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Dissipative Hamiltonian Realization and Energy-Based The rest of this note is organized as follows. Section Il deals with
L,-Disturbance Attenuation Control of the DHR of multimachine power systems. Section lll investigates
Multimachine Power Systems the energy-based control design 6f-disturbance attenuation of

multimachine systems. Section IV presents some simulation results
Yuzhen Wang, Daizhan Cheng, Chunwen Li, and You Ge ~ and Section V is the conclusion.

Il. DHR OF MULTIMACHINE POWER SYSTEMS
Abstract—The note considers theL ,-disturbance attenuation of multi- . . .
machine power systems via dissipative pseudo-Hamiltonian realization of ~ Consider the following:-machine power system, each generator of
the systems. First, the note expresses multimachine systems as a dissipativavhich is described by the third-order dynamic model [12]-[14]:
Hamiltonian system. Then, the note investigates the energy-based control .
design of L, -disturbance attenuation of multimachine power systems and bi = wi — wo
proposes a decentralized simple control strategy. Simulations on a six-ma- w; = A%Pmi - %(“"‘ —wy) — XT‘J{PQ, (2.1)

chine system show that the achieved..-disturbance attenuation control E.=— L E. 4+ 1 u.
strategy is very effective. g T T T, DT Ty W
n
Index Terms—Dissipative Hamiltonian realization, L,-disturbance at- P, = GiiE’ZL' + E;l' Z BZ']'E:” sin(8; — 6;)
tenuation, n-machine power system. gt
J=1,07

E, = E;, + Lyi(wai — ;)
I. INTRODUCTION n
. . Ii = BiEy — Y BiEy;cos(8; — 6)
Recently, Hamiltonian function method [1]-[5] has drawn a con- Py i¥
siderable attention in the control of power systems and got a lot of ’ i=1.9.. . .m
achievements [1], [6]-[11]. The method, in general, can thoroughly use ] ] ) S
the internal structural properties of power systems during control d&hered; is the power angle of theh generator, in radian; the rotor

. ) e i
signs, and the controllers designed by the method are relatively simpRe€d Of théth generator, in rad/sy = 27 fo: Ey; theq-axis intermnal
in form, easy and effective in operation. ransient voltage of thi&h generator, in per unit;;; thed-axis transient

Itis well known that a key step in using Hamiltonian function metho&?aCt_an?ehof tﬁah generatohr, In per llJflIsz' the volta?e Or{ the field
to investigate control problems is to express the system underconsi(fi:érrgu!t.0 the:t generator, the qontro inputin per um[? the inertia
efficient of theith generator, in second$); the damping constant,

ation as a dissipative Hamiltonian system, i.e., to complete dissipatﬁ/%

Hamiltonian realization (DHR). With Hamiltonian function metho n per unit; Tao, the field circuit time consFant, in secondsi; the
L . . . J-axis reactance, in per uni,,; the mechanical power, assumed to be

many significant achievements have been obtained for single-machine . . . . . )

infinite-b tems [61. [81. 1101, but for multimachin wer ¢ mconstant, in per unitP.; the active electrical power, in per unitj; the

th .?' l,:.s sy_s € tS[d]fr[ ] [t ]'i'hu 0 d lIJ ¢ a(; epf)o elt_sys f]_ -axis current, in per unitf,; the internal voltage, in per unit;; =

e situation is quite different. The model structure of multimaching, - + jB,; the admittance of liné-j, in per unit;Y;; = Gi; + jBy;

systems is so complicated that the systems’ DHR problem has becqméaself-admittance of bus in per unit.

an open puzzle. Very recently, certain contributions have been made f0penoter;, = 6;, 20 = wi — wo. i3 = Ely. (wo/M;)Pri =
the DHR of multimachine power systems [9], [11]. However, the dissj;. (Di/M;) = by, (WO/A?\ji)Gii _ c;,(wo/Mi)q; (/T =

pative Hamiltonian realization problem of multimachine systems still (... — 2/ /Tu.;) = hi,(1/Taci)us; = u;, then (2.1) can be
remains a long-unresolved problem, which turns to be the bottlenagkiten as
of the energy-based control design of multimachine systems. P = 2o,
This note, based on a widely used model of multimachine power dio = @i — biwis — cin
systems [12]-[14], has obtained a DHR form of multimachine power n )
systems by using prefeedback technigue. Unlike the traditional way, we —dixis Z Bijayssin(aqn — xj1),
consider a feedback Hamiltonian realization directly and then adjust J=1#i
the operating point to the preassigned point. The new approach can be Ty = _(21‘ + hiBii)wis +
simply described as: p_refeedback—DHR—ope_rating_point adjustment. +h, Z Bijwjs cos(zii — 1)
Then as an application of the DHR, the note investigates the energy- T
based control design df.-disturbance attenuation of multimachine i=1,2,....n. (22)
power systems and proposes a decentralized simple control strategy. '
Simulations on a six-machine system show that the achiéyedis- Tying every means, we find it almost impossible to express system
turbance attenuation control strategy is very effective. (2.2) into a Hamiltonian system directly. Prefeedback seems necessary.

Then the problem becomes how to design a suitable prefeedback law to
provide (2.2) a dissipative Hamiltonian structure. After analyzing the
form of (2.2), we find that the term-¢;z2; in the second equation is
Manuscript received November 1, 2002; revised April 8, 2003. Recori Key faQtor in the DHR, because this term does not haV(? its (skew-)
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Proof: Substituting (2.3) into (2.2), we have (2.4), as shown &@imilarly, we get(0H)/(dx:s) = (0H;)/(dx:3). On the other hand,

the bottom of the page, whefe= 1,2,...,n,g = (0,0,1)7. Set
formal Hamiltonian-like functions as
a; 1 2
HL__(il Ll+ ‘113«15'1'2]
-~ ) ei+ hiB;i o
— ;3 . Z vB‘,;J':l‘fy,’g COS(J,'H - ,1) =+ TI?J
J=1,5#
i=1,2,...,n,then (2.4) can be described as
L'UiI(Ji—R)aaH i=1,2,...,n (2.5)
where
0 d; 0 0 0 0
J=1|-d 0 0 Ri=1[0 bidi 0
0 0 0 0 0 A

T = (l’zi-,iviz-,l’z,a)T
like system.

Here, (2.5) is a formal dissipative Hamiltonian-g. .

itis apparent thato H )/ (0xi2) = (0 H;)/(Ox42). S0, (2.7) holds.

Equation (2.7) indicates thaf («) is the real Hamiltonian function
for then generators. From (2.5) and (2.7), it turns out that the overall
system is expressed as

=(J - R)% + Gv (2.8)

dx
where J = Diag{J:,J2,..., Jn}, R =
Diag{R:, R2,...,R.},G = Diag{g,9,---,9}3nxn,
andv = (vy,v2, ..., vn)T O.

Remark 2.2: SlnceJ is skew-symmetric an@®, > 0,.J is skew-
symmetric andR > 0. Therefore, (2.8) is our desired DHR of multi-
machine power systems.

Remark 2.3: The model (2.1) does not take into account the transfer
conductance&;; (i # 7). In power systems, sind&;; < B;;,i # j
[9], [12], Gij (i # 7) can be neglected in the modeling compared with
;i [12]-[14]. In model (2.1)(,; # 0, which exactly presents a part
of the network load.

Note that thIS fOI’mal structure does not pI’OVIde a Hamlltor"an struc- Before endn’]g th|s sec“on we Cons|der the prob'em Of Work|ng po|nt
ture to the overall system, because in each individual subsystem gg,stment. For the following controlled system:
cross-variables are frozen as constants. In the following, we look for a

real Hamiltonian function of the generators, which is considered as

the total energy of the whole system. Set

H(x)= ZH + = Zfr,g 12:?5 B;jxjs cos(rin — x41)
= J=1.5#
= Z < i1 + zlthB

+LI2 n
2d; " 2h;

i3

e; +h;Bii » >
B E—

Zfr,g Z Bijxjs cos(min — a51) (2.6)
= J=1,5%1
wherex = (af, 23 ,...ggz:n) . By using relationB;; = Bj;, itis not
difficult to check that
0H(x) 0H;
al'ij - (().’171']"
In fact, from (2.6), we have
oH _a Ci 2
dra  di o di®

n n
X E Ts3 E Bsjxjs cos(xs1 — x51)
s=1 J=1,7#s

a; Ci 2
= - + — &3

2.7)

i=1.2.....n

_10
2 0z

T =

Fla) + glx)u (2.9)
whenu = 0 the equilibrium point is called the working point. Assume
xo is the working point of (2.9) with zero input, i.ef(x¢) = 0; more-
over, using a contrat = ¢(x) + v the system is converted to
&= MVH+ gv
whereVH = (0H)/(0x). In general, the equilibrium may be shifted,
i.e., MV H(xq) # 0. Lety(x) be such that
¢(xo) + ¥ (20) =0,
M~ 'gi(x) = VH
for some smooth functiol’ (where) is assumed invertible). We can
prove that Proposition 2.4 holds.
Proposition 2.4: Control lawu = ¢ (2) + ¢(x) 4+ v provides (2.9)
a Hamiltonian realization as
&#=MVH+ gv (2.11)
H + H'. Moreover, for (2.11), the working pointo

(2.10)

where H =
remains.

I1l. L,-DISTURBANCE ATTENUATION OF MULTIMACHINE
POWER SYSTEMS

This section deals with thé.-disturbance attenuation of multima-
chine power systems. First, we investigate thedisturbance attenua-

d;,  d; tion of port-controlled Hamiltonian (PCH) systems. As for the concept
1 n and properties oL -disturbance attenuation, please refer to [8] and
S Z B;jxjssin(win — xj1) [15].
J=1,j#i
1 < ) A. L.-Disturbance Attenuation of PCH Systems
- rs3Baiwiz sin(we — 1) , ,
2 oLt Consider the following PCH system [3], [5]:
@ Gioo = (J(x VH+ gi(2)u+ g2(x)w
e = (@) = Rw) RTINS
i i z = h(x)gi (2)VH,
+oa Z Bijxjssin(ai — v1) = 3H'_ wherex € R™,u € R™, R(x) > 0, H(x) is positive definite near the
=1,y Owix equilibrium concerned ankl( ') is a weighting matrix.
@i 0 d; 0 =G+ Gl sl g Byrgssin(ra — )
Tio | = | —d; —b;d; 0 X a; iz + gv; (2.4)
i3 0 0 —h; 6i+::B” T3 + Zd%,ril;ri;; — Z;.l:ly].# B;jxjs cos(win — 251)
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Given a disturbance attenuation level > 0 and take The L, -disturbance attenuation problem of (3.5) can be described as

z = h(z)g] (x)VH as the penalty signal, then we have thdollows: Given penalty signals
following result. (1 + kioTaoi) Bl — Toosis
Theorem 3.1: For the given disturbance attenuation leyeb 0, if 2z = r:(6;, wi, Eg;) { o ;f,l
Lde — Ly
1 T, | , T
R@) = 55 [2@0)es (0) = gu@gl @] 20 @) b 2GS EL + [} i=1.2,...n (3.6)
then theL,-disturbance attenuation problem of (3.1) can be solved bY yisturbance attenuation level > 0 and a desired equilibrium
feedback control law (650),(),E;E0)),i = 1,2,...,n. Find a feedback control strategy
v — Fhl’(;r)h,(;v) n %Im:| oV H (3.3) “si =(r),i=1.2....n and a storage function (x) which is
2 2~ positive definite near the desired equilibrium such thatissipation
and~-dissipation inequality inequality
Ve 1, : 2
V+Q) < 5{y lell* = =07 ve 3.7

. 1 ;
H+(vH)" |:R(.c) ~ 53 (gz(J)QQT(‘L)
K holds along all trajectories of the closed-loop system consisted of (3.5)

—gl(x)g;[(x))] VH and the feedback control strategy, where: (=1,22,...,6,)7,5; =
T T T T\T
(git,ei2),2 = (21,2200 020) s = (2,20, . 2p) o =
< 1{72”10”2 — 21} (3.4) (6i,wi—wo, Eji)". |||l is the euclidean nom@)(«) > 0 is a given
T2 nonnegative functiony; weighting functions, and:;, and #; are
holds along trajectories of the closed loop system consisted of (3.1) auitably large numbers (may be adjusted).
(3.3), wherel,,, is them x m identity matrix. Remark 3.3: Penalty signals (3.6) can be rewritten as
Proof: Itis easy to know from (3.1) and (3.3) that ri(8i, i, B,
JH ., . . :i:#(Eqi—ucji), i=1,2,...,n
= —(VH)"Rx)VH + (VH) gru+ (VH)" gow i = &y
" R where E;; are the internal voltage signals ang; := Tuci@i —

2Gi(xai — 27;)8: Eq; — kioTaoi Ey;, which are the excitation signals
to be designed [see (3.8) and (3.13)]. Thus, the penalty signals

—(VH)'R(x)VH - %

1
yw— —gi VH
S

1oy o b 1 o ) )
T 2PNl =17 + =(VH) g h Ryt VEH z (1= 1,2, e n) have clear physical meaning. .
2 2 Now, we give the energy-based control design for the aliovdis-
—vH", <,lhl'h n %I) JIVH turbance attenuation problem. From the DHR in Section Il, (3.5) can
2 2 be expressed as
1 T T v H{(:
+ %TVH 9292 VH z, = (Ji — Rz‘)aadfir) + gui + gie)
1 1 : l i—
:—VHT |:R—2—2g2g;r+2—2g1g1r:| VH 1=1,2.....,n (38)
K K 9 where

+ 3Pl = ) - 3|

1
YW — ZgaVH
~

0 0
g=1[1 0 g = (241,%i2).
0 1

So
dH > 77T 1 T T
o TV {R 242 (9292 RAE )] VH For the convenience of design, we let = 0 in (3.8) tentatively.
1 1 1 2 Since the feedback law in the dissipative Hamiltonian realization of
= 5(72 w|® = ||2]1*) - 3 ' ~w — ;g;)TVH (3.5) can cause the equilibrium point to be shifted, we first, based on
1 ! Proposition 2.4, design a feedback control/law which stabilizes system
< 5(72”71!”2 —1I21*) (3.8) to the desired operating poifit”, 0, £,\”),i = 1.2,....n.
) , Choose control law
which is (3.4). Becaus® — (1/(2y*))[g292 — g1g7] > 0, (3.3) with ,
. . i . vy = —LTZ';L‘Z'3+'L_LL', = 1,2,...,” (39)
H(z) is a solution to the_;-disturbance attenuation of (3.1). O

Remark 3.2: Theorem 3.1 is motivated by [8, Th. 1]. Whei(x) =  wherek; andu, are constant numbers to be determined. Substitute (3.9)

g2(2), Theorem 3.1 degenerates to [8, Th. 1]. into (3.8)(s; = 0) and note that.J; — R;) is invertible, then we have
B. Energy-Based.»-Disturbance Attenuation of Multimachine ;= (J; — R,-‘)aH—(w) + (J; — Ri)aHi
Systems b Oy O

where H; = (k;)/(2h:)a? — (4:/h;)x;3. Choosing a new Hamil-

Considem-machine power system (2.1) affected by external dism{énian function as

bances. Then, the system can be rewritten as

n

bi = w; — wo H,=H)+ Y H (3.10)
wi = 5P — /j{,)T;(UJi_WO)_ st Pei + 20 i=1
nlA 1 i 1 . -
Eyi = —mE«n t 7o it Sz the closed-loop system (3.8) with control (3.9) can be expressed as
i=1,2,....n (3.5) oH
_ _ ;= (J; — Ri) =, 1,2,...,n (3.11)
wheres;;, ;> are bounded disturbances, and the other variables and Dy

parameters are the same as in Section Il. which is also a dissipative Hamiltonian system.
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In the following, we investigate the properties of the Hamiltoniakromx;>, = 0, we can conclude that
function H,,. It is easy to know thaH ., can be expressed as ‘ n
a; — civty — diwis Z Bijxjzsin(xi —xj1) =0

HG:Z{ ;irl1+<21v rll—{)ZBw> e

i=1 i>i i=1,2,...,n. S0, points in the largest invariant set satisfy
1 5 ei+hiBi; [ u; ? n
+ ,_)—dilniz‘i‘ 2N, iz — ¢; + h; Bis @i — cixty — dias Z B;jzjssin(zy —xj0) =0
F J=1,j#14

1 22 =0 =0 ¢=1,2,....n

FIYY Bt - Z ch is exactl y coulibrium satisii

2 = i 2hi(e; +h i) which is exactly the condition the equilibrium satisfies. From the

L LaSalle invariant principle, the closed-loop system (3.11) is asymp-
-5 Z i3 Z B;jxjs cos(min — xj1). totically stable.

25 G=1, Besides, from the aforementioned condition satisfied by the equilib-

rium point, we know that; is given as

Use relationB;; = B;; and set
2¢c:h;
d;

b R CRE R e

i=1 Z j>t

i = (ei + hiBi) B + SO B0 g B0

— h; Z Biqu(jO) cos (650) — 5;0)) .

2
+ L2 cithiBi <Ii3 _ u7> ey
2d; 2h; ei + hiBi; Now, consider (3.8) with; # 0 and choose control laws
1 n By V: = —feona- a7 - D ] — ¢
n §ZZBU(|‘“3|  |ejs))? Vs kioxis + u; + Ui, i=1,2,...,n (3.13)
i=1 j>i wherew; are new control inputs. Substituting (3.13) into (3.8) yields
7“ 8Hu — T .
- 5T T i =(Ji— Ri)—— + g7; 2, i=1,2,..., .
; 2h;(e; + h; Bii) v ( ) ox; vt e ' IR
; (3.14)
124 Ve Cq
Hy = Z {_d_,.‘“l + <2h 2,5 T Z B”) Lis Then, (3.5) can be expressed as
=1 ) J>t
+ L o +Gi+7u3u‘ < Uy >Z} &= (J - (3.15)
S5zt T o |\ T3 T
2di 2hs ei + hiBii where v = (ﬂl,ﬂg,...,’l),l)T,G = Diag{g.9,...,9},G1 =

} Z Z Biy(Jss] + |ys])? Diag{gi,g1,... 7_91} and others are the same as before._ _
*3 — A J Now, we consider the penalty signalsand express them into virtual

forms. A straightforward computation shows thattan be expressed
asz; = r;(x;)g" (0H,)/(dx;),i =1,2,...,n. Then, we have

h ; 2h;(e; + hiBi;)

_ - = p()q7 e (3.16)
then we can easily get ox
where r(z) = Diag{ri(21),r2(r2),...,7(2x,)}, called the

Hs < Ho < Hy. (3.12) weighting matrix.

Becauser;; € [—m,n], we can select suitably large numbéts Theorem 3.4: For the given penalty signals (3.6) and the disturbance
such that 5 is bounded from below. Now, Ié; = k;o such thatH;  attenuation level > 0, if

is bounded from below. From (3.12}},, is also bounded from below . M,
and forvl > 0 the set{x|H.(«) < I} is compact. From [11] and Y2y = max {\/ﬁ} (3.17)

properties of the power system itséff,, (=) has a strict local minimum
at the operating point.
From (3.11), we have

then theL;-disturbance attenuation problem of (3.5) can be solved by
feedback laws

wpi = —=2Gii(wai — 2;)8i Bl — kioTuoi Ey;

dH __Zd thl<0 Td01<2 1

r; + —,)) zi + Taeitt;  (3.18)
42

2r;
where i=1,2,...,n,andy dissipatlon inequality
e; + h;B; -
fom T e 2 Pt m ) @)+ Q) < 5P = 1217 (3.19)
2¢; ko U; holds along all trajectories of the closed-loop system (3.5) with (3.18),
T T s T 00 \vherel (x) = Ha e, ¢ = —Ha (20), Q(z) = (VHq )T PVH, and

_ SinceH . () hasast_nctloeal minimum at the operating point, (3.11) P—p— % (GlG}’ : GGJ.) - (3.20)
is stable at the operating point. Moreover, the system converges to the /
largest invariant set contained in Proof: From (3.20), we know

S:{w:dia :0} P = Diag{Ry, Rs..... R}

1 T
={r:ian=0fi=0i=12....n}. ~ 5z Diagl{gig —g9" ... gl —agd" )
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K
( ) | 3 /,
E: 7 11 _[ % }' %12 13 _]
e L pokeps k()
n'\E_llo = - 6
20
8 S — 14 T l :JEIG
\‘ | A9Y =
2
22 21 19 | 18
| |1 |
\/ L \ €L \/ £
3 4 5
Fig. 1. Six-machine system.
Now, investigate the main diagonal blocksf * ' ‘ ' ' ' T s, '
0 0 501 — :31 |
1 . 541
B‘f—ﬁ(mgf—gf): 0 bidi 0 a0l e ]
0 0 A
30 T
1 0 00
5= (010 ol ]
o 0 00
10 a : e . ]
Becausey > 7* = v > (Mi/(vV2wDi)) = (1/(29°)) < T 00000 %0000,
(woDi)/(M?) = bidi, thusRi — (1/(29")) (g1 —g9") > 0,i = * o o° ©90000000000000000¢
1,2,....,n,= P > 0. Itis easy to know from Theorem 3.1 that for ol 5 OOOO’ |
the given penalty signals (3.16) and the disturbance attenuation lev °
v > ~* > 0, the L -disturbance attenuation problem of (3.15) can be -2}
solved by the following feedback law:
_30 ]
_ 17 1 7 0H,
= —|=r' (z)r(x)+ =1, |G 3.21 - ) : . . . s . . ,
! {27 (@)r(z) + 22 ] Ox ( ) “% 2 4 6 8 10 12 14 16 18 20
and v
. 1 . .
H.,+ (VH.,)"PVH, < 5{72”5”2 — 121"} Fig. 2. Responses @&;, wheny = 2.

holds along the trajectories of the closed-loop system. Fldssipa-
tion inequality is just (3.19). From (3.21), we have Remark 3.5:
T = _1 (r‘f(;vi) + %) gt aH“g i=1,2,....,n 1) Equation (3.18) is a decentralized control strategy.

2 i 9z 2) In practicefio andii,; can be determined as follows:

from which, along with (3.13) and (2.3), we get

ufi = Taoiwi = === Taciwinwis — kioTaciwis = 7 (E;EO) + Liio(ai — 417'47:)) ., i=12....n
1/, 1 OH.
+ Tuoili; — 5 (rf + —,,) Tuoig” (3.22) (3.23)
2 ¥ dx;
. . . .. . ! n /(
i =1,2,...,n. Rewrite (3.22) with the original forms of the variables where I, = BiE\” - Z]:L#iBiqu;O) cos(6{” —
and parameters, then we have 8,26 = 6% — 6, and 6y is the power angle of the

equivalence infinite-bus system (Note: In practice, we can

simply setf, = 0).

<rf + i?) Zi, i=1,2,...,n Remark 3.6: The desired equilibrium (the preassigned operating
7 point) (6,0, E/),i = 1,2,...,n can be given by flow compu-

which is (3.18). 0 tation of power systems in advance.

up; = —2Gi(wai — vy;)6i By — kioTaoi Eyi + Taoills
_ Taoi
27r;
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- o [3]

— "3

34 1

o- 3,
[4]
[5]
o O 0o 6
4 e e ©20600000000000002°7% [6]

[71
1 (8l
10 L ! ‘ : ‘ . . . .
2 4 6 8 10 12 14 16 18 20
tis
[9]
Fig. 3. Responses &;; wheny = 10.
[10]

IV. SIMULATION

A six-machine system [13], [14] is chosen as an example to demorft1]
strate the effectiveness of the control strategy (3.18) The system is
shown in Fig. 1. As for its generator data, we refer to [13] and [14].[12]
The simulation is completed by the PSASP package which is a profes-
sional testing system for power systems designed by the China Ele&L3]
trical Power Research Institute, Beijing, China. 14]

In Fig. 1, generator no. 6 is a synchronous condenser and generat[or
no. 1 itself actually represents an equivalent of a large power system,
used as the reference here. Equip generators no. 2-no. 5 with controll@fp]
(3.18). Herep™ = (79.5)/(/2 x 314 x 3) = 1.8316. In simulating,
we letr; = 0.2 and do with different disturbance attenuation leyel
wherek;, anda; are determined by (3.23).

A symmetrical three-phase short-circuit fault is assumed to occur
during the time perio® ~ 0.15 s at K (see Fig. 1). When = 2, 10,
the responses df; (=6; — 61, in degree) are given in Figs. 2 and 3
respectively.

Through Figs. 2—3, we can see that the control strategy proposed in
the note is very effective and the system’s dynamic performance can
be improved by reducing the disturbance attenuation tevel

V. CONCLUSION

The multimachine power systems have been expressed as a dissi-
pative Hamiltonian system. Based on the dissipative Hamiltonian re-
alization, theL--disturbance attenuation of multimachine power sys-
tems has been investigated and a decentralized simple control strategy
has been proposed. Simulations on a six-machine system show that the
achievedL,-disturbance attenuation control strategy is very effective.
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