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then the conclusion  holds  for  all  but  a  finite  number  of  values of 8. If 
fi(sl, . e ,  s,) is a  polynomial  system  and (17) is a  minimal  bilinear 
realization,  then the conclusion  holds for every  value  of 8. 

Proof: By Theorem 3.2, existence  of  the  corresponding  operating 
points @, y8)  and ( B ,  49, y6), and  of (A + DO)-’ is  guaranteed for 8 
sufficiently  small.  From (17) and (20). L&) can be written as 

L B ( s ) = C ( s z - A ) - ’ b + ~ [ c ( s z - A ) - ~ D ( ~ z - A ) ~ ’ b  

+c(sZ-A)-1D(-A)-lb1 

+82[C(sl-A)-ID(sZ-A)-1D(sZ-A)-Ib 

+c(sl-A)-ID(sZ-A)-’D(-A)-’b 

+c(sZ-A)-1D(-A)-ID(-A)- lb] 

+ ... 
=c(sZ-A)-’[Z-BD(sZ-A)-l]-’[I-BD(-A)-l]-’b 

where the last equality is  obtained by writing the infinite  series as a 
product  of two power series. Using the identity 
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(sz-A)-’[z-BD(sl-A)-’]-’[I-8D(-A)-’]-’ 

= [sZ- (A + OD)] - ‘ [ I -  8D(A + BO) ‘1 

gives Global External Linearization of Nonlinear Systems Via 
LB(s)=c[sZ-(A+DB)]-~[~-D(A+DB)-’~B]. Feedback 

Obvious  modifications for the polynomial-system  cases  complete  the 
proof. 0 

Roughly speaking, this result  shows  that  all  bilinear  realizations  with 

DAIZHAN CHENG, TZYH-JONG  TARN, AND 
ALBERT0 ISIDORI 

invertible A of @s,, * - e ,  s,), of whatever  dimension  and in any 
coordinates,  yield  internal  linearizations  with  identical  input-output 
behavior.  Of course, minimal  bilinear  realizations are of  most  interest, 
and in this regard  it  is  tempting to conjecture  that  a  minimal  (span 
reachable  and  observable)  bilinear  realization  would  yield  a  minimal 

- -  - 
Abstract-This note presents  necessary conditions and sufficient 

conditions for  an affine nonlinear system to be  globally  feedback 
equivalent to a controllable linear system  over an open  subset V of 2”. 
When Y equals a“, necessary and sufficient conditions are obtained. 

(reachable  and  observable)  internal  linearization,  except  possibly  for 
isolated  values  of 0. However,  computation  of the internal  linearization 
for Example 3.3, where A = 0, shows  that I(&) does not  even  enter  the 
linearized state equation. Other examples  show  that the conjecture  is  false 
even for the simplest case where the bilinear  state  equation  is  a  degree-2 
homogeneous system with  invertible A.  

Remark 3.7: For  polynomial system and  minimal  linear-analytic 
realizations in Crouch’s form, results along the lines of Theorems  3.2  and 
3.5 can be given [ l  11. Again, simple  examples  show  that  such state 
equations can have linearizations with  identically zero input-output 
behavior for all 0. 

IV. CONCLUSIONS 

The  representation  of  bilinear-realizable  nonlinear  systems  in terms of 
regular transfer functions  provides  a  convenient  framework for the study 
of  linearization  from an input-output  perspective. The notion  of an input- 
output  linearization  introduced  herein  appears to be a  natural  and 
potentially  useful  complement to the notion  of  a  linearized  state  equation. 
In particular,  it  has  been  shown  that the input-output  perspective  is 
helpful  in  explaining  some  mildly  startling  phenomena  that  can  occur. 
Also, it appears to be helpful in providing further characterizations  of the 
information about a  bilinear  system  embodied  in  its  linearization. 

Application of these ideas to the calculation of the linearization  of an 
interconnected  system  in  terms of subsystem  linearizations also has been 
reported [ 121. 
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I. PRELIMINARY 

We consider  a  nonlinear system of the form 

where x E M ,  M is an open  subset  of 3”. f ( x )  and gi (x) ,  i = 1, - * , rn, 
are C” vector fields on M .  

The pioneer  work  of  external  linearization  of an affine  nonlinear  system 
using  feedback  was  developed  by  Brockett [I] .  Jakubczyk  and  Respondek 
[2]  presented  necessary  and  sufficient  conditions  of local external 
linearization for the multiple  input  case. Su [3]  and  Hunt et af. [4] 
simplified  such  conditions.  Recently,  Hunt et al. [5] gave  a  sufficient 
condition for global  external  linearizability of a  single  input  system. In 
this note  we  discuss  necessary  conditions  and  sufficient  conditions for 
global external linearization  of (1). 

Let  us first fix some  notations. We take M (or N) to be  a  manifold, 
P ( M )  the  set  of C” functions on M ,  and V ( M )  the set of C” vector 
fields on M. L/g  2 If, g] for f, g E V(M) .  We will  denote the 
differential  of  a C” mapping 9 by &. If +:M + N is  a  diffeomorphism, 
then &: T,(M) + T,@,(N) is an isomorphism. S p { X l ,  X,, . . -, Xk} is 
the free submodule  of V(M) over the  ring C”(M) generated  by XI, X , ,  
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. * . , x k  E V(M).  *.;Y(p) is  the integral curve of X E V(M)  with initial 
condition @ t ( p )  = p .  

11. GENERAL RESULT 

Now  we consider system (1). For convenience, we introduce a set of 
indexes  and  some  notations. Let I I  , 1 2 ,  * . e ,  I N  be  positive integers, such 
that m = I I  2 l2 t t IN > 0 and Z E l  Ii = n. Set po = 0 and 
definepk g Sf=l l i ,  k = I ,  2, *.., N .  Let C ; ( U )  be the  set of m- 
dimensional vectors with C"(U) entries; Cl(m, C"(U)) be  the  set  of m 
X m nonsingular  matrices  with Cm(U) entries. 

Definition I :  System (1) is  said  to be globally  externally  linearizable, 
if  there  exist a diffeomorphism 4:M -+ CJ, U open  in Rn; a E C;(U); 
and 0 E Gl(m, C m ( U ) ) ,  and there exist  integers rn = I ,  5 t2 2 * .  . 2 
IN > 0, such  that 

+*O + (b*@I), . . * 9 +*(gm))a 

=(O, ..., OlYI, ' . . I  Y/21YP,+I, ... 9 Y P l + / 3 1 . . * I Y P , . - * + 1 .  

' ' " 9  YPN-2+/N)' ,  (2) 

(+&I)* . * ' 3  d*(gm)M = (ZmlO) '. (3) 

Definition 1 implies  that after state-space coordinate change 6, input 
coordinate  change @, and  feedback a, the  system (1) will  have  Brunovsky 
canonical  form on U. 

Now  we state our result about  system (1). Let GI a S p { g l ,  . . * ,  g,,,}, 
Gi+l = Gi + L,Gi, i = 1, 2;-*,  whereL,Gi = span {L& E Gi} .  
We  have  the  following theorem. 

Theorem I: If system (1) is globally  externally linearizable, then  the 
following  holds. 

i) There exist  vector  fields g l ,  * . . , gm E G1 and integers m = II 
t l ~ r . . . t I N > O w i t h C ~ I l i = n s u c h t h a t t h e n v e c t o r s C P { g l ,  
1 . 1 ,  g m ,  Lfgl, .-., Lrg12, ..., LfN-Ig1, . - a ,  LfN-'g/,} are linearly 
independent at each x E M. 

ii) Gi = Sp{gl ,  e.., g,,,, L f g , ,  * .., L,g,*, * .., Li-Ig,, . - s t  

iii) Let X i  be the ith vector  field  in C. We  define Di Sp { X I ,  - * . , 
X ; } ,  then Di is  involutive for i = 1, 2, . . a ,  n. 

iv) There exist Z;  E Di, i = 1, 2, . * * ,  n ,  x. E M ,  such  that Z I ,  
Z2, . * . , Z ,  are  linearly independent Vx E M, and  the  mapping $: V -+ 

M ,  defined as 

L;-lg,i}, i = 1, 2, ..., N.  

Ic.(Yl, Y2, . . .,, Y,)=e,z: O O . . ' "@,Z:(Xo) 

is bijective, where V is an  open  subset of Rn.  

also  convex. 
Conditions i), ii), iii), and  iv) are  also sufficient  provided in iv) V is 

111. PROOF OF THEOREM 1 

First we prove  the  necessity. From (2) and (3) we have 

(gI, ' ' ' 3  &&(4*(gI), ' ' ' 9  + * ( g m ) ) P = ( I m I O ) r ,  (4) 

fk b*(f)  

= ( X ,  . * . , X I Y l %  . . . ~ Y / l l Y P , + l '  ...,YP1+I~l...lYPN-2+1, . . . . Y p N - 2 + I N ) '  

(5 )  

where X denotes  an arbitrary  element. Now let 

6'4{g,, ..., gm, L@I, *.., L3&, ..', L y g l ,  .*., L;-lg/,.}; 

dl gSp{g , ,  . *  ., g m r  }. 

ck+Ieek+L#k, k = l ,  2, ' . ' ,  

d i g S p { ~ ~ ; . . , ~ i } , w h e r e ~ , i s t h e j t h e l e m e n t o f ~ , i =  I ; . - , n .  
According  to (4), (5 ) ,  it is  obvious  that ek, e, di satisfy i), ii), and  iii)  of 
Theorem 1 ,  respectively. So when  we  choose gi  = 4 $ (Ei),  i = 1, e ,  

m, i), ii), and  iii) are satisfied. 

Note  that the  matrix e is upper triangular  and nonsingular. So if we 
choose& = (0, ..., 0, l i t h , O ,  - . . , O ) ' , i  = 1 ,  ..., nandxo = 0,then 
2,, . . . , 2, satisfy  condition  iv) with $: V -+ V being  an  identity 
mapping. Set Zi = &'(Zi),  i = 1, . . . , n,  then  the  corresponding $: V 
-+ M is + - I  0 $. Thus, condition  iv) is satisfied. 

Before we prove  sufficiency, we introduce  several lemmas. 
Lemma I /6J: If X I ,  . * . , x k  E V(M), A = Sp(X1, . * . , X,}  is 

involutive,  then 

( F ) * A E A ,  i = l ,  ... , k.  

Lemma 2: Assume Z I  , Z 2 ,  . . . , 2, are linearly  independent  vector 
fields Vx E Mand the  distributions Ai  k Sp(Z1, . . . , ZJ, i = I ,  * * . , n, 
are  involutive. Let V be  an  open  subset  of W". For a fixed x. E M if the 
mapping $: V -t M, defined by 

is bijective, then $ is a  diffeomorphism. 
Proof: To  simplify the  notation,  let 

+-(i.,)g+z/ -,,,o+-y,~l~ ' j - 1  ... b - j i ,  z, where l s i < j s n .  

Since $ is bijective, we have  only  to  show  that the Jacobian  matrix of $, 

is nonsingular everywhere. 

V(M), p E M ,  then from [7] we can  obtain 
If M, N are two  manifolds, F:M --* N is a diffeomorphism, X E 

F O 4;YP) = b : * ' W w ) .  

Differentiating both sides of the  above  equation  we  have 

Applying the above result, we get 

Now assume  that there exists (X,, . . , X,) # 0, such  that at y E V 

Let k = max { iJhi # 0}, then (6) becomes 

Since Zi  E Sp{ X I ,  . . . , X i }  and Z 1 ,  . . * , Z ,  are linearly  independent 
V p E M , s o S p { Z i ,  ..., Z i }  = S p { X l ,  ..., X i ]  = Aiisinvolutivefor 
i = 1, * . . , n. Using  Lemma 1, (7) contradicts the  fact  that Zi , * . . , Zk 
are linearly  independent everywhere. 

Lemma 3: Let V be a  convex open subset of F i n ,  H: V -+ W" be a C" 
mapping.  If  the  Jacobian  matrix  of H is an upper  triangular  nonsingular 
matrix everywhere, then H: V -+ I( V )  is a diffeomorphism,  where I( V )  
is the  image of H .  
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Proof: Using the mean  value theorem, we can prove  that His a one- 
tc-one mapping.  The  conclusion  follows. 

Nore: By the rank theorem [7l, I( V )  is open in 12". 
Now  we prove the  sufficiency. 
By assumptions iii) and  iv)  we  know  that Di is involutive for i = 1, - -, n, Z1, - .  e ,  Z ,  are linearly  independent,  and 9: V + M i s  bijective. 

Thus, from Lemma 2 9 is  a diffeomorphism. Now  we choose ( $ - I ,  M )  
as a coordinate chart. Under this new  coordinate  we  have [2]' 

It  is  useful to remember  that  the  diagonal  elements are nonzero  because 
g , . , gm are linearly  independent. 

From the  definition of Gi, Ljgi  always  belongs  to Gk+l. If Ljgi 
belongs to C, computation  shows  that 

If Ljgi does  not  belong to C, then for Zi > ii + 1,  we  have 

Now denote y:  y k ,  fk, k = 1, . . ., n. We  define 
transformations R j  inductively as 

. [  

j - l  I=pi+k, 
Rj :A= fPi+r+L' i = O ,  * . a ,  N - 2 ;  k =  1, ..e, 

y-- I ,  otherwise (10) 

wherefi 6 (Rj)J .  
Using Rj, the 'linearization  procedure is a generalization of [2]. The 

main difference is to show  that all R j ,  j = 1, . . . , N - 1,  are global 
diffeomorphismsfrom VtotheirimagesI,(V),j = 1, . . * , N -  1. 

First  we  know R j  is  well  defined. We claim  that R,: V + Zj(V) is a 
diffeomorphism.  Computing  the  Jacobian  matrix of R j ,  assuming (8) and 
(9) hold for ally, it is clear that JR, is an upper  triangular  matrix  with  the 
diagonal  elements ai,, I = 1, . * * , n, as 

By (8), JR, is nonsingular everywhere. Using Lemma 3, I,( V) is an  open 
subset of R" and Rj: I/ -+ I,(V) is a diffeomorphism. 

What  remains to be  proven is that if the  components of f ' - I ,  as 
functions ofy, ,  . . . , y , ,  satisfy (8) and (9), then  the  components off', as 
functions ofyl , . . * , yn too,  also satisfy (8) and (9). This  will be. proved as 
follows.  Using (lo), we need  only i = 0, 1, . . -, N - 2; 
1 I k I l i+$  Since 

f',+/= - 

thus  we  have 

and 

afii+f = 0 ,  I>k or l i+ l<k<l;  and I > f , + l .  
aYpi-l+r 

Therefore, (8) and (9) are  also  true  for fJ. This fact makes  it  possible to 
construct the diffeornorphism Rj:  V + I,( V )  inductively. 

Now  we claim that 

&i+k=&i- l+k ,  i = N - j  , " '  , N - I ,  k = l ,  ..e, 1,-1. (13) 

Consider the diffeomorphism R$-l:Z,- , (I / )  -+ I,(V), Rj-' R, 0 

(Rj-&'.  Observe  that (13) is true f o r j  = 1. So we  assume  that  (13)  is 
m e  for j - 1. Using (10) and (13) the  Jacobian  matrix of Rj-I is 

r 1 

It  is  easy to see thatf' b (R,)J = (R!-')>-' satisfies (13). 
Let U 2 IN- I (  V ) ,  which is an open dbset of 1". Define 4 to  be R N - I  

0 $ - I ,  then 4:M -+ U is a diffeomorphism.  Using  (13) and' we have 

+*W=(hI ,  ' ' ' 3  hmly1, * . . I  y/2(ypI+I, 'a.1 

Yp1+131 ..- IYpN-2+1, ... I YPN-2+/N)r 

whereyiisusedtodenotey"-',i= 1 ; . . , n ; andh i€C"(U) , i=  1, 

nonsingular, we have 
... , rn. Since the Jacobian  matrix of RN-' is  upper  triangular  and 

(I$&), . . a ,  +a@m))= [ WTIO] r, where W E Gl(m, Cm(U)) .  

NowsinceSp{gl,  --*,g,,,} = Sp{gl, . . . , E , , , )  = G1,sowecanfind 
an rn x rn nonsingular  matrix H pointwise,  such  that 

(g~, ' 0 . 9  gm)=(E,, ..., E m W  

where 

H=[@I,  E d r @ I ,  ..., grn)I-'@l, ..., E d 7  
* (gl, * * ., gm) E GKm, W W ) .  

Thus, we  have 

(+&I), . . ' 9  + * ( g m ) )  = (I$*@1)9 * . ' 3  +*(Em))  0 (H o + -9 

where H 0 4-l  € Gl(rn, Cm(U)) .  
Let 

g e [ W ( H o  E Gl(m, Cm(U)) ,  

a= -6 . (h1, ..., hm)T E c;(u), 

then 

(+*W + (4&1), . . , +&m))., (4*kJ> . . . , +*(gm))O) 

has  the  Brunovsky canonical form. 
Remark: Theorem 1, i) says  that  the  set C spans  an  n-dimensional 

space at each x;  ii) is the  selection of Kronecker  indexes; iii) means  that 
the  vectors in C behave like basis  vectors of a linear vector  space;  and  iv) 
ensures that  at  each  point  the  integral  curves of Zl ,  . . . , Z ,  form  the 
skeleton  of a coordinate  system.  Note  that  conditions i), ii), and iii) are the 
necessary and sufficient  conditions for system (1) to be locally  externally 
Linearizable. Thus, these are equivalent to the  conditions of  Hunt  er ai. 
[41. 

Iv. SINGLE INPUT CASE 

For single  input  case we need  the  following  lemma  which  follows  from 
~ 3 1 .  
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Lemma 4: Let J, g E V(M), if g ,   L J g ,  * . . , L y - l g  are linearly 
independent, Vp E M ,  and An-]  Sp{g,  Lfg,  *.., L;-2g} is 
involutive,  then A; 2 S p { g ,   L J g ,  . . . , Ls-lg} is involutive  and  dim (Ai) 

= ifor i = I ,  2, - - a ,  n. 
Using  Theorem 1 and Lemma 4, we  have  the  following. 
Theorem 2: If the  single input system 

x = f ( x )  + g(x)u (14) 

is  globally  externally linearizable, then the following  holds. 
i) Xi ii L i - l g ,  i = 1, . . . , n, are linearly  independent, Vp E M .  

ii) A n - ]  P S p { X I ,  - . e ,  is involutive. 
iii) There  exist Zi E Sp{g, LB, . * -, Li- lg} ,  i = 1, - -  -, n, which 

are linearly  independent Vp E M ,  V open  in R“ and x0 E M such  that 
the  mapping \L: V -+ M, defined as (yl , y2 ,  . . ., yn) + 4;; 0 42 0 * . O 
4k(xo), is bijective. 

Conditions i), ii), and  iii) are  also sufficient  provided in iii) V is also 
convex. 

A direct proof of Theorem 2 can  be  found  in [ 101. 

V . GLOBAL R LINEARIZABILITY 

In practice,  it  is useful to have  the  linearized  system  defined over Rn, In 
this case (1) is said to  be globally  externally R“ linearizable. For global 
external R n  linearizability  we have  the following theorem. 

Theorem 3: System (1) is  globally  externally R” linearizable  if and  only 
if i), ii), and  iii) of Theorem 1 hold  and in iv)  of  Theorem 1, V = W” and 
there  exists e > 0 such  that 

where (yl , . . . , yn) is the  coordinate of \L - I .  f l  , . . . , fn are components 
off expressed  under  coordinate \L - I .  

Proof:IfwechooseZ; = $gl(O, **.,O, l;h,O, *..,O)‘,thenwe 
have $ = 4-I and  under $-‘,fhas form (5). Take E = 1, then (14) is 
true. Hence, the  necessity  follows. 

For sufficiency, R n  is obviously  convex. From (1 1)  and (12) we can 
inductively prove that  the  diagonal  elements of the  Jacobian  matrix of Rj  
satisfy 

min IU{ ,I , I .  min ( # I ,  I), j =  I ,  ..., N -  I .  

Thus, from [8], Rj:Rn + Rn.is a diffeomorphism. 

VI. EXAMPLE 

Consider  the  following  system: 

Boothby  [7]  showed  that (15) satisfies  the  local  conditions  i)  and  ii) of 
Theorem 2, but it is  not  globally externally W 2  linearizable. 

Let DI = Sp(g), Dz = s p ( g ,   L J g ) ,  then we can  prove  that no matter 
how to choose ZI E D l ,  22 E D2,  the  mapping 

$(ti, t * , % p  b:(xo) 

will  never be. onto R2. So condition iii) of Theorem 2 fails. 

found  in [lo]. 
The details of the  above  example  and other interesting  examples  can be 
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On the Causal Factorization Problem 

G. CONTE AND A. M. PERDON 

A bstruct-In this note  the formalism of the infinite zero  module and of 
the infinite pole  module is used to analyze  the  causal factorization 
problem.  This  allows us to express its solutions  in terms of zeros and poles 
at  infinity  and to have a  better  understanding of both  the problem and  the 
techniques  previously  proposed by various  authors to solve  it.  Moreover, 
we obtain a characterization,  in  terms of the existence of certain causal 
factorizations, of the transfer  functions having no infinite zeros. 

INTRODUCTION 

In recent years many  concepts arising in  the  theory of linear systems 
have  been  considered  from an  algebraic point  of  view.  This  fact  has 
produced a  better insight  into  various  problems such as, for  instance, state 
and  output  feedback [8], [6],  output  injection [5],  exact  model  matching 
[4], [3], inverse dynamical  systems [17], [l], and others.  Moreover, the 
algebraic approach  has  given  the  possibility of extending  known  tech- 
niques to more general situations  such as those concerning  systems with 
coefficients in a ring  which  represent  families  of  parameter  dependent 
systems, 2-D systems or systems with delays (see, in  addition  to  some of 
the  above-mentioned papers, [7], [lo], and the  references  therein). 

In this framework, B. Wyman  and M. Sain introduced, in [17], the 
notion  of  (finite) zero module  which  gives  an  abstract  and  module 
theoretic  description of  the  classical  [14] finite zero  structure  of  a  transfer 
function. The significance  of  the zero module  in  connection with inverse 
systems and  blocked  signal  transmission  was  pointed  out in [17], [I81 and 
the  theory was extended  to the  case of  systems  with  coefficients  in a ring 
in [l]. 

More recently, the  notions  of  infinite zero module  and  of  infinite  pole 
module,  which describe the structure at m of a  transfer function in module 
theoretic terms, have  been  introduced  in [2]. Using  these  algebraic tools, 
some  results on the  minimality of inverse systems  and  connections with 
the  geometric  theory  can be established. 

In this  note, our aim  is  to analyze the  causal  factorization  problem  using 
the  formalism of the  infinite zero module  and  of  the  infinite  pole  module. 
This  enables us to  compare different technical  solutions of  the  problem, 
given in [ll] and in [6], with the natural conditions, restated in  a precise 
and  meaningful sense, which  concern  the  infinite zeros and  poles. 

In our  opinion, this  approach  results  in a better  understanding of  both 
the  problem  and  the  techniques  used in [ l  I ]  and [6] to  solve it. Moreover, 
it  gives a  clear example  of  the  naturality  and  significance of  the  algebraic 
point  of  view  in  dealing  with  zeros  and  poles  of transfer functions. 
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