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The polynomial solution to the Sylvester matrix equation✩
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Abstract

For when the Sylvester matrix equation has a unique solution, this work provides a closed form solution, which is expressed as
a polynomial of known matrices. In the case of non-uniqueness, the solution set of the Sylvester matrix equation is a subset of that
of a deduced equation, which is a system of linear algebraic equations.
c© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Let A ∈ R
m×m andB ∈ R

n×n ; the following matrix equation is called Sylvester equation:

AX − X B = C. (1)

The Sylvester theorem tells us that[10,12]: for every matrixC ∈ R
m×n , the Sylvester equation(1) has a unique

solutionX if andonly if σ(A)
⋂

σ(B) = ∅, whereσ(Z) denotes the spectrum of the matrixZ .
The Sylvester equation, containing the Lyapunov matrix equation as a special case, has numerous applications in

control theory, signal processing, filtering, model reduction, image restoration, decoupling techniques for ordinary
and partial differential equations, implementation of implicit numerical methods for ordinary differential equations,
and block-diagonalization of matrices; see, for example [1,3–6,9,11] as a few references.

The problem was first discussed in a seminal book [7], where the corresponding homogeneous equation of(1) is
defined as

AX − X B = 0. (2)

Then the general solutionX of Eq.(1) has the form

X = X0 + X1 (3)

whereX0 is a fixed particular solution of(1), andX1 is the general solution of Eq.(2).
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Next, in order to solve Eq.(2), the author reduced the matricesA and B to their Jordan normal formsÃ and B̃
respectively via similar transformations

A = U−1 ÃU, B = P−1 B̃ P, (4)

and convert then to a set of simple matrix equations.
This method depends on solving eigenvalues and converting the matrices to Jordan canonical form, which is in

general very difficult. In addition, the book does not provide amethod for obtaining one particular solutionX0 of
Eq.(1).

Then some standard solving methods for the Sylvester equation(1) have been developed. Two widely used methods
are the Stewart method [2] and the Hessenberg–Schur method [5,8]. These methods are based on transforming the
coefficient matrices into Schur or Hessenberg form and then solving the corresponding linear equations directly by a
back-substitution process. Sothese methods are calleddirect methods.

The main shortcoming of the aforementioned methods is that they do not provide an explicit formula for the
solutions.

An alternative method [10] is to express(1) as

[In ⊗ A − BT ⊗ Im ]x = c (5)

where⊗ is the Kronecker product of matrices.x = Vc(X) andc = Vc(C) are the column stacking forms of the
matrices, i.e.,

Vc(X) = (x11, x21, . . . , xm1, . . . , x1n, x2n, . . . , xmn)
T.

From(5) one sees easily that the coefficient matrix is non-singular, iffA andB have no common eigenvalue, which is
the Sylvester theorem.

Whenσ(A)
⋂

σ(B) = ∅ Eq. (5) does provide a precise solution. But it is in a vector form, which means it is
basically a numerical solution. In some applications it is not convenient.

In this work, we try to find the matrix form solution of the Sylvester equation when it has a unique solution.
Moreover, the unique solution is a polynomial of the coefficient matricesA, B andC. When the uniqueness fails, we
convert it to a common equation of the formG X = H . And the relationship between the solution sets of(1) and
G X = H is discussed. In our approach what do we need is the characteristic polynomials of the coefficient matrices
A andB, whichcan be obtained via a routine computation.

2. Solving the Sylvester equation

In this section we provide a polynomial matrix form solution of the Sylvester equation.
Consider Eq.(1). Let

p(s) =
m∑

i=0

αi s
i = sm + αm−1sm−1 + αm−2sm−2 + · · · + α1s + α0

and

q(s) =
n∑

i=0

βi s
i = sn + βn−1sn−1 + βn−2sn−2 + · · · + β1s + β0

(whereαm = 1 andβn = 1) be the characteristic polynomials ofA andB, respectively.
We firstprove a lemma.

Lemma 2.1. Assume X is the solution of (1). Then for any k ≥ 1

Ak X − X Bk =
k−1∑
i=0

Ak−1−i C Bi . (6)
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Proof. We prove this by mathematical induction. Whenk = 1, it is exactly Eq.(1). Assume(6) holds fork ≤ N , i.e.

AN X − X B N =
N−1∑
i=0

AN−1−i C Bi . (7)

After left-multiplying by A and right-multiplying byB on both sides of(7), we get

AN+1X − AX B N = A
N−1∑
i=0

AN−1−i C Bi (8)

and

AN X B − X B N+1 =
N−1∑
i=0

AN−1−i C Bi B. (9)

Adding(8) to (9), weachieve

AN+1X − X B N+1 + AN X B − AX B N = A
N−1∑
i=0

AN−1−i C Bi +
N−1∑
i=0

AN−1−i C Bi B. (10)

Therefore,

AN+1X − X B N+1

=
N−1∑
i=0

AN−i C Bi +
N−1∑
i=0

AN−1−i C Bi+1 + AX B N − AN X B

=
N−1∑
i=0

AN−i C Bi +
N−1∑
i=0

AN−1−i C Bi+1 − A(AN−1X − X B N−1)B

=
N−1∑
i=0

AN−i C Bi +
N−1∑
i=0

AN−1−i C Bi+1 − A

(
N−2∑
i=0

AN−2−i C Bi

)
B

=
N−1∑
i=0

AN−i C Bi +
N−1∑
i=0

AN−1−i C Bi+1 −
N−2∑
i=0

AN−1−i C Bi+1

=
N−1∑
i=0

AN−i C Bi + C B N

=
N∑

i=0

AN−i C Bi . �

(11)

Defineη(k, A, C, B) �
∑k

i=0 Ak−i C Bi ; then theequality(6) can be written in a compact form as

Ak X − X Bk = η(k − 1, A, C, B). (12)

So, we have
n∑

k=1

βk(Ak X − X Bk) =
n∑

k=1

βk(Ak X − X Bk) + β0(X − X)

=
(

n∑
k=1

βk Ak X + β0X

)
−
(

n∑
k=1

βk X Bk + β0X

)

=
(

n∑
k=1

βk Ak + β0Im

)
X − X

(
n∑

k=1

βk Bk + β0In

)

= q(A)X − Xq(B) = q(A)X.

(13)
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On the other hand,

n∑
k=1

βk(Ak X − X Bk) =
n∑

k=1

βkη(k − 1, A, C, B). (14)

Defineη(A, C, B) �
∑n

k=1 βkη(k − 1, A, C, B). It is obvious thatη(A, C, B) is a polynomial of the matrices
A, B andC. And this polynomial is determined by the coefficient matrices and the characteristic polynomial ofB,
which means that for each Sylvester equation of the form(1) there is a uniquely determined polynomialη(A, C, B)

of its coefficient matrices.
Consequently, we get the following equation:

q(A)X = η(A, C, B). (15)

Theorem 2.2. If A and B have no common eigenvalue, then (15) is equivalent to (1).

Proof. (⇒): It was proved in the aforementioned argument.
(⇐): SupposeX is a solution of(15); then

A(q(A)X) − (q(A)X)B = q(A)(AX − X B)

= Aη(A, C, B) − η(A, C, B)B.

Moreover,

Aη(A, C, B) − η(A, C, B)B

=
(

A
n∑

i=0

βi

i−1∑
j=0

Ai−1− j C B j −
n∑

i=0

βi

i−1∑
j=0

Ai−1− j C B j B

)

=
(

n∑
i=0

βi

i−1∑
j=0

Ai− j C B j −
n∑

i=0

βi

i−1∑
j=0

Ai−1− j C B j+1

)

=
n∑

i=0

βi

(
i−1∑
j=0

Ai− j C B j −
i−1∑
j=0

Ai−1− j C B j+1

)

=
n∑

i=0

βi (Ai C − C Bi ) =
n∑

i=0

βi Ai C − C
n∑

i=0

βi Bi

= q(A)C − Cq(B) = q(A)C.

(16)

That is,

q(A)(AX − X B) = q(A)C.

Sinceq(s) is the characteristic polynomial ofB and A andB have no common eigenvalue,q(A) is nonsingular.(1)
follows. �

Proposition 2.3. In the case of σ(A)
⋂

σ(B) = ∅ the solution of the Sylvester equation (1) is

X = q(A)−1η(A, C, B), (17)

which is a polynomial of the matrices A, B, and C.

Proof. We haveonly to show thatq(A)−1η(A, C, B) is a polynomial of A, B andC. It follows that what need to
show is thatq(A)−1 is a polynomial of A. Let the characteristic polynomial ofq(A) be f (s) = ∑m

k=0 γksk where
γm = 1. Sinceq(A) is invertible, we claim thatγ0 	= 0. The Cayley–Hamilton theorem tells us that

f (q(A)) =
m∑

k=1

γk[q(A)]k + γ0Im = 0. (18)
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And from the above equality we deduce that

q(A) − 1

γ0

m∑
k=1

γk[q(A)]k−1 = Im . (19)

So,q(A)−1 = − 1
γ 0

∑m
k=1 γk[q(A)]k−1, which is a polynomial ofq(A). But q(A) is a polynomial of A. Therefore,

the composition is also a polynomial ofA. �

For thecase whereA andB have common eigenvalues, Eqs.(1) and(15) are not equivalent, that is, their solution
sets are not identical. We illustrate this through the following example.

Example 2.4. For

A =

1 0 0

0 2 0
0 0 3


 , B =

(
1 0
0 9

)
, C =


0 8

1 7
2 6


 (20)

the general solution of(1) is
x1 −1

1 −1
1 −1


 (21)

while the solution of(15) is
x1 x2

1 −1
1 −1


 (22)

wherex1 andx2 are free arguments.

However, the following lemma is obvious.

Lemma 2.5. When σ(A)
⋂

σ(B) 	= ∅, the solution set of (1) is contained in that of (15).

The proof is obvious since every solutionX of (1) satisfies(15). Although this lemma does not provide complete
“equivalence” between the solution sets of(1) and(15), it is still meaningful in that we can verify the solutions of(15)
to pickout the solutions Eq.(1).

3. Conclusions

In this work we proposed a quite different method for solving the well known Sylvester equation. When the solution
is unique, a solution of closed form is obtained and expressed as a polynomial of known matrices. Otherwise, using
the newly proposed approach, the Sylvester equation is transformed into the traditional formG X = H , whereG, H
are the coefficient matrices andX an unknown. Equations of this form can be solved in a standard way, say by the
Gaussian method.
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