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A Switching Algorithm for Global Exponential
Stabilization of Uncertain Chained Systems

Zairong Xi, Gang Feng, Z. P. Jiang, and Daizhan Cheng

Abstract—This note deals with chained form systems with strongly
nonlinear unmodeled dynamics and external disturbances. The objective
is to design a robust nonlinear state feedback law such that the closed-loop
system is globally -exponentially stable. We propose a novel switching
control strategy involving the use of input/state scaling and integrator
backstepping. The new features of our controllers include the ability to
achieve Lyapunov stability, exponential convergence, and robustness to a
set of uncertain drift terms.

Index Terms—Backstepping, chained form systems, exponential stabi-
lization, input-state scaling, Lyapunov stability, robustness.

I. INTRODUCTION

Over the past decade, the control and stabilization of nonholonomic
systems has formed an active area within the nonlinear control commu-
nity; see, for example, the recent survey papers [5], [11], and the ref-
erences cited therein for an interesting introduction to this quickly ex-
panding area. This flow of research activity has been mainly triggered
by the well-known 1983 paper by Brockett [4], where a necessary con-
dition for asymptotic stabilization is stated. One of the consequences
of the necessary condition is that a nonholonomic system is not stabi-
lizable by stationary continuous state feedback. To overcome this im-
possibility, several interesting and fundamentally nonlinear approaches
have been proposed. Examples of these approaches are open-loop peri-
odic steering control, either smooth or continuous time-varying control,
and discontinuous feedback control; see, for example, [1]–[3], [6], [7],
[9], [10], [13], and [15]–[20].

It should be noted that the majority of these constructive methods
have been developed around an important class of driftless nonholo-
nomic systems in chained form, which was brought to the literature
by [18]. As explained and illustrated in [11], [18], and the references
therein, many nonlinear mechanical systems with nonholonomic con-
straints on velocities can be transformed, either locally or globally, to
chained form systems via coordinates and state-feedback transforma-
tion. For instance, we have seen such examples as tricycle-type mobile
robots, cars towing several trailers, the knife edge, a vertical rolling
wheel, and a rigid spacecraft with two torque actuators.
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As is well known in the literature on nonholonomic control systems,
a smooth time-varying state-feedback law can be applied to achieve
asymptotic stabilization but fails to meet the requirement of exponen-
tial convergence. However, exponential convergence is an important
performance characteristic for practical applications. To date, several
important steps have been made toward the design of a continuous
time-varying and/or discontinuous feedback law guaranteeing the ex-
ponential regulation of nonholonomic systems in chained form [2],
[10], [16], and [20]. Two types of control laws—discontinuous state
feedback and time-varying feedback—have been frequently used in the
recent literature to obtain an exponential rate of convergence for non-
holonomic control systems (see, for instance, [1], [2], [6], [10], [14],
[16], and [20]). However, the closed-loop systems are not Lyapunov
stable. Marchand and Alamir [15] obtained Lyapunov stability and ex-
ponential rate of convergence in the absence of disturbances. Since
their result depends on a Riccati equation, it could not be easily ex-
tended, if not impossible, to the occurrence of uncertain disturbances
[15].

The purpose of this note is to obtain both robust global exponen-
tial regulation and Lyapunov stability for a class of disturbed nonlinear
chained systems without imposing any restriction on the system order
and the growth of the uncertain nonlinearities. The contribution of the
note is twofold. We propose a systematic control design procedure
to construct a switching robust nonlinear control law which not only
solves the global exponential regulation problem, but also Lyapunov
stability problem for all plants in the considered class, including the
ideal chained system. For the Lyapunov stability with global exponen-
tial regulation, to the best of our knowledge, there is still no robustifi-
cation tool for nonholonomic systems design.

The remainder of this note is organized as follows. In Section II, the
class of nonholonomic systems with strongly nonlinear disturbances
is introduced and the problem of global exponential stabilization
is formulated. Section III first presents the input-state scaling tech-
nique and the backstepping design procedure and then a switching
control strategy. In Section IV, we illustrate our novel control design
methodology via a practical nonholonomic system with disturbances.
The numerical simulations testify to the effectiveness and robustness
aspects of the proposed robustification tool. Finally, some conclusions
are given in Section V.

II. PROBLEM FORMULATION

The purpose of this note is to consider a perturbed version of the
chained form [10]

_x0 = d0(t)u0 + x0�
d

0(t; x0)

_x1 = d1(t)x2u0 + �d1(t; x0; x; u0)
...
_xn�2 = dn�2(t)xn�1u0 + �dn�2(t; x0; x; u0)

_xn�1 = dn�1(t)u+ �dn�1(t; x0; x; u0)

(1)

wherex = (x1; . . . ; xn�1) 2 Rn�1, x0 2 R the functionsdi ’ s
and�di ’s denote the possible modeling error and neglected dynamics.
Throughout this note, the following assumptions will be required.

Assumption 1:For every0 � i � n�1, there are (known) positive
constantsci1 andci2 such that

ci1 � di(t) � ci2 8t � 0: (2)
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Assumption 2:For every0 � i � n�1, there is a (known) smooth
nonnegative functions�i that satisfies the inequalities

�d0(t; x0) ��0(x0)

�di (t; x0; x; u0) � j(x1; . . . xi)j�i(x1; . . . xi; u0)

for all (t; x0; x; u0) 2 R+ � R � Rn�1 � R.
As explained and illustrated in [10], the structural triangularity con-

dition in Assumption 2 is a quite common assumption in the framework
of robust/adaptive nonlinear control [12].

We first recall a notion ofK-exponential stability from [20], which
reduces to exponential stability in the Lyapunov sense when the func-
tion  is a linear function.

Definition 1: A system of the form : _x = f(x) with x 2 Rn is
said to be globallyK-exponentially stable (GES) if there exist a positive
constant� and a function of classK such that8x(0) 2 Rn, 8t � 0

jx(t)j �  (jx(0)j) e��t 8t � 0: (3)

This note aims to find explicit controllers

u0 = �0(x0; x) u = �(x0; x) (4)

that globallyK-exponentially stabilize all systems (1) satisfying As-
sumptions 1 and 2. A main difference with [1], [2], and [10] is that we
are interested in achieving stability properties in the sense of Lyapunov.

On the basis of Assumptions 1 and 2, we are led to choose the control
law u0 as

u0 = ��0x0 �
1

c01
x0�0(x0) (5)

where�0 > 0 is a positive design parameter. As a result, the following
lemma can be established by considering the Lyapunov function can-
didateV0 = (1=2)x20 and by applying directly the Gronwall Lemma
(cf. [10]).

Lemma 1: For any initial instantt0 � 0 and any initial condition
x0(t0) 2 R, the corresponding solutionx0(t) exists for eacht � t0
and satisfieslimt!1 x0(t) = 0. Furthermore, ifx0(t0) 6= 0 then
x0(t) 6= 0 for all t � t0.

Notice that the forward invariance property proved in Lemma 1 will
be used in the controller design and stability analysis in the next section.

III. CONTROLLER DESIGN

A. Input-State Scaling and Backstepping Design

Introduce an input-state scaling discontinuous transformation de-
fined by [6] and [15]

�i =
xi

u
n�(i+1)
0

; 1 � i � n� 1: (6)

Under the new�-coordinates, thex-system is transformed into

_�1 = d1(t)�2 � (n� 2)�1
_u
u

+
� (t;x ;x;u )

u

_�2 = d2(t)�3 � (n� 3)�2
_u
u

+
� (t;x ;x;u )

u

...
_�n�2 = dn�2(t)�n�1� �n�2

_u
u

+
� (t;x ;x;u )

u

_�n�1 = dn�1(t)u+ �dn�1(t; x0; x; u0)

: (7)

The inherently triangular structure of (1) suggests that we should
design the control inputsu0 andu in two separate stages.

Assumption 3:Assume thatu0 : R ! R is a continuous, almost
everywhere differentiable function, with the following properties:

P1) for all t � 0, u0(t) 6= 0;
P2) for almost allt � 0, jdu0=dtj � ��0(x0)ju0(t)j, where

��0(x0) is a known nonnegative function.
If u0 vanishes,x clearly becomes uncontrollable. P1) avoids this

loss of controllability. P2) is only convenient for the control design.
From Section II, it is known thatu0 = �(�0 + (�0=c01))x0 fulfills
Assumption 3 providedx0(t0) 6= 0.

In the remainder of this section, we focus on designing the control
inputu provided that Assumptions 1–3 are satisfied.

According to Assumption 3, the discontinuous state transformation
(6) is applicable becauseu0(t) 6= 0 for every t � t0. The design
of the control inputu will be based on an application of the common
backstepping method to the transformed system (7). Indeed, (7) can be
written in the more compact form

_�1 = d1(t)�2 +�d
1(t; x0; x; u0)

_�2 = d2(t)�3 +�d
2(t; x0; x; u0)

...
_�n�2 = dn�2(t)�n�1 +�d

n�2(t; x0; x; u0)
_�n�1 = dn�1(t)u+�d

n�1(t; x0; x; u0)

(8)

where, for each1 � i � n � 1

�d
i =

�di (t; x0; x; u0)

u
n�(i+1)
0

� (n� (i+ 1)) �i
_u0
u0

: (9)

Lemma 2: For each1 � i � n � 1, there exists a smooth nonneg-
ative function��i such that

�d
i (t; x0; x; u0) � j(�1; � � � ; �i)j ��i(x0; �1; � � � ; �i; u0): (10)

Proof: In view of (6), Assumptions 1–3, we have

�d
i (t; x0; x; u0) �

j(x1; . . . ; xi)j

u
n�(i+1)
0

�i(x1; � � � ; xi; u0)

+ (n� (i+ 1)) ��0(x0)j�ij

� (u0)
i�1�1; � � � ; �i

� �i (u0)
n�2�1; . . . ; (u0)

n�(i+1)�i; u0

+ (n� (i+ 1)) ��0(x0)j�ij:

Therefore, the proof of Lemma 2 is completed.
Thanks to Lemma 2, (8) satisfies the “lower-triangularity” condition

and therefore, the systematic controller design foru can be obtained
using so-called backstepping methods [6], [10], [12].

Step 1: Let us begin with the scalar�1 subsystem of (8)

_�1 = d1(t)�2 + �d
1(t; x0; x; u0)

where�2 is regarded as the virtual control input. Letz1 = �1 and
introduce the Lyapunov functionV1 = (1=2)z21 . Using Lemma 2,
the time derivative ofV1 along the solutions of (8) satisfies

_V1 � d1(t)z1�2 + z21 ��1(x0; z1; u0): (11)
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Then, with Assumption 1, we are led to introduce a virtual con-
trol function�1 and a new variablez2

�1(x0; z1; u0) = � �1z1 �
1

c11
'1(x0; z1; u0)z1

z2 = �2 � �1(x0; z1; u0)

where�1 is a positive design parameter and'1 = ��1 is a smooth
nonnegative function. Consequently, (11) implies

_V1 � ��1d1(t)z
2
1 + d1(t)z1z2:

Note that�1 is a smooth function satisfying

�1(x0; 0; u0) = 0 8x0 2 R:

Stepi(2 � i � n � 2): As in [10] and Step 1, consider the Lya-
punov function candidateVi = Vi�1(z1; . . . ; zi�1) + (1=2)z2i .
Therefore, we can choose a virtual control function�i and a new
variablezi+1 as follows:

�i = � �izi �

i

j=1

1

cj1
'ij(x0; z1; � � � ; zi; u0)zj

zi+1 = �i+1 � �i

where'ij(x0; z1; � � � ; zi; u0) are some nonnegative function de-
rived from backstepping, such that

_Vi � �

i

j=1

(�jdj(t)� i+ j) z2j + di(t)zizi+1:

Stepn � 1: At this last step, consider the whole�-system (8)
where the true inputu is to be designed on the basis of the virtual
control functions�i ’s. To this end, consider a positive–definite
and radially unbounded Lyapunov function

Vn�1 = Vn�2(z1; . . . ; zn�2) +
1

2
z2n�1:

As in [6], [10], and [12], it is easy to know that some smooth non-
negative function'(n�1)j(x0; z1; . . . ; zn�1; u0)(j = 1; � � � ; n�
1) can be found such that along the solutions of (8)

_Vn�1 � �

n�1

j=1

(�jdj(t)� n+ 1 + j) z2j (12)

when choosing the control lawu as

u =�n�1(x0;z1; . . . ; zn�1; u0)

= � �n�1zn�1

�

n�1

j=1

1

cj1
zj'(n�1)j(x0;z1; . . . ; zn�1; u0): (13)

Therefore, the following theorem can be obtained.
Theorem 1: Under Assumptions 1–3, if parameters�i ’s satisfies

� = minf�jcj1 � n+ 1 + jj; j = 1; . . . ; n� 1g > 0

then the aforementioned control strategy (13) yields that thex-sub-
system of uncertain system (1) withx = (x1; � � � ; xn�1) is well de-
fined and is globallyK-exponentially stabilized at the origin.

Proof: Let z = (z1; . . . ; zn�1). According to (12), we have

_Vn�1 � ��Vn�1

which implies

jz(t)j � jz(0)j e��t; t � 0:

Then [10]

j�(t)j �  (j(x0(0); �(0); u0(0))j)e
�"t; t � 0:

where" > 0, � = (�1; . . . ; �n�1) and is a class-K function.
Hence, (3) follows readily from (6).
As a particular case of Theorem 1, one has the following.
Theorem 2: Assumptions 1 and 2, ifx0(0) 6= 0 and parameters�i ’s

satisfy

� = minf�jcj1 � n+ 1 + jj; j = 1; . . . ; n� 1g > 0

then the aforementioned control strategy (5) and (13) yields that the
uncertain system (1) is globally exponentially regulated at the origin in
the sense that all the trajectories satisfy (3).

Proof: We only need to verify that

_u0
u0

� ��0(x0):

In fact,u0 = ��0x0 � (1=c01)x0�0(x0), then

_u0 = � �0 +
1

c01
�0(x0) +

1

c01
x0�

0

0(x0) d0u0 + x0�
d
0 :

So

_u0
u0

� c02 +
�0(x0)

�0

� �0 +
1

c01
�0(x0) +

1

2c01
x20 + �00(x0)

2
:

B. Switching Scheme

In the preceding discussions, we have given the controller expres-
sions (5) and (13) foru0 andu of (1) if the starting point of thex0 state
component is not zero, i.e.,x0(t0) 6= 0. Without loss of generality, we
can assume thatt0 = 0. Now, we discuss how to select the control laws
u0 andu whenx0(0) = 0.

The purpose of this section is to answer this question by proposing
a globally exponentially stabilizing static state feedback. Roughly
speaking, when the initial state isx0(0) = 0 andx(0) 6= 0 we first
use an “almost” (nonzero) constant actionu0 and the corresponding
controlu that is designed based on a discontinuous coordinates trans-
formation of the form (6) and backstepping technique to drive the state
x0 away from 0 in a short time duration [0,ts), which depends only
on initial point. Then, the almost constant feedback law is switched to
an exponential regulator which is also based on a discontinuous co-
ordinates transformation of the form (6) and backstepping technique.
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However, in the present situation, the presence of nonlinear uncertain
functions�di (0 � i � n � 1) may lead some solutions to blow up
before the given switching timets. To prevent this phenomenon from
happening, the following switching control strategy for both control
inputsu0 andu is proposed.

Theorem 3: Let

• �, �, �0, � and�i(1 � i � n � 1) be strictly positive real
constants so that

� = minf�jcj1 � n+ 1 + jj; j = 1; . . . ; n� 1g > 0;

• T0 be defined in [0,1) by

T0(s) = max
�2[�s;s]

f�+ �0(� )g

which is a nondecreasing continuous function;
• � = f(0; x) : jxj 6= 0g;

Then, the following static discontinuous feedback law globally
K-exponentially stabilizes the uncertain chained form system (1).
Moreover, the feedback law is bounded.

i) When(x0(0); x(0)) = (0; x(0)) 2 �,

u0(t) =
� � �

c
x0; if t < ts (jx(0)j)

� �0 +
�

c
x0; if t � ts (jx(0)j)

(14)

u(t) =�n�1(x0; x; u0) 8t > 0 (15)

where ts(jx(0)j) = minf�; (c01=(2c02T0(c02�jx(0)j)));
jx(0)jg:

ii) When (x0(0); x(0)) = (0; 0)

u0 =0 (16)

u =0: (17)

iii) When (x0(0); x(0)) =2 � [ f(0; 0)g

u0 = � �0 +
�0

c01
x0 (18)

u =�n�1(x0; x; u0): (19)

In order to prove Theorem 3, the following Lemma is needed.
Lemma 3: Consider the uncertain differential equation

_x0 = d0(t)u0 + x0�
d
0(t; x0); x0 2 R; x0(0) = 0: (20)

If j�d0(t; x0)j � �0(x0) and 0 < c01 � d0(t) � c02, then the
closed-loop system withu0 = ��x0((�0(x0))=c01)has the following
properties:

jx0(t)j � c02�t; t > 0

and

x0(t) > 0; t > 0

where� > 0.
Proof: It is easy to see thatu0(t) is continuous andu0(0) = � >

0. So _x0(0) > 0 andx0(t) is strictly increasing in a small time duration
[0, t1]. Then, it is not difficult to know thatx0(t) � 0 for all t > 0.

DifferentiatingV0 = x2
0 along (20), we obtain

dV0

dt
=2x0 d0(t)u0 + x0�

d
0(t; x0)

� 2c02�x0

=2c02�
p
V0:

Then

V0(t) � c02�t

i.e., jx0(t)j � c02�t, for all t > 0. At the same time

dV0

dt
=2x0 d0(t)u0 + x0�

d
0(t; x0)

� 2c01�x0 � 2x2
0 1 +

c02
c01

�0(x0)

= 2c01�
p
V0 � 2 1 +

c02
c01

�0(x0)V0:

Then, using the variable coefficient method, we have

V0(t) � (c01�)
2e�2�(t)

t

0

e�(�)d�

2

� (c01�)
2e�2�(t)t2

where�(t) = (1 + (c02=c01))
t

0
�0(x0(s))ds � 0 for all t. Then,

V0(t) > 0 for all t > 0.
Proof of Theorem 3:If (x0(0); x(0)) = (0; 0) and

(x0(0); x(0)) =2 � [ f(0;0)g, Theorem 3 is a direct conse-
quence of Theorem 1. So we only need to consider the case when
(x0(0); x(0)) 2 �.

First, the following inequality is satisfied:

u0(t) � �

2
; t < t1s (jx(0)j)

where t1s(jx(0)j) = minf(c01=(2c02T0(c02�jx(0)j))); jx(0)jg. In-
deed, from Lemma 3, it follows thatjx0(t)j � c02�t

1
s(jx(0)j) when

t < t1s(jx(0)j). Then

u0(t) =� � x0(t)
�0 (x0(t))

c01

�� � c02�t
1
s (jx(0)j) T0 (c02� jx(0)j)

c01

� �

2
8t < t1s (jx(0)j) :

Second, fromLemma 3we know thatx0(ts) 6= 0. So we can switch
fromu0(t) = ��(�0=c01)x0 whent < ts(jx(0)j) tou0(t) = �(�0+
(�0=c01))x0 whent � ts(jx(0)j).

Third, in order to employ the controlleru obtained inTheorem 1, we
should verify that there exists'0(x0) such that

_u0

u0
� '0(x0) for t < ts (jx(0)j) :

It is easy to know that

_u0 = � 1

c01
�0(x0) +

1

c01
x0�

0

0(x0) d0u0 + x0�
d
0 :
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So

_u0
u0

� c02 +
1

�
x20 + �20(x0)

�
1

c01
�0(x0) +

1

2c01
x20 + �00(x0)

2
:

In view of the facts that

jx0(t)j �
c02� jx(0)j ; if t < ts (jx(0)j)

c02� jx(0)j e
�� (t�t ); if t � ts (jx(0)j)

and

V (x0(t); x(t); u0(t)) � V (x0(0); x(0); u0(0))e
�2�t

the closed-loop system is globallyK-exponentially stable at the
origin.

Remark 1: It should be emphasized that a feedback controller may
become excessively large even for small states. In particular, this may
happen for initial conditions close to a singular manifold as in [6] and
[10]. The key feature of our proposed feedback laws is that the con-
troller��(�0=c01)x0(t) is applied only asx0(0) is zero andx(0) 6= 0
in order to retrieve “some sufficient” controllability on the statex. Note
that along the trajectories of the closed-loop system, whenu0 tends to
zero, the state does the same.

Remark 2: In the absence of input and state disturbances, (1) be-
comes the standard chained system (i.e.,di = 1, �di = 0, 0 � i �
n � 1). An exponentially stabilizing controller was recently obtained
in [15], based on a Riccati equation. However, it is difficult, if not im-
possible, to extend the algorithm of [15] to the case when a chained
system is subject to disturbances as in (1).

IV. EXAMPLE

A tricycle-type mobile robot with nonholonomic constraints on the
linear velocity has often been used as a benchmark example in the re-
cent literature on nonholonomic control systems design [8], [10]. In
[8], Morseet al.addressed the parking problem for the mobile robot of
unicycle type in the presence of parametric uncertainties

_x = p�1v cos 

_y = p�1v sin 
_ = p�2!

(21)

where(x; y) denotes the position of the center of mass of the robot, is
the heading angle of the robot,v is the forward velocity,! is the angular
velocity of the robot, andp�1 andp�2 are (unknown) positive parameters
determined by the radius of the rear wheels and the distance between
them.

The problem addressed in [8] and [10] was to steer the robot to the
origin by a state-feedback control law, regardless of the value of the
unknown constant parametersp�1 andp�2 . In [8], a supervisory control

scheme was presented to solve the problem without a priori knowl-
edge of the parametersp�1 andp�2 . However, the convergence rate is
not exponential but asymptotic. In [10], using the following change of
coordinates and feedback:

x0 = 

x1 =x sin � y cos 

x2 =x cos + y sin 

u0 =!

u = v

(21) was transformed into the following form:

_x0 = p�2u0
_x1 = p�2x2u0
_x2 = p�1u� p�2x1u0:

Then, a switching control scheme was presented to solve the problem
without a priori knowledge of the parametersp�1 andp�2 in [10]. The
closed-loop system is not Lyapunov stable although the convergence
rate is exponential.

We will design a robust state-feedback controller to drive the states of
(21) to the origin with exponential convergence and Lyapunov stability.

Introducing the variables

�1 =
x1
u0

�2 = x2

then

_x0 = p�2u0
_�1 = p�2�2 � �1

_u
u

_�2 = p�1u� p�2�1u
2
0:

So, the following controller can be obtained.

• x0(0) = 0, x(0) = (x1(0); x2(0)) 6= (0; 0), see
the equation shown at the bottom of the page, where
ts(jx(0)j) = minf�; (p2max=(2�p1min)); jx(0)jg, � > 0,
�0 > 0,� > 0,�1 > (1=p1min),�2 > 0,�3 > �0+(1=p2min),
and�4 > 0.

• (x0(0); x(0)) = (0; 0),

u0 = 0 u = 0:

• x0(0) 6= 0

u0 = � �0x0

u = � �4 +
p22max

4p1min
1� �20x

2
0 � �23 + �3�0

2

+�3
p2max

p1min
(�2 + �3�1)

where�0 > 0, �3 > �0 + (1=p2min), �4 > 0.

u0(t) =
�; if t < ts (jx(0)j)

��0x0; if t � ts (jx(0)j)

u(t) =
� �2 +

p

4p
1 + �2 + �21

2
+ �1

p

p
(�2 + �1�1); if t < ts (jx(0)j)

� �4 +
p

4p
1� �20x

2
0 � �23 + �3�0

2
+ �3

p

p
(�2 + �3�1); if t � ts (jx(0)j)
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Fig. 1. Closed-loop signals with initial condition( (0) (0) (0)) =
(1 1 1).

Fig. 2. Closed-loop signals with initial condition( (0) (0) (0)) =
(0 1 1).

Our simulations as shown in Figs. 1 and 2 are based on the following
choice of design and system parameters [10]:

p1min = p2min = 1 p1max = p2max = 2

p
�

1 = p
�

2 = 1:5 �0 = 0:5 �1 = 2 �2 = 1

�3 =2 �4 = 1 � = 1 � = 0:5 � = 1:

It can be clearly seen from the simulation results that exponential
convergence is achieved.

V. CONCLUSION

In this note, the problem of globalK-exponential stabilization is
considered for a class of nonholonomic chained systems with strongly
nonlinear input/state driven disturbances and drifts. Using input-state
scaling and backstepping techniques, a globally exponentially conver-
gent state-feedback control law is designed. Using a switching scheme
dependent on the initial condition, Lyapunov stability and exponential
convergence are guaranteed for the closed-loop system. The simula-
tions results in a wheeled mobile robot have demonstrated the effec-
tiveness of the proposed control design approach.
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