; �)j � jy(tk�1)je

M(t�t ). Hence, working with
t 2 [tk�1; tk), one has

jy(t; p; �)j �
jpj

2k�1
eMT � Ljpje�at

where L = 2eMT ; a = (ln 2)=(T ).
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Note that in the above discussions, the choices of switching functions
are based on “event driven.” It remains to be explored further to design
switching laws in the form of a state feedback.

The following holds as a consequence of Proposition 4.14.
Corollary 4.15: Assume that: i) (22) holds; ii) A0 is symmetric;

and iii) the controllable sub-system of (21) is proper. Then, (21) is
stabilizable.

Proof: First, drive the z1-component to 0 in a finite time, and
then work with the switching functions to drive the z2-component to
neighborhoods of 0. So we have

lim
t!1

z(t) = 0: (28)

Then the assumption of “properness” assures that for any � > 0 there
exists � > 0 such that kz(0)k < � implies that kx(t)k < � for all
t > 0.

Remark:
1) If one is only required to get the attraction property (28), then the

“properness” assumption is not needed.
2) Our conjecture is that every controllable switched linear system

is proper. (It is obviously true for no-switched linear system.) We
leave this for future study.

V. AN ILLUSTRATING EXAMPLE

Example 5.1: Consider the following system with n = 4; m = 1
and N = 2. Two models (Ai; Bi); i = 1; 2 are

0 0 0 0

1 0 0 0

0 0 1 0

0 0 0 1

;

1

0

0

0

0 0 0 0

0 1 0 0

0 0 0 1

0 0 �1 0

;

1

0

0

0

:

We skip some routine computation, and show the results directly. The
controllable subspace is

L�

sa = span
I2

0
:

Let x = (x1; x2; x3; x4)
T 2 4. Then

La(x) =
L�

sa; x3 = x4 = 0

Tx(
4); otherwise

whereTx(M) stands for the tangent space of a manifoldM atx. Define
a subspace

V = fx 2 4 j x3 = x4 = 0g:

Then, we know that the weakly reachable set of x is

WR(x) =
I(L�

sa)(0) = V; x 2 V
4nV; x 62 V

where I(D) is used for the integral manifold of a distribution D. Now
assume we add two switching models (Ai; Bi); i = 3; 4 to i) as

�1 2 0 2

1 2 0 2

0 0 �1 0

0 0 0 �1

;

1

1

0

0

1 0 �1 0

3 1 1 0

0 0 0 �1

0 0 1 0

;

1

�1

0

0

:

Then one sees easily thatA0 is symmetric. So the weak controllability
becomes controllability. Precisely,

R(x) =
I(L�

sa)(0) = V; x 2 V
4nV; x 62 V

Note that we need pre-feedback controls to block diagonalize A3 and
A4 first.

VI. CONCLUSION

In this note the controllability of switched linear system was con-
sidered. The main contribution of the note consists of: 1) the (strong)
accessibility Lie algebra for nonlinear systems has been extended to
switched linear systems; 2) a clear topological structure for the pos-
sible controllable submanifolds is provided; and 3) some necessary and
sufficient conditions for the (standard or weak, global or local) control-
lability of a large class of switched linear systems is obtained.
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