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Abstract

For when the Sylvester matrix equation has a unique solution, this work provides a closed form solution, which is expressed as
apolynomial of known matrices. In the case of non-uniqueness, the solution set of the Sylvester matrix equation is a subset of tha
of a deduced equation, which is a system of linear algebraic equations.
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1. Introduction

Let A€ R™™MandB e R"™"; the fdlowing matrix equation is called Sylvester equation:
AX — XB =C. (1)

The Sylvester theorem tells us thEQ[12): for every matrixC € R™*", the Sylveter equation(1) has a unique
solutionX if andonly if 0 (A) (o (B) = &, whereo (Z) denotes the spectrum of the matdx

The Sylvester equation, containing the Lyapunov matrix equation as a special case, has numerous applications i
control theory, signal processing, filieg, model reduction, image restoi@ti decoupling techniques for ordinary
and partial differential equations, implementation of imiplilumerical methods for ordinary differential equations,
and block-diagonalization of matrices; see, for exampf@{69,11] as a few reérences.

The problem was first discussed in a seminal ba§kwhere the corresponding homogeneous equatidf )Jag
defined as

AX - XB=0. 2
Then the general solutioX of Eq.(1) has the form
X = Xo+ X1 )

whereXg is a fixed particular solution dfL), and X1 is the general solution of Eq2).
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Next, in order to solve Eq(2), the auhor reduced the matrices and B to their Jorda normal formsA and B
respectively via similar transformations

A=U"1AuU, B=P1BP, (4)

and convert then to a set of simple matrix equations.

This method depends on solving eigenvalues and converting the matrices to Jordan canonical form, which is il
general very difficult. In addition, the book does nobyide amethod for obtaining one particular solutiofy of
Eq.(2).

Then some standard solving methods for the Sylvester equalibave been developed. Two widely used methods
are the Stewart metho@][and the Hesenberg—3wr method 5,8]. These methods are based on transforming the
coefficient matrices into Schur or Hessenberg form and then solving the corresponding linear equations directly by
back-substitution process. 8tese methods are calleitect methods.

The main shortcoming of the aforementioned methods is that they do not provide an explicit formula for the
solutions.

An alternative methodl[0] is to expresg(1) as

Ih®A-—BT®Inlx=c %)

where® is the Kronecker product of matriceg. = V.(X) andc = V¢(C) are the column stacking forms of the
matrices, i.e.,

.
Ve(X) = (X11, X21, - - .- Xm1, - - -, X1n, X2n, - - -, Xmn) " -

From(5) one sees easily that the coefficient matrix is non-singula® &hdB have no common eigenvalue, which is
the Sylvester theorem.

Wheno (A) (o (B) = @ Eq. (5) does provide a precise solution. But it is in a vector form, which means it is
basically a numerical solion. In some applicabins it is not convenient.

In this work, we try to find he matix form solution of the Sylvester equation when it has a unique solution.
Moreover, the unique solution is a polynomial of the coefficient matrieeB andC. When te uniqueness fails, we
convert it to a common equation of the fol@X = H. And the rehtionship between the solution sets(&j and
GX = H isdiscussed. In our approach what do we need is the characteristic polynomials of the coefficient matrices
A andB, whichcan be obtained via a routine computation.

2. Solving the Sylvester equation

In this section we provide a polynomial matrix form solution of the Sylvester equation.
Consider Eq(2). Let

m
p(s) = Zai S ="+ ame1S™  + am2s™ 2 + .-+ a1S + ag
i—0
and
n .
q(s) =Y Bis ="+ Bnas" T+ Bo2s" P+ + f1s+ fo
i—0

(wherexy, = 1 andg, = 1) be the characteristic polynomials AfandB, resgectively.
We firstprove a lemma.

Lemma 2.1. Assume X isthe solution of (1). Thenfor anyk > 1

k—1
AKX — XBX =" A-1-icB!. (6)
i=0
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Proof. We prove this by mathematical induction. Whier= 1, it is exactly Eq(1). Assumg(6) holds fork < N, i.e.

ANX — xBN = Z AN--icpl,
After left-multiplying by A and right-multiplying byB on both sides of7), we get

N-1
ANtlx _ aAxBN = A Z AN-1-icpi
i=0
and
N—-1 ) )
ANXB — xBN+1 = Z AN-1-icpiB.
i=0
Adding(8) to (9), we achieve
N-1 N-1

ANt — xBN*L 4+ ANXB — AXBN =AY " AN“IicB + ) AN-icB'B.

i=0 i=0
Therefore,
AN+1X _ XBN+1

P
[uN

N-1
=Y AN“cB'+ ) AN-IIcB't 4+ AXBN — ANXB
i=0

o

N-1 N-1
— ZAN ICBI+ZAN 1- ICBI-‘rl A(AN 1X XBN 1)B
i=0 i=0
= N— N—-1- +1 . N—2—i i
= A ICB'—I— A 'cB! A —<'cB'|B
N_1N' i N_lNl' i+1 _2Nl' i+1
- SicBl 4+ Y AN-IHiCBiHL - Y AN-Iicit
N-1 . .
=Y ANcB'+cBN
i=0
N

= ZAN_iCBi. 0
i=0

Definen(k, A, C, B) 2 YK , Ak-ICB!; then theequality(6) can be written in a compact form as

AKX — XB¥ = n(k — 1, A, C, B).

So, we have

n n
¥ Br(AX = XBY) Zﬂkmkx — XBY) + Bo(X — X)
k=1 =1

n n
(Z kAkX + ﬂoX) — <Z Bk X BK + ﬂoX)
k=1

n n
(ZﬂkAk +/30|m) X — X (ZﬁkBk +/30|n>
1

k=1

q(AX — Xq(B) = q(A)X.

()

(8)

(9)

(10)

11)

12)

(13)
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On the otter hand,
n n
> Bk(AX — XB¥) =" pun(k—1,A.C, B). (14)
k=1 k=1

Definen(A,C, B) & Zﬂzl Bxn(k — 1, A, C, B). It is obvious thatp(A, C, B) is a polynomial of the matrices
A, B andC. And this polynomial is determined by the coefficient matrices and the characteristic polynorBial of
which means that for each Sylvester equation of the fnthere is a uniquely determined polynomiglA, C, B)
of its coeficient matrices.

Consequently, we get the following equation:
a(AX =n(A,C, B). (15)
Theorem 2.2. If A and B have no common eigenvalue, then (15)is equivalent to (1).

Proof. (=): It was proved in the aforementioned argument.
(«): SupposeX is a solution of(15); then

AQ(AX) = (@(AX)B = q(A)(AX - XB)
— An(A, C, B) — (A, C, B)B.

Moreover,
An(A, C, B)—n(A C,B)B

n i—1
(AZﬂ ZA‘ -icpl - Z,BiZAileBjB>
i=0 j=0
= i—1
< ,BZA' icBl - ZﬂiZA‘—l—iCBiH)

=§ (;A' icBl - ZA‘ -1- JcBJ+1>

]_0

(16)

iﬂ.(A‘c cs)—Zﬂ.A'c CZﬂ. B'

= CI(A)C —-Cq(B) = Q(A)C-
Thatis,
q(A)(AX — XB) = q(A)C.

Sinceq(s) is the dharacteristic polynomial oB and A and B have no common eigenvalug(A) is nonsingular(1)
follows. O

Proposition 2.3. Inthe case of o (A) () o (B) = @ the solution of the Sylvester equation (1) is
X =a(A) 'n(A C,B), (17)
which is a polynomial of the matrices A, B, and C.

Proof. We haveonly to show thatj(A)~15(A, C, B) is a polynomial of A, B andC. It follows that what need to
show is thaty(A)~1 is a polynomial of A. Let the characteristic polynomial of( A) be f(s) = ka=o ws¢ where
ym = 1. Sinceq(A) is invertible, we claim thajp # 0. The Cayley—Hamilton theorem tells us that

m
F@(A) =) wla(AI*+ yolm = 0. (18)
k=1
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And from the above equality we deduce that
1 m
qA) — = AWt = I (19)
Y0 =

So,q(A)~1 = —%Ozﬁzl wla(A) 1K1, which is a polynomial ofj(A). But g(A) is a polynomial of A. Therdore,
the composition is also a polynomial 8f O

For thecase wheréA and B have common eigenvalues, E¢&) and(15) are not equivalent, that is, their solution
sds are not identical. We illustrateiththrough the following example.

Example 2.4. For

1 0 0 10 0 8
A=]|0 2 0], B=<0 9>, C=|1 7 (20)
0 0 3 2 6
the general solution dfL) is
X1 —1
1 -1 (21)
1 -1
while the solution o{15)is
X1 X2
1 -1 (22)
1 -1

wherex; andxy are free arguments.

However, the followg lemma is obvious.

Lemma 2.5. Wheno (A) (o (B) # &, the solution set of (1) is contained in that of (15).

The proof is obvious since every solutighof (1) satisfieg15). Although this lemma does not provide complete
“equivalence” between the solution setgbfand(15), it is gill meaningful in that we can verify the solutions @f5)
to pick out the solutions Eq1).

3. Conclusions

In this work we proposed a quite different method for solving the well known Sylvester equation. When the solution
is unique, a solution of closed form is obtained and expressed as a polynomial of known matrices. Otherwise, using
the newly proposed approach, the Sylvester #qnas transformed into the traditional for@X = H, whereG, H
are the coefficient matrices anddan unknown. Equations of this form can be solved in a standard way, say by the
Gaussian method.
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