
500 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 40, NO. 3, MARCH 1995 

REFERENCES 

[l] H. D. Chiang and J. S. Thorp, “Stability regions of nonlinear dynamical 
systems: A constructive methodology,” IEEE Trans. Automat. Contr., 
vol. 34, pp. 1229-1241, Dec. 1989. 

[2] H. D. Chiang, F. F. Wu, and P. P. Varaiya, “Foundations of direct 
methods for power system transient stability analysis,” IEEE Trans. 
Circuits Syst., vol. CAS-34, pp. 16Ck173, Feb. 1987. 

[3] N. A. Tsolas, A. Arapostathis, and P. P. Varaiya, “A structure preserving 
energy function for power system transient stability analysis,” IEEE 
Trans. Circuits Syst., vol. CAS-32, pp. 1041-1048, Oct. 1985. 

[4] J. L. Willems, “Direct methods for transient stability studies in power 
system analysis,” IEEE Trans. Automat. Contr., vol. AC-16, pp. 
332-341, Aug. 1971. 

[5] C. J. Tavora and 0. J. M. Smith, “Stability analysis of power systems,” 
IEEE Trans. Power Apparatus Syst., vol. PAS-91, pp. 1138-1144, 
May/June 1972. 

[6] H. D. Chiang, M. W. Hirsch, and F. F. Wu, “Stability regions of non- 
linear autonomous dynamical systems,” IEEE Trans. Automat. Contr., 
vol. AC-33, pp. 16-27, Jan. 1988. 

171 J. Zaborszky, G. Huang, B. Zheng, and T. bung, “On the phase portrait 
of a class of large nonlinear dynamic systems such as the power system,” 
IEEE Trans. Automat. Contr., vol. AC-33, pp. 4-15, Jan. 1988. 

[8] H. D. Chiang, “Analytical results on direct methods for power system 
transient stability analysis,” Advances in Control and Dynamic Systems 
XL. New York: Academic, vol. 43, no. 3, pp. 275-334, 1991. 

Boundaries of Conditional Quadratic Forms-A 
Comment on “Stabilization via Static Output Feedback” 

D. Cheng and C. F. Martin 

Abstract- Motivated by the above paper,’ this note considers the 
boundaries of a quadratic form with all possible constraints over a given 
subspace. Essential upper (or lower) bounds are presented provided they 
exist. It mends a mild incompleteness in the proof of the main result. 

I. INTRODUCTION 
It is well known (see, e.g., [ 2 ] )  that for a real symmetric matrix AI 

where u ( M )  is the set of eigenvalues of M. 
In the above paper, necessary and sufficient conditions for the 

existence of a stabilizing static output feedback gain matrix were 
presented. In the proof of the main result, Theorem 3.1, the following 
fact was used (for the sake of consistency we use our notations). 

Given a real symmetric matrix: AIn n, and a matrix I<,, 1L with 
rank(I<) = r < n. Assume 

xT(L$I).r < 0 ; ~ ’ s  E I i e r ( I < ) .  (2) 

Then 

sup STAfI 
a =  ~ < m, x f I i e r ( I i ) .  

x xT IiT I C s  (3) 
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A mild incompleteness in the proof’ is: They did not claim and prove 
that the (Y (defined in (3.4), which is the same as in (3)), is upper 
bounded, i.e., cy < +m. It is essential for constructing R (R-l 2 
d). It was pointed by a nominated reviewer that this boundedness is 
also assumed in [2] without proof. From the following discussion one 
sees that this fact is not trivial. We call it the problem of boundaries of 
conditional quadratic forms. It can be considered as a generalization 
of (l), because when dim(I<) = 0, our results in this note will 
coincide with (1). 

In the next section we prove (3) by giving the essential upper 
bound, which may be of independent interest. Then in Section 111 we 
discuss all other constraints. 

11. MAIN RESULT 
Let the matrices Ii,,x,, with rank( I<) = r < 1 1 ,  be as 

above. Then there exists a linear transformation @ such that 

I i @ = ( S  1 0 )  

where S is the first T columns, and thus S has full rank. It follows 
that S T S  is a positive definite matrix, so we can define a positive 
definite E as 

(4) E = (STS)1/2 > 0. 

It is easy to prove that (2) is equivalent to the fact that after the linear 
transformation @, Af has the following form 

Then we define a characteristic matrix C as 

c = E - l ( A +  B&-’BT)E-’. (6)  

Using the above notations, we can prove the following theorem. 
Theorem I: Under condition (2), we have the essential upper 

bound as 

= maxa(C). 

Proof: It is clear that xEI<er(I<) ,  if and only if 

y = @ - I s  = (1). 
Since Q is positive definite, Q1/’ > 0 is well defined. 
straightforward computation shows that 

sup IThIX x .+”I<TIi.r’ x 4 I<er(I<) 

(7) 

Jsing (5 ) ,  a 

‘A. Trofino-Net0 and V. Kucera, IEEE Trans. Automat. Contr., vol. 38, no. 
5, pp. 764-765, May 1993. 
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where Corollary I :  Under condition (1 l), we have 

The last equality is obtained by setting y~ = Q -'BTy1. 
Recalling the definitions of E and C in (4) and (6), we get 

sup &A + B Q - ~ B ~ ) ~ ~  
Y 1  # O  YTSTSYl 

- sup =,where Z = E y l .  - z # o  ZTZ 
From (l), it can be seen that 

= maxa(C)  < +CO. (9) 

Since the transformation @ is not unique, the last thing we have 
to do is to show that the essential upper bound obtained in (9) is 
independent of the choice of 9. Theoretically, essential upper bound 
is unique. But, we use a particular 9 to get it, and the parameters 
A, B ,  C,  E ,  etc. in the expression depend on 9: So we must show 
that th_e upper bound is independent of Q,. Let Q, = (41142), where 
Span(q%) = I i l ,  be another suitable linear transformation, and Q, = 
Q,T = (41142)T. Since  span(@^) = Span(4~)  = Ii I, it follows that 

Now, a straightforward computation shows that the corresponding 
expressions under the new transformation are 

and 

, .  

). (10) 
T~ATi+T~BTTi+TTBTz-T~QTz TTBT3-TTQTs 

4','QT3 

Using them, we finally have S T S  = TFSTSTl , Ai + B@'BT = 
TT(A  + BQ-'1. 

Therefore, the parameters obtained by the new transformation 
provide 

sup  yF(A + BQ-'BT)y1 
Y1 # 0 yTSTSyl 

,where Z = ETl y1 
- su,p ZTCZ 

Z # O z T z  
- 

Q.E.D 

111. GENERALIZATION 
As we mentioned before, conditional quadratic form (3) is a 

generalization of the famous result (1). So the boundary problem of 
expression (3) has both theoretical and practical interests. To make 
(3) meaningful x $ Ker(1i) . Moreover, without constrain on Ker 
(A-) expression (3) has no boundary. (2) is a particular constrain. This 
section consider all other possible constraints on subspace Ker( Ii). 
They may be applied to mini-max problems of quadratic forms. 

Case 2: Condition (2 )  is replaced by 

In this case, replace -Q by Q in (5) and redefine C in (6) accordingly. 
Then a parallel discussion shows the following corollary. 

sub x T M r  
s $ Ker(Ii)  = minu(C) 

x xTI iTI i . r '  

Case3: Assume now we have 

x T ( M ) x  = 0;Vx E Ker(I i ) .  

In this case replace Q by zero in (5). Equation (8) becomes 

sup r T M x  
x $! Ker(K) 

I . r*IiTIir '  

- - SUP yT(A)yi + 2y,TBTyi 
Y YTSTSYl 

From (14) one sees the following corollary. 
Corollary 2: Under condition (13), if B # 0 

.ET Mr 
xT I i T  lis ' 

r $! E;er(Ii) 

has neither upper bound nor lower bound. If B = 0 

I $ Ker(Ii) .  

Proof: Observe (14). If B = 0, the conclusion follows from the 
standard result (1).  If B # 0, choose 

y2 = p B T y l , k  E R. 

Letting p go to either -00 or +CO, one sees that neither upper bound 
nor lower bound exist. Q.E.D. 

Note that in Case 3 we have from (10) that B = TlTBT3, and 
TI and T are nonsingular. It is clear that the conclusion in the above 
corollary is independent of the linear transformation. 

Case 4: Assume 

r T ( M ) x  5 0:V.r E Ker(Ii) .  (15) 

In this case the matrix Q in (5) is positive semi-definite. Then we 
have the following corollary. 

Corollary 3: Under condition (15), if there exists a matrix H with 
suitable dimension such that B = H Q ,  then 

x 6 Ker(Ii) .  

Otherwise 

has neither upper bound nor lower bound. 
Proof: Let B = H Q .  Then we can choose 

I O  
T =  (HT I)' 

From (10). new M is block diagonal, and then (8) becomes 

I $ Ker(I<) sup x T M x  
x x T I i T I i s '  

The conclusion follows. 
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If B # H Q ,  the rows of 13 are not all in Span rotti Q. Without On Robust Stability of 2-D Discrete Systems 

w.-s.  Lu 
loss of generality we assume 

and partition YZ as 

Y2 = (;;;). 
Now (8) has the form 

sT M s  
. r T I i T I i . r  ’ .I: $! Ker(Ii) 

The condition: “rows of B are not all in Span row Q” implies that 
By22 is not always zero. It is obvious that this term can make the 
value of the fraction be both positive and negative unbounded. 

One can also see from (IO) that the condition B = H Q  is 
independent of the linear transformation. 

Q.E.D. 
Case 5: Assume 

.rT(M).r > 0;Vz E Ker(I i ) .  (19) 

In this case replace -Q by a positive semi-definite Q in (5). Similar 
to the proof of Case 4, we can show the following. 

Corollary 4: Under condition (19), if there exists a suitable di- 
mensional matrix H such that B = HQ, then 

s $! Ker(Ii) .  

Otherwise 

has neither upper bound nor lower bound. 

IV. CONCLUSION 

In this note we discussed the problem of finding the boundaries 
of conditional quadratic forms with all possibl? constraints over a 
subspace. In all cases, the necessary and sufficient conditions for the 
existence of upper and/or lower bounds are presented. The essential 
bounds are obtained whenever they exist. 
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Alwtruct- This note presents a study on robust stability of two- 
dimensional (2-D) discrete systems in the Fornasini-Marchesini (F-M) 
state space setting. A measure of stability robustness of a stable F-M 
model is defined. Relation of this measure to its counterpart in the 
Roessor state space and related computational issues are addressed. Three 
lower bounds of the stability-robustness measure defined are derived 
using an one-dimensional parameterization approach and a 2-D Lyapunov 
approach. A numerical example is included to illustrate the main results 
obtained. 

I. INTRODUCTION 

In this note, we present a study on robust stability of two- 
dimensional (2-D) discrete systems under unstructured perturbations. 
Throughout the concemed system is modeled in the Fomasini- 
Marchesini (F-M) local state space [I]  as 

r(i + 1,j  + 1) = A l s ( i , j  + 1) + A ~ . r ( i  + 1.j) ( I )  

where s(i ,  j )  E RIax1, A I ,  AS E R n x n .  Recall that system ( I )  is 
asymptotically stable if and only if 

p ( z 1 , ; ~ )  det(I, - a A 1  - 32A2) # 0 for (q,a) E (2) 

where fi7 = { ( z 1 , z 2 )  : lzll 5 l,lz21 5 l ,} [l]. To date, results 
on robust stability of 2-D discrete systems in a local state-space 
framework are only available for the Roesser model [2]-[6], and 
one might attribute this to the lack of a Lyapunov stability theory 
for the F-M model. The objectives of this note are twofold. First, we 
propose in Section I1 a quantitative measured, v, for the unstructured, 
stable perturbations of a given stable 2-D F-M system, and derive in 
Section I11 a lower bound for v. Issues on numerical evaluation of the 
bound obtained and the relation of the proposed stability robustness 
measure with its counterpart in the Roesser state space will also be 
addressed. Second, we propose in Section IV a Lyapunov approach to 
analyzing the robust stability of ( I ) ,  leading to two lower bounds of v. 
The proposed approach makes use of the 2-D Lyapunov equation [7] 
which is a generalization of the 2-D Lyapunov equation investigated 
recently by Hinamoto [8]. A numerical example is included in Section 
V to illustrate the main results of the paper. 

In the rest of the paper we write H > 0 or H 2 0 to mean that 
the symmetric matrix H is positive definite or positive semi-definite. 
For a real matrix P 2 0, one can always write 

p = LTTYL? 

where U is orthogonal and S = diag { ( T I ,  . . . , (T?? } with u k  2 0, 
for 1 5 k 5 n.  If we denote X1/* = diag {(T;”, ... , at”}, then 

p = p T P p ” 2  

where 

p’P = y1/2r pT’2 = (pV2)T .  

Such a P1lz  is called the nonsymmetric square root of P .  The largest 
and smallest singular value of matrix H is denoted by F ( H )  and 
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