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A b s t r a c t - - T h i s  paper studies the parameter identification problem of nonlinear abstract parabolic 
distributed parameter systems via variational method [1]. Based on the fundamental optimal control 
theory and the transposition method studied in [2], the existence of optimal parameter is proved, and 
the necessary condition for the optimal parameter is established. (~) 2004 Elsevier Ltd. All rights 
reserved. 
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1. I N T R O D U C T I O N  

In recent years, there are various theoretical and numerical methods for identifying or estimat- 
ing unknown parameter [3-8]. The inverse or parameter identification problem for parabolic 
distributed parameter systems has been studied by many researchers, see for example, [9-14]. 
Reference [15] proposes an approximation process for identification of nonlinearities in parabolic 
boundary value problem, and [16] gives a computational approach to identifying functional pa- 
rameter using the gradient method. This paper will study the parameter identification problem 
for nonlinear parabolic distributed parameter systems involving parameter in differential opera- 
tors and nonlinear terms using variational method proposed by Dautary and Lions [1]. 

Let ~ be an open bounded set in R n with a piecewise smooth boundary F = 0~, q be a 
parameter and Q C R 1 be a parameter set. We introduce two Hilbert spaces H and V with the 
Gelfand triple. Consider a system governed by a nonlinear parabolic evolution equation in the 
Hilbert spa~e H of the form, 

dy(t'q-----~)+A(t,q)y(t,q)=f(t,q;y(t,q)), in (0, T) dt ' (1.1) 
y (0, q) = Y0, on ~, 
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where the mapping  A : [0, T] x Q ~ £:(V, V')  is a t ime-depending differential operator  defined by 
some bilinear form on Hilbert  space V and f : [0, T] x Q x H --* H is a nonlinear forcing function. 
A and f contain unknown parameter  q, which should be identified by some identification process. 
A powerful tool for identifying unknown parameter  is the so-called ou tpu t  least-square estimate.  
The  opt imal  control theoretical technique due to Lions [17] has shown its effectiveness in various 
applications to practical  identification problems. We also use this method for the nonlinear 
system (1.1), and consider the output  error criterion determined by the  quadrat ic  cost as follows, 

J (q) = IICY(q) - Zdll2~ , • Qad C Q, (1.2) 

where y(q) is a solution of (1.1), C is an observation operator ,  M is a Hilbert  space (observation 
space), Zd is a desired value in ,&4. Qad is the admissible subset of Q. We shall es t imate the 
unknown paramete r  q by minimizing the quadratic cost function. This  is so-called output  least 
square identification problem (OLSIP).  

We s tudy two fundamental  identification problems of system (1.1) with criterion (1.2). 

(i) Existence of a minimizing element e/E Qad, such that ,  

inf J (q) = J (c]). (1.3) 
qEQa,l 

(ii) Character izat ion of such element ~. 

We shall call ~ the opt imal  parameter  of the system (1.1) with respect  to (1.2). 
The  purpose of this paper  is to prove the existence and to provide necessary conditions of the 

opt imal  pa ramete r  for the nonlinear parabolic system (1.1) with respect  to (1.2). The content 
of this paper  is as follows. The  notations, definitions and auxiliary theorem will be given in 
Section 2. In Section 3, the strong continuity of y(q) with respect to q, and the  existence of 
the opt imal  pa ramete r  q will be proved. Then, a necessary opt imal i ty  condition for optimal  
pa ramete r  q will be established. 

2. P R E L I M I N A R I E S  

First of all, we explain the notat ions used in this paper.  Let H and V be two real Hilbert 
spaces with norm denoted by I" IH and I1" IIv, respectively. The symbol  (., ")H and (., ")v denote 
the inner product  on H and V, respectively. V ~ denotes the dual space of V and (- , . )y, .v 
denotes the dual pairing between V ~ and V. Assume tha t  (V, H, V ~) is a Gelfand triple space 
with V ¢--* H - H ~ ~-* V t, which means tha t  the embedding V "--* H is continuous and V is 
dense in H.  Let 0 < T < co, R 1 = ( - c ~ , c ~ )  and R + = [0, oo). Let Q be a set of  R 1 and Qad 
(respectively Qbd) be a convex (respectively bounded) subset of Q. 

For each q E Q and t E [0, T], we consider a bilinear form a(t, q; ¢, ~)  on V × V, satisfying 

(i) a(t,q;¢,~b) = a(t ,q;~b,¢),  for all ¢,~p E V,t E [0, T]; 
(ii) there exists a c(q) > 0, such tha t  la(t,q;¢,¢)l <_ c(q)II¢llv II~bllv, for all ¢,~b E Y and 

t e [0, T]; 
(iii) there exist a(q)  > 0 and ,k(q) e R ,  such tha t  a(t ,q;¢,¢) + )~(q)l¢l 2 _> a(q)lt¢ll~/, for all 

¢ E V and t E [0, T]. 

We suppose tha t  for each Qbd, there exist positive numbers c, A, a such that ,  

c (q )<c ,  A (q )<A ,  a(q)>_a,  for all q c Qbd. (2.1) 

Then,  we can define an operator  A(t, q) e £(V, V'), for t E [0, T] via the relation, 

a (t, q; ¢, ~) = (A (t, q) ¢, ~>v',v, for all ¢, ¢p E V, (2.2) 
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where E(V, V') is the Banach space of all bounded linear operators of V to V t with the uniform 
operator's topology. We often use g' to express ~t, the time derivative of g. 

We define a Hilbert space W(0, T), which will be a solution space, by 

W (O,T) = {g [ g E L2 (O,T; V) ,  g' E L2 (O,T; V')} . 

The inner product and the induced norm in W(0, T) are defined by 

(gl,g2)w(o,T) = {(gl(t) ,g2 (t))v + (g~ (t),gl 2 (t))v, } dt, 

2 t 2 ~ 1 /2  
Ilgllw(o,r) = ( l l g l lL~(o , r ;v )+  g L2(o ,r ,v , ) )  , 

respectively. 
For each fixed q E Q, we consider the Cauchy problem for the nonlinear parabolic evolution 

equation 
dy 
d--'t + A(t ,q)  y = f ( t , q ; y ) ,  in [0,T], (2.3) 

y (0) = y0, 

where f : [0, T] x Q x H --* H is a nonlinear forcing function. 
We impose the following assumptions to the nonlinear term f in (2.3): 

(A1) for each (q, y) E Q x H, the mapping t ~ f ( t ,  q; y) is strongly measurable in H; 
(A2) for each q E Q, there exists a ~(.,q) E L2(0, T ;R+) ,  such that, for all y,z  E H 

[ f ( t , q ; y ) - f ( t , q ; z ) [  <_~( t ,q ) [y - z ] ,  a.e. in [0, T]; 

(A3) For each q E Q, there exists a 7(',q) E L2(0, T ;R+) ,  such that, 

If(t,q;O)l <_ 7( t ,q) ,  a.e. in [0, T]. 

We suppose that, for each Qbd, there exist functions ]31 E L2(0, T; R +) and 71 E L2(0, T; R +) 
such that, 

3(t ,q)<_/~l(t) ,  ~/(t,q)<_~/l(t), YqEQbd,  t E R  +. (2.4) 

Now, we give the definition of weak solution of (2.3) due to Dautray and Lions [1]. 

DEFINITION 1. A function y = y(q) is said to be a weak solution of (2.3), if y E W(O, T), satis/ies 

(y' (' ,q),v>v,,v + a (.,q;y ( . ,q) ,v)  = ( f  (.,q;y ( . ,q)) ,V)H, 

for all v E V, in the sense ofT?' (0, T) ,  (2.5) 

y(O,q) = Yo E H. 

Here, 7)'(0, T) denotes the space of distributions on (0, T). 

The following theorem about existence, uniqueness and regularity of the solution of (2.5) can 
be proved by using the Galerkin method as in [18]. 

THEOREM 1. Assume that aft, q; c), ~) satis/]es (i)-(iii). / f  Y0 E H and f ( t ,  q; y) satisfies As- 
sumptions (A1)-(A3), then problem (2.3) has a unique weak solution y in W ( O, T). _~rthermore, 
y E C([0, T]; H) has an estimate 

/0' ly(t,q)12+ I ly (s ,q) l l2ds<C(t ,q) ( lyo le+l f ( t ,q ;O)12) ,  v t  z [0,T], (2.6) 

where C(t, q) is a positive constant, depending on q and t but independent of yo and f .  

R~MARK 1. From conditions (2.1) and (2.4), the constant C(t,q) in (2.6) has a finite upper 
bound C(t) E L~(0,  T ; R  +) for each Qbd, i.e., 

C ( t , q ) < _ C ( t ) < e c ,  Vq E Qbd. 

Hence, (2.6) can be rewritten as 

/0' q)t 2 q) ll 2 2 ds C (2.6) ly(t, + Ily(s, _< (t) (lyol 2 + II~IIL~<0,T;R+))" 
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3 .  P R O B L E M  O F  I D E N T I F I C A T I O N  

For each parameter q E Q, we consider the following nonlinear Cauchy problem involving q in 
differential operator and nonlinear forcing function 

y' (t, q) + A (t, q) y (t, q) = f (t, q; y (t, q)),  in (0, T) ,  
y(0;q) = Y0 E H, (3.1) 

where A(t, q) is a differential operator, and f( t ,  q; y) is a nonlinear forcing function satisfying the 
assumptions (A1)-(A3). By virtue of Theorem 1, for each parameter q E Q, there is a unique 
weak solution y = y(t, q) to (3.1). Therefore, we have a well-defined mapping q --* y(q) of Q into 
W(O,T). We shall call y(t,q) the state of system (3.1). 

3.1. S t r o n g  C o n t i n u i t y  of  t h e  So lu t ion  M a p p i n g  o n  P a r a m e t e r  

In this section, we shall establish the strong contindity of the mapping q ~ y(t, q). For this 
purpose, we require the continuity of A(t, q) and f( t ,  q; y) on the parameter q. More precisely, 
we make the following assumptions. 

(B1) There exists kl E C([0,T] x R +) with kl(t ,0) -~ 0 such that, 

(t, ]Iq -P]IQ)II¢llv II¢llv, Vq, p E Q, V ¢ , ¢  E ]a(t,q; ¢, g)) a (t,P; ¢, ~b)I <_ kl V. 

(B2) There exists k2 E C([0, T] x R + x H) with k2(t,O,y) - 0 such that,  

I f ( t , q ; Y ) -  f(t ,p;Y)[ <_k2(t ,[iq-PiiQ,[y[),  V q , p E Q ,  y E  H. 

THEOREM 2. Assume that (i)-(iii) and (B1),(B2) hold. Then, the mapping q --* y(q) : Q --, 
W(O, T) is strongly continuous. 

PROOF. For any fixed parameter q, let {qn} C Q be a sequence, such that  I[qn - ql[Q ~ O, as 
n ~ oo. Let Yn = y(qn) be the weak solution of 

y ~ + A ( t , q , ~ ) y n = f ( t ,  qn;yn), tE  (O,T), 
Yn (0) = Yo E H. (3.2) 

Since the set Qbd = {qn I n >_ 1} U {q} is bounded in Q, it follows from (2.7) that  

2 ly~ (t)l e + Ilyn (s)ll 2 ds _< C (t) (lyol 2 + tI'~IIL2(0,T;R+) , Vt  • [0, r l .  (3.3) 

Hence, {yn} is bounded in L~(0,  T; H). Also, the boundedness of {f( t ,  qn; y,~)} in L2(0, T; H) 
follows easily from 

If (t, qn; yn)l <_ If (t, qn; 0)l + ~ (t)lynl _< ~' (t) + ~ (t) lynl, 

where ~'l(t) and ~l(t) are square integrable functions corresponding to Qbd = {q~ I n _> 1} U {q}. 
Since {A(t, qn)y~} is bounded in L2(O,T;V'), {y~} is bounded in L2(O,T;V ') by (ii). Hence, 
{Yn} is bounded in W(0, T), and then, we can extract a sub-sequence, written by {yn} still, and 
find a z E W(O,T) with z(0) = Yo and a Y E L2(O,T;H), such that,  

yn -~ z, 

Yn "* Z, 

Y~n -~ z~, 

f ( t ,  qn;yn)--*Y, 

weakly in L 2 (0, T; V) ,  

weakly star in L ~ (0, T; H ) ,  

weakly in L 2 (0, T; V ' ) ,  

weakly in L 2 (0, T; H ) .  

(3.4) 
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Also by (3.4), we know that ,  for all fixed t E [0, T], 

Yn ( t ) ---* z ( t ) ,  weakly in V, 

y~ (t) ~ z / ( t ) ,  weakly in Y'.  (3.5) 

The  equation (3.2) is rewrit ten as 

y~ + A (t, q) Yn = (A (t, q) - A (t, q,~)) yn + f (t, qn; Yn). (3.6) 

Let ¢ E L2(0, T; V) be fixed. Then,  we mult iply both sides of the above equality (3.6) by ¢ and 
integrate over [0, T]. By the definition of weak solution, we have 

j~oT(ytn + A (t, q) y~, ¢ ) y ' , y  dt 
(3.7) 

/0 /0' = ((A (t, q) - A (t, qn)) y,,, ¢)v,,v dt + ( f  (t, qn; Yn), ¢) dt. 

Now, in te rms of (B1), we deduce 

- A ( t ,q, , ) )  C, Yn)v, ,v{  < k l  (t ,  llq~ - qllQ)I1¢11 Ily,,ll • l((A(t,q) 

Since {yn} is bounded in L2(O, T; V) and kl is continuous, the above inequality implies, by the 
Lebesgue dominated  convergence theorem, tha t  

T 
~o I ( ( A ( t ' q ) - A ( t ' q n ) ) ¢ ' Y n ) v " v l d t ~ O '  as n --, oo. 

Hence, in the equality (3.7) letting n --~ oo, and using the weak convergence in (3.4), we have 

/0 /0 ( z ' + A ( t , q ) z , ¢ ) v ,  v d t =  (Y,¢)dt ,  C E L 2 ( O , T ; V ) .  (3.8) 

This implies tha t  z = z(t, q) is a unique weak solution of the linear equation 

z' (t, q) + A (t, q) z (t, q) = Y, in (0, T) ,  
z (0, q) -- Y0 C H. (3.9) 

We shall show Y(t) = f(t,q; z), and then, by the  uniqueness of the solution of (3.2), we obtain 
z = y(q). For this, we shall prove the strong convergence of Yn to z. From the energy equality 
for y~ and z, we have 

/o' ly~ (t)12 + 2 a(s, qniyn(s),yn(S)) ds 
(3.10) 

= lyo[2 + 2 ( f(s ,  qn;yn(s)),yn(s)) es, Vt e [0,rl, 

and 

/o t /' Iz(t)j2+2 a(s ,q ;z ( s ) , z ( s ) )  d s=  lY012 + 2 (g ( s ) , z ( s ) )  ds, Vt e [0, T] .  (3.11) 

For the simplicity of notations, the arguments  t and s of function z in the following calculations 
are omitted.  Adding (3.10) to (3.11), we have 

ly,~ - z12 + 2 a ( s , q , ~ ; y n - z , y , ~ - z )  ds 

3 r t  (3.12) 
= 2~-~Yt(t) + 2 /  ( f ( s , q . ; y . ) - f ( s , q , . ; z ) , y n - z ) a s ,  

i=0 JO 
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y o  ( t )  = - (yn,  z ) .  , 

/o /o Y~ (t) = - 2  (a (s, qn; Y,~, z) - a (s, q; Yn, z)) ds - 2 a (s, q; yn, z) ds, 

/o /o Y~ (t) = ( I  (s, q,~; ~) - f (~, q; z ) ,  y,~ - ~) a~ + ( I  (s, q; ~), Yn -- z) d~ 

+ ( I (S ,  q n ; ~ , ~ ) - Y , z )  as, 

Y ~ ( t )  = (a(s ,  q n ; z , z ) - a ( s , q ; z , z ) )  ds. 

Note tha t ,  

2 ~ t ds ~o t ( f i s ,  q n ; y n ) - - f ( S ,  q n ; Z ) , y ~ - - Z )  < 2  ~3(s )]y~-z )]2  ds. 

~-]~=o Y~(t) in (3.12). By using (i)-(iii), we have We set Yn(t) -- 3 

/0 1' ]Yn - zl 2 + 2a Ilyn - zll 2 ds <_ 2Yn (t) + 2 (8 is) + A) lY,~ - zl 2 ds, (3.13) 

where c~, )~ are positive constants independent of qn. Denote t~ = min{1, 2a}, and set 

o n  ( t )  = tyn - zl ~ + Iryn - zll 2 ds ,  

Zn (t) = 2 p - l Y n  (t) , 

h ( t)  = 2 ~  -1  ( 8  ( t )  + ~),  

then, the inequality (3.13) implies that ,  

on (t) < zn (t) + h (s) On (s) ds. 

Since Zn(t)  is continuous, we can apply the extended Bellman-Gronwall  inequality (cf. [19]) to 
get 

/0 O,~ (t) <_ Zn (t) + exp h (r) d~- h (s) Zn (s) ds. (3.14) 

We claim tha t  limn--.o~ On (t) = 0, for each t E [0, T]. Let 

/0 g (t, s) = exp h (r)  d'r h (s) ,  Mn (t) = K ( t, s) Zn (s) ds. (3.15) 

Then,  

On (t) < Zn (t) + K (t, s) Zn (s) ds. 

Moreover, it is easy to see tha t  

]K (t, s)] _< exp ({,hHL,(O,T;R+)) h (~), 

and Mn(t)  is uniformly bounded on [0, T]. In order to verify Zn(t)  --* 0, as n ~ c~, it is sufficient 

to prove 
lim Y n ( t ) = O ,  V t E  [0, T].  (3.16) 
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By (B1), Lebesgue dominated convergence theorem and boundedness of {Yn} • L2( 0, T; H) ,  we 
have 

fo t a ( s ,  qn;yn,  z) - a ( s , q ; y n ,  z) ds 

<_ f o t k l  ( s , ' q n - q ' Q )  l y n " z '  ds 

(/o (/o 
as n --* co. Then,  we obtain 

f lira YJ (t) = - 2  a ( s , q ; z , z )  as. (3.17) 

Similarly, we have, from the assumptions (B1), (B2), and (3.4), tha t  

Z yO (t) ~ - [ z l 2 ,  ]1.2 (t) ~ 2 (Y, z ) v , v ,  ds, y 3  (t) ~ O, as n --~ oo. (3.18) 

Therefore by (3.11) with ]Yol = 0, (3.17) and (3.18), we have the desired result (3.16). This 
proves the claim, 

Hence, 

j i m  Cn (t) = 0, Vt • [0, T]. 

y ,  --~ z, strongly in C ([0, T];  V) and L 2 (0, T; V) .  (3.19) 

Yn --~ z, strongly in C ([0, T] ; H)  and L ~ (0, T; H ) .  (3.20) 

Now, it is ready to verify Y ( t )  = f ( t , q ; z ( t ) )  in H,  for a.e. t E [0, T]. Applying the above 
convergence and (B2), we get the inequality 

I f  (t, qn;yn)  -- f (t, q; Z)[ _< If  (t, qn;Yn) -- f (t, qn; Z)] + I f  (t ,qn; Z) -- f (t, q; Z)] 
(3.21) 

_< 9 (t)ly~ - zr + k2 (t, Itq~ - qtIQ, Iz 0 

Finally, taking the difference of (3.2) and (3.9), we have 

(Yn - z ) '  = (A  (t, qn) -- A (t, q)) y + A (t, q) (y,~ - z) + f (t, qn; Yn) -- f (t, q; Z).  

Note tha t  by (3.21) and (B2), the last t e rm in the r ight-hand side of the above equality strongly 
converges to 0 in L2(0, T; H).  Then,  it follows from (B1), (3.19), and (3.21) tha t  

y~ ~ z', strongly in L 2 (0, T; V ' ) .  

Since any sequence {qn} converging to q in Q has a sub-sequence qnk, such tha t  Y(qnk) ~ Y(q) 
in W(0, T),  we conclude tha t  the mapping  q ---* y(q) is strongly continuous in W(0, T). 

3.2. E x i s t e n c e  o f  O p t i m a l  P a r a m e t e r  

We now consider the problem of existence of opt imal  parameter .  The  performance criterion is 
given by 

J (q) = IICy (q) - Zdll 2 , for q e Q, (3.22) 

where M is a Hilbert  space of observations, C E £ ( W ( O , T ) , M )  is an observation operator  and 
Zd is a desired value belonging to M .  Our goal is to find an opt imal  element ~ E Qad, such tha t  

J(¢]) = min J (q), (3.23) 
qEQad 

and to derive a necessary condition for optimal  paramete r  q. We call q, the opt imal  parameter  
and y = y(q), the opt imal  state. 
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THEOREM 3. Assume tha t  (B1),(B2) hold. If Qad is compact and convex in Q, then, there exists 
at  least one optimal parame te r  ~ E Qad. 

PROOF. Since Qad is a nonempty  convex subset of Q, there is a minimizing sequence {qn}, such 
that ,  

lira J (qn)= inf J ( q ) .  
n--~ tx) q E Q ad 

Since Q~d is compact ,  there exists a sub-sequence {q~  } and a ~ E Qad such that ,  

Hence, by Theorem 1, 

I t  follows from (3.22) that ,  

I lq~ - (111Q -~ o. 

Y (qn~) ~ Y (4) in W (0, T ) .  

This proves tha t  q is an opt imal  parameter .  

inf J (q). 
q E Q a d  

3.3. Necessary Optimality Condition 

We now consider the necessary condition for the opt imal  paramete r  q. One classical method 
to obtain the necessary condition for (1 is to calculate the first variation of J(q) around (1. If 
y(q) is G£teaux differentiable at ~ E Qad and Y'((t) is its G~teaux derivative at q = (1, then J(q) 
is Ghteaux differentiable at  q -- q, and the necessary condition for the opt imal  parameter  ~ is 
characterized by the following variational inequality, 

J '  (4) (q - q) -> 0, Vq E Q~d, 

where J ' (q )  denotes the G£teaux derivative of J(q). Therefore, we consider G~teaux differentia- 
bility of y(q) at q. In the following, for a linear operator  L, L* denotes the adjoint of L. 

In this section, we pose following assumptions. 

(C1) For each y E H, f(t ,  q; y) is G£teaux differentiable with respect to q E Qad for a.e., t E 
[0, T], and for any q E Qad, f ( t ,q;y)  is Fr~chet differentiable with respect to y E H for 
a.e., t E [0, T]. The  G~teaux derivative fq(t, q; y) and the Fr~chet derivative f~(t, q; y) are 
continuous on Q~a x H for a.e., t E [0, T]. Moreover, for some bounded subset  Hbd of H ,  

there are ~1( ' ) ,~2( ' )  E L2(0, T ; R + ) ,  depending on Hbd, such tha t  

Iifq(t,q;y)il~:(Q,H)<_~l(t), V(q,y) EQadXHbd,  for a.e., t E [0, T] .  

Iify(t,q;y)iiz.(H)<_~2(t), V(q,y) eQadXHbd ,  for a.e., t E [0, T] .  

(C2) For any ¢ , ¢  E V, a(t,q; ¢ , ¢ )  is G£teaux differentiable with respect to q E Qad, for all 
t E [0, T], and there exists ~ > 0, such tha t  G£teaux derivative aq(t, q; ¢, ~b) satisfies 

]]a'q(t,q;¢,¢)Iiz.(Q,R ) <-- ~[[¢[t [ [¢[ [  V(t,q) E [0, T] x Qad. 

The  purpose of this section is to describe the opt imali ty  condition (3.24) in te rms of proper 
adjoint system. 

In order to prove the G£teaux differentiability of q ~ (y(T, q), y(q)) in the space H x L2(0, T; V), 
we use the t ransposi t ion method.  We need some preliminaries on the adjoint equations which 
are related to the first variation of (y(T; q), y(q)) with respect to q. Furthermore,  let y'((1, q - (t) 
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denotes the Ggteaux differential of y(q) with respect to q at q in the direction q - q, we shall 
derive the equation of y'(~, q - iT). 

For any q 6 Qad and A E [0,1], suppose that  there is an operator  L(q,A;t) 6 £ ( H )  for 
a.e., t E [0, T]. Consider the following terminal value problem of linear evolution equation, 

- ¢ ' + A * ( t , q ) ¢ + L ( q , A ; t ) ¢ = g ,  t e ( O , T ) ,  
¢ (T) = CT, (3.25) 

where CT E H, g 6 L 2 (0, T; H).  By Theorem 1, if we consider reversed t ime flow t ~ T - t, the 
linear problem (3.25) has a unique weak solution ¢ = ¢(q, A; CT, g) E W(0, T). Fhrthermore, if 
there exists a/3(.) 6 L2(0, T; R +) such that ,  

[IL(q,A;t)I[L(H)<--I3(t), for, a . e . , t 6  [0, T] ,  V(q,A) E Q a d × [ 0 , 1 ] ,  (3.26) 

then, we have an estimate 

max [1Oil < c ,(ICTI + IIglIL=(O,T;H)'},I (3.27) 
t6 [0,TI 

where c depends on q and A but is independent of CT and g. This assures tha t  CT E H, g E 
L2(0, T; H)  and L(q, A; t) 6 L2(0, T; £(H)) .  

Let X[q, A] be the set of all weak solutions of (3.25), i.e., 

X [ q , A ] = { ¢ I ¢ = ¢ ( q , A ; ¢ T , g )  E W ( O , T  ), C T E H ,  g E L 2 ( O , T ; H ) } .  (3.28) 

Since the equation (3.25) with L(q, A;t) is linear, we can define an inner product  on X[q, A] by 

(¢, ~b)X[q.A] = (¢T, ~bT) H + (9, h)L2(O,T;H ) , 

for ¢ = ¢(q, A; CT,g), ~P = ¢(q, A; ~bT, h). It is easily verified that  (X[q, A], (., ")X[q,~]) is a Hilbert 
space, and the map ¢ = ¢(q, A; CT, g) --~ (¢T, g): X[q, A] onto H × L2(0, T; H)  is an isomorphism. 
Define the operator  

[q, A; t] (¢) = - ¢ '  + A* (t, q) ¢ + n (q, A; t) ¢. (3.29) 

Using the method of transposition due to Lions and Magenes [2], for a bounded linear functional l 
defined on X[q, A], there is a unique solution ~ E L2(0, T; H)  such that ,  

(¢(T)  , ¢ (T ) )  H + (¢(t) ,~  [q,),;tl¢(t)) dt = 1(¢),  for all ¢ E X[q,~].  (3.30) 

Particularly, for (q,A) = (~,0) E Q~d x [0,1], we define L(q, 0;t) = - f~ ( t ,q , y (q ) )  E £(H) ,  and 
denote by ~[~, 0; t] the corresponding operator  in (3.29), by X[q, 0] the solution space of this 
(q,0). 

THEOREM 4. Assume that (B1),(B2) and (C1),(C2) hold. Then, the map q ~-+ y(q) o[ Q into 
W(O, T) is G£teaux differentiable at ~t, and the G~teaux differential of y(q) at gl in the direction 
q - ~ • Q, denoted by z = y'(q)(q - ~), is the unique solution of 

// ( z ( T ) , ¢ ( T ) ) H +  ( z , - ¢ '  + A * ( t , q ) ¢ - g ( t , q ; y ( q ) ) ¢ ) v , v ,  dt 

f0 T ~0 T (3.31) = -- a 'q ( t ,q ;y (q) ,¢ ) (q - -q)  d t+  ( f ~ ( t , q ; y ( q ) ) ( q - q ) , ¢ )  dr, 

z (o )  = o.  

for all ¢ E W(0, T).  
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PROOF. For simplicity, we omit the variable t. We now show G£teaux differentiability of mapping 
q ---* y(q) at q in the direction q - q, q E Q~d. For this, set qx = q + A(q - q), A E [0, 1], then 
qx E Q~d because of the convexity of Qad and [Iqx - q[[Q = Aliq - c~[[Q - ,  0 as A ~ 0. Since 
{qA}),e[0,~] C Qad and Q~d is bounded, by Theorem 2 and (B1)-(B2),  we have 

Y(qA) --*Y(q), 

By (3.20), we also have 

y(q~) ~ y ( q ) ,  

strongly in W (07 T ) ,  as A -* 0. 

strongly in C (0, T; H ) ,  as A -~ 0. 

(3.32) 

We set y~ = y(q;~)-~ for A e [0,1] and ~ = y(q) E W(O,T) NC(O,T;V)NC(O,T;H) .  As in 
Section 3, we have the uniform boundedness 

{ /0' ) sup lyx[2+ [[yx[I2dsl(t,q,A) E[O,T]xQ~ax[O,  1] < c o .  (3.34) 

For A E [0, 1], y~ satisfies 

y~ + A (q~) y~ = - (A (qx) - A (q)) ~ + f (q~; y~) - f (q; ~),  in (0, T ) ,  
y~ (0) = 0 E H. (3.35) 

Divide (3.35) by )~ and set z~ = A-lyx.  Then, z~ satisfies 

z~ + A(q),)z), - fy( t ,  qa;Oy)~ + (1 - 0)~) dOz)~ 

A ( q ~ ) - A ( q )  f (q~;Y) - f (q;Y) (3.36) 
A Y + A in (0, T) 

z~ (0) = 0 ~ H, 

in weak sense. For all (q, A) E Qad x [0, 1], we set 

/o' L(q,A;t) = - f~ (t,q)~;Oy)~ + (1-O)f l )  dO. 

Note that  L(q, 0; t) = - f ~ (  t, q, y(Ct)), for all q E Qad, because q~ ~ Q~d and 

sup (10yx ( t ) +  (1 - 0 ) ~  (t)l:  (t, 0, q, )9 e [O, TI x [o, 1] x Q~d x [o, 11} < ~ .  

Due to (3.34), it follows from (C1) that  

/o' IlL iN, ),; t)llL(m -< ~2 it) go = B~ (t) ,  a.e., t, for all (q, a) ~ Q~d x [0, 1], (3.37) 

so that  L(q,A;.) E L2(O,T;E(H)). For each (q,,\) E Q~d x [0,1], since (3.37) implies (3.26), 

CT E H and g E L2(O,T;H), there is a unique weak solution ¢ = ¢(q,A;¢T,g) E W(O,T), 
satisfying, 

~[q,A; t]=9,  L ( q , A ; t ) = -  f~(t,q~;Oyx + ( 1 - O ) ~ )  dO, (3.3S) 

¢ (T) = CT. 

Furthermore, we have the estimate (3.27) of ¢ which is independent of (q, A). 

(3.33) 
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Multiplying both sides of (3.36) by ¢ E W(0, T) with ¢(T)  = CT, we have a weak form 

~o t (z~ (T), ¢ (T)) H + (z~ (q), • [q, ,k; t] (¢)) dt 

~o /ot('f(t 'qx;Y((1)); f(t'(1;y((1)) ¢ ) d t  = _ t a(t,q~;y~,¢)-a(t,q;y~,¢) dt+ 

= I1 (¢) + 12 (¢) .  

(3.39) 

Let us estimate I~, I2 by using (C1),(C2). There exist O;, 02 C [0, 1] such that ,  

~o T dt 111 (¢)1 = a'q(t,q+91A(q-(1);y~,¢)(q-q) 

- < z 3 ' J l q - ( 1 J l Q t m a X l l l y x J l "  e[O,T ' te[O,Tlmax I1¢11 - < c' te[O,Tlmax tICN- 

and 

T dt 
112(¢)1= ~o (fq(t,(t+O2A(q-(l);~)(q-(1),¢) 

--< ~1 L2(0,T;R+)'~ [ ]q-  (1IIQ tE[0,T]max II¢ll _ < c" te[O,Tlmax IlOil. 

Hence, 
IL (¢)1 + 112 (¢)1 -< (c' + c") max  II¢ll, 

tC[0,T] 

where c ~, c" are positive constants independent of q E Q~d. Then, we can easily show that  zA 
is bounded in L°°(0, T; H)  by taking CT = 0, g = zA in (3.38), also zA is bounded in L2(0, T; V) 
by taking ¢T = 0, g = A(t, qA)zA in (3.38). Further, taking ¢T = zA(T),g(t) = 0, then, we can 
easily see tha t  {z~(T)} is bounded in H. Therefore, we can extract  a subsequence {zA}, denoted 
by itself, and find a z c L2(0, T; V), z(T) E H such that ,  

z~ ~ z, weakly in L 2 (0, T; V) .  (3.40) 

z~ (T) ~ z (T) ,  weakly in H. (3.41) 

Fix ¢ E X[q, 0] C W(O,T) with L(q,0; t )  = -]~(t,(l,~), then, 

rio T (t, q~; y~, ¢) - a (t, q; y~, ¢) dt a 
[1 (¢) = 

_<JOT< (A(t'q~)-A(t'(1))¢ ,~1 dt 
V' ,V 

+ ]o ((A - A (t, +) ¢ 
-~ - 9/~ v,,v 

= d l  + J2. 

dt 

By (C2), we have 

~o T ~olim J1 = aq' (t, q; 7~, ¢) (q  - (t)  dt. 

Also by (C2), for some 0 E (0, 1), we have 

T 
J2 = f0 a'q (t, q + e~  (q - q) ; y~ - 9, ¢) (q - q) dt. 
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By the strong convergence of YA --* Y in (3.33), we have 

J2 <- 7 II¢IIL~(O,T;H) IlY,~ - f/IIL2(O,T;H) [{q -- (1[IQ ~ 0, 

Hence, 

as A ---, O. 

f0  T limo I ,  = atq (t, (1; ~, ¢) (q - q) dr. 

By similar calculation as in the above, it follows from (C1) tha t  

fOT ( f ( t , q ~ ; y ( q ) )  f(t ,(1;y((1)) ) l i r a /2  (¢) = l i m  ; , ¢ dt 

/o = (/~ (t, ~, y) (q - 0) ,  ¢) dr. 

Finally, for fixed a.e., t E [0,T], by (C1) we have, for all 0 e [0, 1], that ,  

lim f,* (t,q~;Oyx + (1 - 0)~) = f~ (t,(1; ~) 
,~---*0 

(3.42) 

(3.43) 

i n / : ( H ) .  Since the convergence is uniform on [0, 1], we also have 

lim L (q, A; t) = - f ~  (t, (1, if), a.e., t e [0, 1]. 
, ~ 0  

Applying the Lebesgue dominated convergence theorem, we have 

/o /0 lim (z~,  L (q, ,X; t)  ¢) dt  = - ( z , / ~  (t, (1, ~) ¢) dr. (3.44) 
A~0 

Therefore, taking )~ ~ 0 in (3.39), and using (3.40)-(3.44), one sees tha t  z satisfies 

f T 
(z (T ) ,  ¢ (T))  H + / ,  (z, - ¢ '  + A* (t, (1) ¢ - l~ (t, (1; y ((1)) ¢)v ,v '  dt 

= - a~q(t ,(1;y((1),¢)(q-(1) d r+  ( fq ( t , (1 ;y ( (1 ) ) (q - (1 ) ,¢ )  at, 

z (o) = o, 

for all ¢ E X[(1,0] C W(0, T). Therefore, we can define l on X[(1,0] with L((1,0;t] = - f ; ( t , (1 ,~ )  
as 

To,q f0 T l (¢) = - fJ0 (t, ((1), ¢) (q - Cl) d t +  (f~ (t, ~t; y ((1)) (q - (1), ¢) dt. 

This means tha t  l is a bounded linear functional on X[(1, 0] c W(0, T),  satisfying 

/0" (z(T),¢(T))~ + (z,e[(1,0;tl(¢))v,v, dt=l(¢) ,  

where z is the unique solution of (3.45). This proves Theorem 4. 

REMARK 2. From the above proof, we see tha t  z = yt((1, q _ (1) is linear for the variable q - ~. 

Therefore, y' ( q, q - (1) = Y' ( q) ( q - (1). 
Next,  we look for a necessary condition for opt imal  parameter  (1. Calculating the Ggteaux 

derivative of the cost (3.22), the opt imal i ty  condition (3.24) of opt imal  pa ramete r  (1 is rewrit ten 

as 
J' ((1) (q - (1) _> o, Vq e Qaa. (3.46) 
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By Theorem 4, y(q) is weakly G~teaux differentiable at q in the direction q - q and (3.46) can 
be rewrit ten as 

(C*A~ (Cy (q) - zd), yt (q) (q _ q))W(O,T)',w(O,T) --> 0, Vq E Qad, 

where Zd is the desired value of y(q) in observation space Ad, AM is the canonical isomorphism 
from Ad to A/V.y'(q)(q - q) is weakly G£teaux differential of y(q) at  q in the direction q - q. 

To avoid the complexity of observation state, we consider distr ibuted observations and terminal  
value observations as in Lions [17]. Tha t  is, consider the following two cases. 

1. Take C E £.(L2(O,T; V) , .M)  and observe z(q) = Cy(q). 
2. Take C E £ ( H ;  Ad) and observe z(q) = Cy(T; q). 

For each case, we introduce an adjoint s tate  system, and form the condition (3.47), we derive 
necessary condition of optimality, which solves the problem (ii) in a sat isfactory manner.  

1. CASE OF C E £(L2(O,T;V) , .M) .  In this case, the cost function is given as 

J(q)  =]]Cy (q) - Zd]]~, Vq E Q. (3.48) 

Then, it is easily verified tha t  the opt imal i ty  condition (3.47) for opt imal  paramete r  q is 

(Cy(q) - Zd, gZ)M _> 0, Vq E Qad, (3.49) 

where z = y'(q)(q - q), q is the opt imal  paramete r  for (3.48). Using the isomorphism AM, we 
can transfer the condition (3.49) to 

T 
j~0 (C'AM (q) Zd), Z)V,,V ~ 0, q E Qad. (3.50) (cy dt V I 

We introduce the adjoint system by 

d p ( q )  A* * + ( t ,q)p(q)  = f~ ( t , y (q ) )p (q)  + C ' A M  (Cy(q) - Zd) , in (0, T ) ,  
(3.51) 

p(T,(I) = O, 

where p(q) denotes an adjoint 
E L2(0, T; H)  and C 'AM (Cy(q) 
a linear equation of p(q). Then 

THEOREM 5. Let C E £(L2(0, 
Then, the optimM paramete r  q 

dy ( q) 
dt 

state  depending on opt imal  parameter  q. Since f~(t ,y(q))p(q) 
- Zd) E L2(O, T; H) as y(q) E H in the two terms, then (3.51) is 
by Theorem 1, there is a unique weak solution p(q) E W(O, T). 

T;V) ,Ad) .  Assume that all the conditions of Theorem 4 hold. 
E Qad for (3.48) is characterized by 

- -  + A( t ,q )  y(q)  = f ( t ,y  (q)),  in (0, T ) ,  

y(0,  q) = y 0  E H ;  

@ (q) 
- d--T- +A* ( t ,q)p(q)  = fy  ( t , y (q ) )p (q)  + C ' A M  (Cy(q) - Zd), 

p (T ,q )  = 0 E H; 

in (o, T),  

fo fo - a~q ( t , q ; y (q ) , p (q ) ) (q -q )  d t +  ( f q ( t , q , y ( q ) ) , ( q - q ) , p ( q ) )  dt ~ O, 

with 
Y(q) E W ( O , T ) ,  p(q) e W (O,T). 

Vq E Q~d 
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2. CASE OF C • F.(H, AA). In this case, the cost function is expressed as 

J(q)  = HCy(T,q) - z T H L ,  Vq • Q, (3.52) 

where zh r • .4d is a desired value. Then, the optimal parameter 4 for (3.52) is characterized by 

(C*A~ (Cy (T, 4) - z T) ,z  (T) )v ' , v  >_ O, V q • Q~d, (3.53) 

where z(T)  = y'(T, q)(q - 4). For the terminal value observation cost (3.52), we introduce an 
adjoint system defined by 

d 
A *  * , , - - ~ P ( 4 )  + ( t ,4)P(4)  = f~ ( t , y (4 ) )P(4 )  in (0, T) 

p(T ,  4) = C'AM (Cy(T,q)  - z  T) • H. 
(3.54) 

Since C'AM (Cy(T, q) - zd) • H,  then (3.54) is a well-posed linear equation of P(q) and permits 
a unique weak solution p(q) in W(0, T), if the change of time variable t -* T - t is adapted. 

THEOREM 6 LET C •/~(H,.£4). Assume that all the conditions in Theorem 4 hold. Then, the 
optimal parameter 4 for (3.52) satisfies 

d y ( q )  + A ( t , 4 ) y ( 4 )  = f ( t , y ( t , 4 ) ) ,  in (0, T) ,  

y (0 ,  4 )  = y0 e H ;  

d 
- - ~ P ( 4 )  + A* ( t ,~)p(4)  = f~ ( t , y ( t , 4 ) ) p ( 4 ) ,  in (0, T) ,  

p(T ,  4) = C*A~ ( C y ( T , 4 ) -  z T) e H; 

/o /o - a q ( t , 4 ; y ( q ) , p ( 4 ) ) ( q - q ) d t +  ( f~( t ,4 ,  y ( 4 ) ) ( q - 4 ) , P ( 4 ) )  d t > O ,  V q E Q a d  

with 

Y(q),P(4) e W(0, T).  

REMARK 3. It is better to notice that Theorems 5 and Theorem 6 can not be applied to concrete 
nonlinear parabolic equation in which H is taken to be L2(ft). In fact, a well known result due 
to Krasnoselskii states that the mapping y ~-* f(., y) is Fr~chet differentiable in H = L2(~) if 
only f is affine-linear. Then assumption (C1) makes no sense in these cases. 

4. C O N C L U S I O N S  

This paper studied the parameter identification problem of nonlinear parabolic distributed pa- 
rameter system via the variational method. For the output error criterion, given by the quadratic 
cost, the existence of optimal parameter is proved. Finally, using the transposition method, the 
necessary condition for the optimal parameter is given for the case of distributed observation and 
terminal observation. 
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