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Stability and stabilisation of planar switched linear systems

via LaSalle’s invariance principle
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This paper investigates the problem of uniformly asymptotical stability (UAS) and stabilisation of planar
switched linear systems using LaSalle’s invariance principle of switched systems. First, we show that a common
weak quadratic Lyapunov function (WQLF) is enough to assure the UAS of a switched linear system with stable
modes. Then the necessary and sufficient conditions for the existence of common WQLF are obtained. Secondly,
we consider the problem of uniformly asymptotical stabilisation (UASZ) of single-input planar switched linear
systems. Necessary and sufficient conditions for the closed-loop system with proper feedback to share a common
WQLF are presented. It is also proved that a common WQLF is enough to assure the UAS of the closed-loop
system.
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1. Introduction

The problem of stability and stabilisation is one of the

most interesting and challenging topics for switched

systems. It is mainly because switchings cause some
unpredicted phenomena: switching among stable

modes may result in unstable trajectories and vice

versa. To assure the stability, common Lyapunov

function has been studied extensively (Dayawansa and
Martin 1999; Mancilla-Aguilar and Garcia 2000;

Mancilla-Aguilar 2000).
It was shown in several literature (e.g., Mancilla-

Aguilar and Garcia (2000), Mancilla-Aguilar (2000))
that if there is a common Lyapunov function for all

switching modes, then the switched system is globally

uniformly asymptotically stable (GUAS) with respect

to a compact set of switching modes, and conversely,
if a switched system is GUAS, then there must exist

a common Lyapunov function. Hence, seeking a

common Lyapunov function becomes a most com-

monly used tool for stability and stabilisation analysis
of switched systems. However, finding a common

Lyapunov function is a hard topic, even if common

quadratic Lyapunov function for switched linear

systems has been investigated by many authors
(Mason, Boscain and Chitour 2006; Shorten and

Narendra 1997, 2000). A general stability criterion

for planar switched linear systems was presented in

Holcman and Margaliot (2003).
In Cheng (2004), a necessary and sufficient

condition is given for stabilising the planar switched

control systems using common quadratic Lyapunov

function. This work is a follow-up of Cheng, Guo and

Huang (2003) and Cheng (2004), and some similar

approaches have been implemented. A new concept,

namely, common weak quadratic Lyapunov function

(WQLF), is proposed in this paper. It is shown in this

paper that common WQLF generalises the known

results and it provides a more powerful tool in stability

analysis and stabiliser design.
Consider a switched linear system

_xðtÞ ¼ A�ðtÞxðtÞ, xðtÞ 2R
n, ð1Þ

and a switched linear control system

_xðtÞ ¼ A�ðtÞxðtÞ þ B�ðtÞuðtÞ, xðtÞ 2R
n, uðtÞ 2R

m, ð2Þ

where the switching signal �(t) : [0,1)!�¼
{1, 2, . . . ,N} is a right-continuous piecewise constant

mapping.
We give some definitions for stability and stabilisa-

tion of system (1) and (2) respectively.
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Definition 1: System (1) is said to be stable, if for each

switching signal �(t) and for any "4 0, there is a

�(�, ")4 0 such that when kx�(0)k� �(�, ") the solution
x�(t) of (1) satisfies kx�(t)k� ", t2 [0,þ1).

Moreover, if �(�, ")¼ �(") is independent of �, system
(1) is said to be uniformly stable with respect to �.

Definition 2: System (1) is said to be asymptotically

stable, if it is stable, and for each switching signal �(t),
there exists an M(�)4 0 such that for any "4 0, there

is a T(�, ")4 0, as long as kx�(0)k5M(�), we have

kx�(t)k�", 8t4T(�, ").

Moreover, if T(�, ")¼T(") is independent of �, system
(1) is said to be uniformly asymptotically stable (UAS)

with respect to �.

Definition 3: System (2) is said to be uniformly

asymptotically stabilisable, if there is a (could be

switch-depending) feedback control such that the

closed-loop system of (2) is uniformly asymptotically

stable.

For switched linear systems it is natural to

search a common quadratic Lyapunov function for

all modes.

Definition 4: A positive definite quadratic form xTPx

(or briefly, P) is called a common quadratic

Lyapunov function (CQLF) for system (1) (or set

{Aljl2�}) if

PAl þ AT
lP ¼ �Ql < 0, 8l2�: ð3Þ

xTPx (or briefly, P) is called a common weak quadratic

Lyapunov function (common WQLF) if in (3) Ql� 0,

8l2�. A common WQLF is called a diagonal

common WQLF if P is diagonal.

For switched linear control systems, we may seek

feedbacks ul¼Klx, l2� such that

~Al ¼ Al þ BlKl

���l2�
n o

share a CQLF (Cheng 2004). The advantage for

this approach is that the quadratic form is

easily computable, though the existence of CQLF is

not necessary for stability (Dayawansa and Martin

1999).
Consider system (1) or (2). A switched system is

said to have a non–vanishing dwell time, if there exists

a positive time period �0, such that the switching

moments {�k|k¼ 1, 2, . . .} satisfy

inf
k
ð�kþ1 � �kÞ � �0:

Through this paper we assume that

A1. Admissible switching signals have a dwell time
�04 0.

One of the basic motivations of this paper is from
the following LaSalle’s invariance principle.

Theorem 1 (Hespanha 2004): Suppose that there
exists a set {Pl|l 2 �} of symmetric positive definite
matrices such that at each switching moment we have

xTðtÞP�ðtÞxðtÞ � xTðtÞP�ðt�ÞxðtÞ, ð4Þ

and

PlAl þ AT
lPl � �C

T
lCl, 8l2� ð5Þ

for an appropriately defined compact set of matrices
{Cl| l 2�}. Then system (1) is stable. Moreover,
if each pair (Cl,Al) is observable, then (1) is uniformly
asymptotically stable.

Note that if there is only one P (equivalently, Pl¼P,
8l 2 �), then (3) is trivially true. Hence for system (1)
or system (2), instead of searching a CQLF, we may
find a common WQLF, and to see when it is enough to
assure the UAS of switched systems.

For system (1) we prove that as long as all the
switching modes are stable, common WQLF is enough
to assure the UAS of the system. Then we give
necessary and sufficient conditions for the existence of
common WQLF. For system (2) we prove that in
planar case common WQLF is also enough to assure
the UAS. Then we also provide necessary and
sufficient conditions for the existence of controls
which assure the existence of common WQLF for the
corresponding closed-loop system. The design of
stabilisers is also presented.

This paper is organised as follows: x 2 shows that
common WQLF is enough to assure the UAS; x 3 gives
necessary and sufficient conditions for the existence of
common WQLF. In x 4, we consider the uniformly
asymptotical stabilisation (UASZ) of switched planar
linear systems (2) and show that common WQLF is
also enough to assure UASZ. Then the necessary and
sufficient conditions for the existence of linear state
feedback controls which assure the existence of
common WQLF of the corresponding closed-loop
system are also presented. The last section contains
some concluding remarks.

2. UAS via common WQLF

In this paper, we only consider a finite set of switching
modes. That is,

A2. The set of switching modes is finite. Precisely,
�¼ {1, 2, . . . ,N}.
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In this section we would like to show that a

common WQLF is enough to assure the UAS of

system (1). We need Lemma 1.

Lemma 1 (Harry, Anton and Malo 2001): Consider a

linear system

_x ¼ Ax, x2R
n: ð6Þ

Assume that C is a p� n matrix, and observe the

following statements:

(i) A is a stable matrix;
(ii) (C,A) is observable;
(iii) Equation ATPþPA¼�CTC has a positive

definite solution P.

Then any two of these statements imply the third.

Now observe system (1), if we allow the

switching being arbitrary, each Al should be stable.

So we assume

A3. Al, l2� are stable.

Theorem 2: Consider system (1). Assume A3 holds.

Then a common WQLF is enough to assure the UAS.

Proof: For each mode the statements (i) and (iii) of

Lemma 1 are satisfied. So (ii) is satisfied, too. Using

Theorem 1, the conclusion follows. œ

From Theorem 2, the problem of UAS is converted to

the problem of finding a common WQLF.

3. Common WQLF for switched planar

linear systems

In this section, we investigate the common WQLF for

system (1). Before presenting our main results, we give

the following two lemmas. The proofs are the same as

those for the corresponding lemmas of CQLF in Cheng

et al. (2003).

Lemma 2: Assume a set of matrices {Al|l2�}

are stable, i.e. Re�(Al)5 0, (where �(A) is the set

of eigenvalues of A) and there exists a common

WQLF, then there exists an orthogonal matrix T such

that {Ãl¼TTAlT|l2�} has a common diagonal

WQLF.

Lemma 3: Assume a matrix A has a diagonal WQLF,

then its diagonal elements are all non-positive, i.e.,

aii� 0, i¼ 1, . . . , n.

According to Lemma 2, instead of searching a

common WQLF we can search a diagonal common

WQLF under certain orthogonal transformation on

{Al|l2�}.

In the following, we will consider the planar

switched linear systems. That is, assume in

system (1), n¼ 2.
Note that an orthogonal transformation

T 2 SO(2,R) can be expressed as

Tt ¼
cos t �sin t

sin t cos t

 !
, 0 � t < 2�: ð7Þ

Consider a stable matrix

A ¼
� �

� �

 !
:

According to Lemma 3, we first consider when

AðtÞ ¼ Tt
TATt, 0 � t < 2�,

has non–positive diagonal elements.
For notational ease, set S ¼ sin t,C ¼ cos t,

S2 ¼ sinð2tÞ,C2 ¼ cosð2tÞ. Consequently,

AðtÞ ¼
C S

�S C

 !
� �

� �

 !
C �S

S C

 !

¼
�C2þð�þ�ÞSCþ �S2 �C2þð���ÞSC��S2

�C2þð���ÞSC��S2 �C2�ð�þ�ÞSCþ�S2

 !
,

Set

a ¼
�þ �

2
, b ¼

�� �

2
, c ¼

�þ �

2
, d ¼

�� �

2
,

then

AðtÞ ¼
aþ bC2 þ cS2 dþ cC2 � bS2

�dþ cC2 � bS2 a� bC2 � cS2

� �
: ð8Þ

Remark 1: From (8) one sees that we do not need to

consider the whole 0� t5 2�. It is enough to consider

the problem only for 0� t5�.

Let r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ c2
p

. Using Lemma 3, then similar to

Cheng et al. (2003), we have the following results:

Proposition 1: Given a stable matrix A ¼ ð� �
� �Þ.When

r��a, the diagonal elements of

AðtÞ ¼ Tt
TATt, 0 � t < �

are always non–positive. When r��a, the diagonal

elements are non-positive iff t 2 �, where

�¼ {t|0� t5�, r|sin(2tþ�)|��a}, and �2 [0, 2�) is
determined by

cosð�Þ ¼
c

r
, sinð�Þ ¼

b

r
:
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Theorem 3: For each t 2 �, there exists a non–empty

interval

It ¼ ½LðtÞ,UðtÞ� � ð0;þ1Þ,

such that P¼ diag(1, x) is a diagonal WQLF of A(t), iff,

x2 It, where

LðtÞ ¼

1þ 2
a

d

� �2
�

2jaj

jdj

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

d

� �2
þ1

r
, r ¼ 0,

ðRCþ dÞ2

�2F
, r > 0, RC ¼ d,

�F�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 � ððRCÞ2 � d2Þ2

q
ðRC� dÞ2

, r > 0, RC 6¼ d;

8>>>>>>>>>><
>>>>>>>>>>:

ð9Þ

UðtÞ ¼

1þ 2
a

d

� �2
þ

2jaj

jdj

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

d

� �2
þ1

r
, r ¼ 0,

þ1, r > 0, RC ¼ d,

�Fþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 � ððRCÞ2 � d2Þ2

q
ðRC� dÞ2

,

r > 0, RC 6¼ d, t2�:

8>>>>>>>>>><
>>>>>>>>>>:

ð10Þ

RC ¼ r cosð2tþ �Þ, RS ¼ r sinð2tþ �Þ,

F ¼ ðRCÞ2 � d2 þ 2ðRSÞ2 � 2a2:

Now for a given 2� 2 stable matrix A, the set of

WQLFs can be described as

n
P ¼ pTt

1 0
0 x

� �
TT
t jp > 0, t2�, LðtÞ � x � UðtÞ

o
:

In the following, we use (t, x)2 [0,�)� (0,þ1) to

represent the set of candidates of WQLFs. That is

Pðt; xÞ :¼
cos t �sin t
sin t cos t

� �
1 0
0 x

� �
cos t sin t
�sin t cos t

� �
:

Similar to CQLF Cheng et al. (2003), we have

Proposition 2: If P(t, x) is a feasible common WQLF

with t < �=2, then Pðtþ �=2, 1=xÞ is also a feasible

common WQLF. Conversely, if P(t, x) is a feasible

common WQLF with t � �=2, then Pðt� �=2, 1=xÞ is
also a feasible common WQLF.

This proposition tells us that to search a common

WQLF we have only to search it over ½0,�=2Þ.
Now consider the finite set {Al|l 2 �}, then we can

construct the feasible set of t for each matrix, as �l.

And the functions Ll(t),Ul(t) are defined by (9)

and (10). Then the common feasible set is

� ¼ \Nl¼1�l � 0,
�

2

h �
:

We also set

LðtÞ ¼ max
l2�

LlðtÞ, UðtÞ ¼ min
l2�

UlðtÞ, t2�:

Summarising the above arguments, we have the

following result.

Theorem 4: Consider system (1), {Al|l 2 �} share a

common WQLF, iff there exists a t 2 �, such that

L(t)�U(t). Moreover, as long as a common

WQLF exists, system (1) is uniformly asymptotically

stable. œ

Note that if the conditions in Theorem 4 are satisfied,

then a common WQLF can be constructed as

P ¼ Pðt; xÞ, LðtÞ � x � UðtÞ, t2�:

Example 1: Consider the following switched system

_x ¼ A�ðtÞx, ð11Þ

where �(t) : [0,þ1)! {1, 2}, x 2 R
2 with switching

modes as

A1 ¼
�4 6
�2 2

� �
, A2 ¼

1 �4
3 �3

� �
:

The parameters of A1 are calculated as

a1 ¼ �1, b1 ¼ �3, c1 ¼ 2, d1 ¼ 4, r1 ¼
ffiffiffiffiffi
13
p

,

�1 ¼ 5:3004:

It follows that �1¼ (0.3509, 0.6319).
From (9) and (10), we have

L1ðtÞ ¼
5� 13ðsinð2tþ�1ÞÞ

2
� 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 13ðsinð2tþ�1ÞÞ

2

q
ð
ffiffiffiffiffi
13
p

cosð2tþ�1Þ � 4Þ2
,

U1ðtÞ ¼
5� 13ðsinð2tþ�1ÞÞ

2
þ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 13ðsinð2tþ�1ÞÞ

2

q
ð
ffiffiffiffiffi
13
p

cosð2tþ�1Þ � 4Þ2
,

t2�1,

Similarly, the parameters of A2 are

a2 ¼ �1, b2 ¼ 2, c2 ¼ �
1

2
, d2 ¼ �

7

2
,

r2 ¼

ffiffiffiffiffi
17
p

2
, �2 ¼ 1:8158,

and �2¼ (0.4097, 0.9161). Therefore

� ¼ �1 \�2 ¼ ð0:4097, 0:6319Þ:
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Using (9) and (10) again, we have

L2ðtÞ ¼
40�17ðsinð2tþ�2ÞÞ

2
�12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�17ðsinð2tþ�2ÞÞ

2

q
ð
ffiffiffiffiffi
17
p

cosð2tþ�2Þþ7Þ2
,

U2ðtÞ ¼
40�17ðsinð2tþ�2ÞÞ

2
þ12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�17ðsinð2tþ�2ÞÞ

2

q
ð
ffiffiffiffiffi
17
p

cosð2tþ�2Þþ7Þ2
,

t2�2,

Let

LðtÞ ¼maxfL1ðtÞ,L2ðtÞg,UðtÞ ¼minfU1ðtÞ,U2ðtÞg, t2�:

The portraits of L1�U1, L2�U2 and L�U are

described in Figure 1.
From Figure 1, it is easy to find out a common

WQLF (t, x)¼ (0.5513, 6.8209). Then we have

P ¼
0:9989 �0:9989

�0:9989 2:0092

 !
:

It is easy to verify that

PA1 þ AT
1P ¼

�3:9951 3:9727

3:9727 �3:9505

 !
� 0,

PA2 þ AT
2P ¼

�3:9959 4:0300

4:0030 �4:0636

 !
� 0:

Its dual common WQLF is (t, x)¼ (2.1221, 0.1466),

which yields

�P ¼
0:9899 �0:9900

�0:9900 1:9912

 !
:

Moreover, we have

�PA1 þ AT
1

�P ¼
�3:9602 3:9372

3:9372 �3:9153

 !
� 0,

�PA2 þ AT
2

�P ¼
�3:9602 3:9940

3:9940 �4:0273

 !
� 0:

So both P and �P are common WQLFs of A1 and A2.
According to Theorem 4, system (11) is uniformly

asymptotically stable.

Remark 2: In fact, the conclusion in x 3 is available

for n dimensional switched systems. So searching a

common WQLF is essential for the UAS. Similar

to what we have done in this section, the

algorithm developed in Cheng et al. (2003) can also

be extended to search a common WQLF for higher

dimensional case.

4. Stabilisation of switched planar linear systems

In this section, we consider the problem of the UASZ

of planar switched systems (2) by linear feedback.

First, we give a definition.

Definition 5: Consider switched system (2). The weak

quadratic stabilisation problem is: finding feedback

controls ul¼Klx, l¼ 1, 2, . . . ,N, and a positive defi-

nite matrix P, satisfying P ~Al þ
~AT
lP ¼ �C

T
lCl � 0,

where Ãl¼AlþBlKl, Cl, l¼ 1, 2, . . . ,N are appro-

priate matrices and (Cl,Al) are observable.

Next, we give some lemmas for providing our main

results.

Lemma 4 (Cheng (2004) modified a little): Let (A, b)

be a single-input planar system. Then there exists a

unique state transformation matrix T, which converts the

system into the Brunovsky canonical form as

T�1AT ¼
0 1
a1 a2

� �
, T�1b ¼

0
1

� �
:

Moreover, the parameters ai, i¼ 1, 2 satisfy

a1
a2

� �
¼ ðb,AbÞ�1A2b,

and the unique state transformation matrix T¼ (T1,T2)

can be determined as follows:

T2 ¼ b, T1 ¼ AT2 � a2b:

Lemma 5: Given a positive definite matrix

M ¼
m1 m2

m2 m3

� �
> 0:

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

10

20

30

40

50

60

L1
U1
L2
U2
L
U

Figure 1. The portrait of L1�U1, L2�U2 and L�U.
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There exists a feedback u¼Kx¼ (k1, k2)x, such that
the closed-loop system of the canonical single-input
planar system

~A ¼ Aþ bK

has M as its weak quadratic Lyapunov function,
iff m2� 0.

Proof: Denote

~A ¼
0 1
a1 a2

� �
þ

0
1

� �
ðk1; k2Þ :¼

0 1
� �

� �
:

Without loss of generality, we assume m1¼ 1. Then M
is a weak quadratic Lyapunov function of Ã, iff

~ATMþM ~A ¼
0 �

1 �

 !
1 m2

m2 m3

 !

þ
1 m2

m2 m3

 !
0 1

� �

 !
� 0,

which leads to

Q :¼ ~ATMþM ~A

¼
2�m2 1þ �m3 þ �m2

1þ �m3 þ �m2 2ðm2 þ �m3Þ

 !
� 0:

Denote D(�,�) :¼ detQ. Now for Q to be negative
semi-definite, it is necessary and sufficient that

�m2 � 0, Dð�,�Þ � 0,m2 þ �m3 � 0:

Note that �� 0 is a necessary condition for the
closed-loop system to be stable. Meanwhile, �m2� 0
is also necessary. Then we have

Case 1: m25 0, �4 0 and �5 0. After a simple
computation, we have

Dð�; �Þ ¼ �ð�m2 � �m3Þ
2
� 2ð�m2 þ �m3Þ þ 4�m2

2 � 1:

Setting

@Dð�; �Þ

@�
¼ �2m2ð�m2 � �m3Þ � 2m2 ¼ 0,

we have

�m2 ¼ �m3 � 1:

So the maximum of D(�, �) is

Dmaxð�; �Þ ¼ �1� 2ð2�m3 � 1Þ þ 4�m2
2 � 1

¼ �4�ðm3 �m2
2Þ ¼ �4�detðMÞ < 0:

It is obvious that D(�,�)� 0 has no solution.

Case 2: m25 0, �4 0 and �¼ 0. Then we have

Dð�; �Þ ¼ �ð�m3Þ
2
� 2�m3 þ 4�m2

2 � 1

¼ �ð�m3 þ 1Þ2 þ 4�m2
2:

Let

@Dð�; �Þ

@�
¼ �2�m2

3 þ 4m2
2 � 2m3 ¼ 0:

Then

� ¼
2m2

2 �m3

m2
3

:

So the maximum of D(�, �) is

Dmaxð�,�Þ ¼ �
2m2

2 �m3

m2
3

þ 1

� �2

þ 4m2
2

2m2
2 �m3

m2
3

¼
4m2

2ðm
2
2 �m3Þ

m2
3

< 0:

Therefore, D(�,�)� 0 has no solution.

Case 3: m25 0, �¼ 0 and �5 0. In this case, we

have

Dð�; �Þ ¼ �ð�m2 þ 1Þ2 < 0:

Case 4: m25 0, �¼ 0 and �¼ 0. Then we have

D(�,�)¼�15 0. In case 3 and case 4, D(�,�)� 0

does not have solution either. Hence m2� 0 is

necessary for the matrix Q to be negative semi-definite,

which proves the necessity.

Next, we prove the sufficiency.

Case 1: m24 0. In this case, we can choose any

�5 0 and � ¼ ðð�m3 � 1Þ=m2Þ. Then we have

Dð�; �Þ ¼ �4�ðm3 �m2
2Þ > 0,

m2þ�m3 ¼m2þ
�m3� 1

m2
m3 ¼

1

m2
½m2

2�m3þ�m
2
3�< 0:

Hence Q5 0.

Case 2: m2¼ 0. Then

Q ¼
0 1þ �m3

1þ �m3 2�m3

� �
:

Setting � ¼ �ð1=m3Þ and � ¼ �ð1=m3Þ, a straight-

forward computation shows

Q ¼
0 0
0 �2

� �
� 0:

The sufficiency is proved. œ
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Definition 6: A matrix

M ¼
m1 m2

m2 m3

� �
> 0

is said to be weakly canonical-friend (to the canonical
controllable form), if m2� 0.

Lemma 6: Given a non-singular matrix

T ¼
t11 t12
t21 t22

� �
:

For a weakly canonical-friend M4 0, TTMT is also
weakly canonical-friend, iff the following quadratic
inequality

t21t22x
2 þ ðt12t21 þ t11t22Þxþ t11t12 � 0

has a non-negative solution x� 0.

Proof: The proof is similar to the proof for the
canonical-friend case in Cheng (2004). œ

Consider the single-input planar switched system (2).
For each switching mode we denote the state
transformation matrix, which converts it to the
canonical form, by Ci, i¼ 1, . . . ,N. That is, let

zi ¼ Cix, i ¼ 1, . . . ,N:

Then the ith mode _x ¼ Aixþ biu, when expressed into
zi coordinates, is in the Brunovsky canonical form.

Set Ti ¼ C1C
�1
iþ1, i ¼ 1, . . . ,N� 1: Ti is the state

transformation matrix from ziþ1 to z1, that is

z1 ¼ C1x ¼ C1C
�1
iþ1ziþ1 ¼ Tiziþ1:

Next, we classify Ti ¼ ðt
i
j;kÞ into three categories:

Sp ¼ fi2�jti21t
i
22 > 0g; Sn ¼ fi2�jti21t

i
22 < 0g;

Sz ¼ fi2�jti21t
i
22 ¼ 0g:

Then �¼Sp[Sn[Sz. Next, for i 2 Sz, we define

ci ¼ ti12t
i
21 þ ti11t

i
22, di ¼ ti11t

i
12:

and a linear form as

Li ¼ cixþ di, i2Sz:

For i 2 Sp[Sn , we define

ai ¼
ti11
ti21

, bi ¼
ti12
ti22

,

and a quadratic form as

Qi ¼ x2 þ ðai þ biÞxþ aibi:

According to Lemma 6, we may solve x from

QiðxÞ5 0, i2Sn; QiðxÞ4 0, i2Sp;

LiðxÞ4 0, i2Sz:

Proposition 3: Let (A, b) be a canonical planar

system, i.e.,

_x ¼
0 1
a1 a2

� �
xþ

0
1

� �
u

and

M ¼
m1 m2

m2 m3

� �
> 0

be weakly canonical-friend (i.e. m2� 0). To make xTMx

a weakly quadratic Lyapunov function of the closed-loop

system, a feedback control can be chosen as

u ¼ kx ¼

�� a1;
�m3 �m1

m2
� a2

� �
x, m2 > 0,

�
m1

m3
� a1, �

m1

m3
� a2

� �
x, m2 ¼ 0,

8>><
>>:

where �5 0 can be any negative real number.

Theorem 5: The closed-loop system of (2) has a

common WQLF, iff there exists a non–negative x

satisfying

max
i2Sn

QiðxÞ5 0, min
i2Sp

QiðxÞ � max
i2Sn

QiðxÞ,

LiðxÞ � 0, i2Sz: ð12Þ

Proof: Assume there is a WQLF in z1 coordinates,

which is expressed as

M1 ¼
m1 m2

m2 m3

� �
> 0:

Suppose ~M1 ¼ TTM1T and set

Hðm1,m2,m3Þ :¼ ~m12 ¼ t21t22m3

þ ðm12t21 þ t11t22Þm2 þ t11t12m1:

Without loss of generality, we assume

m1¼ 1.Then according to Lemma 5, m2� 0. It is easy

to see from the proof of Lemma 6 thatM1 is a common

WQLF for the other modes, iff Hi(1,m2,m3)� 0,

i¼ 1, . . . ,N� 1, which leads to

m3 þ ðai þ biÞm2 þ aibi � 0, i2Sp;

m3 þ ðai þ biÞm2 þ aibi � 0, i2Sn;

cim2 þ di � 0, i2Sz:

9>>>=
>>>;

ð13Þ
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Since m3 > m2
2, we can rewrite the first two

inequalities as

eþm2 þ ðai þ biÞm2 þ aibi � 0, i2Sp; ð14Þ

eþm2 þ ðai þ biÞm2 þ aibi � 0, i2Sn, ð15Þ

where e4 0. The necessity of (12) is obvious. As for

sufficiency, assume there exists a non–negative solution

x such that the inequalities in (12) hold. If

mini2Sp
QiðxÞ � 0, then we can choose m2¼ x and

m3¼x2þ ". As "4 0 is small enough, (13) is satisfied.
If w ¼ mini2Sp

QiðxÞ < 0, we can choose m2¼ x and

m3 ¼ x2 þ 1=2ðmini2Sp
QiðxÞ �maxi2Sn

QiðxÞÞ � w:
It is easy to see that for such a choice (14) and (15)

hold. Hence the matrix

M1 ¼
1 m2

m2 m3

� �

meets the requirement. œ

Corollary 1: The closed-loop system of (2) has a

common WQLF, iff the following set of linear inequal-

ities have a solution:

minf�aj, �bjg5 x5 maxf�aj, �bjg, j2Sn,

ðai þ bi � aj � bjÞxþ aibi � ajbj � 0, i2Sp, j2Sn,

cixþ di � 0, i2Sz,

x � 0:

Lemma 7: Let Q¼�CTC, where C is an approriate

matrix. Then (C, Ã) is observable if we choose the

feedback control u as in Proposition 3.

Proof: According to Lemma 5, we have

~A ¼ Aþ bK :¼
0 1

� �

� �
,

Q :¼ ~ATMþM ~A¼
2�m2 1þ�m3þ�m2

1þ�m3þ�m2 2ðm2þ�m3Þ

� �
¼�CTC� 0:

Case 1: m24 0.

In this case, we can choose �5 0 and

� ¼ ð�m3 � 1Þ=m2. After a simple computation, we

have Q5 0. It is obvious that

rank
C
C ~A

� �
¼ 2,

i.e., (C, Ã) is observable.

Case 2: m2¼ 0.
We can choose � ¼ �ð1=m3Þ and � ¼ �ð1=m3Þ,

then

Q ¼
0 0

0 �2

 !
¼ �

0ffiffiffi
2
p

 !
0

ffiffiffi
2
p� �
¼ �CTC � 0:

Thus,

rank
C

C ~A

� �
¼ rank

0 1

� �

� �
¼ rank

0 1

�
1

m3
�

1

m3

0
@

1
A¼ 2,

and therefore (C, Ã) is observable. œ

Using Theorem 5 and Lemma 7, it is easy to prove the
following theorem.

Theorem 6: For system (2), the weak quadratic
stabilisation problem is solvable, if the conditions in
Theorem 5 are satisfied.

Example 2: Consider the following switched system

_x ¼ A�ðtÞxþ b�ðtÞu�ðtÞ, ð16Þ

where �(t): [0þ1)! {1, 2, 3}, x 2 R
2 with switching

modes as

A1 ¼
0 1

1 0

" #
; b1 ¼

0

1

" #
;

A2 ¼
�1 0

0 1

" #
; b2 ¼

1

2

" #
;

A3 ¼
0 �1

3 �4

" #
; b3 ¼

0

1

" #
:

Suppose z1, z2 and z3 are canonical coordinates of
modes 1, 2, 3 respectively. That is, under zi, mode i has
Brunovsky canonical form. Let zi¼Cix, i¼ 1, 2, 3.
Using Lemma 4, we can get Ci as

C1 ¼ I2, C2 ¼

�
1

2

1

4
1

2

1

4

0
B@

1
CA, C3 ¼

�1 0

0 1

� �

Then the state transformation matrices between z1
and zi, i¼ 2, 3, determined by Ti ¼ C1C

�1
iþ1, i¼ 1, 2, are

obtained as

T1 ¼
�1 1

2 2

� �
, T2 ¼

�1 0

0 1

� �
:

After a simple computation, we have 1 2 Sp and
a1 ¼ �ð1=2Þ, b1 ¼ ð1=2Þ; 2 2 Sz and c1¼�1, d1¼ 0.
Using Corollary 1, inequalities (14) and (15), we have
x¼ 0, e � ð1=4Þ. Then we can choose x¼ 0 and e¼ 2.
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Setting m2¼ x, m3¼ x2þ e, we have

M1 ¼
1 0
0 2

� �
:

Now converting (Ai, bi) to zi, i¼ 1, 2, 3 coordinates,

we have

~A1 ¼
0 1

1 0

" #
; ~b1 ¼

0

1

" #
;

~A2 ¼
0 1

1 0

" #
; ~b2 ¼

0

1

" #
;

~A3 ¼
0 1

�3 �4

" #
; ~b3 ¼

0

1

" #
:

To get feedback control law, we need to convert M1

into z2 and z3 frames as

M2 ¼ T1
TM1T1 ¼

9 7
7 9

� �
, M3 ¼

1 0
0 2

� �
:

Using Proposition 3, the feedback controls can be

chosen as follows:

k1 ¼ �
3

2
, �

1

2

� �
, k2 ¼ �2, �

18

7

� �
, k3 ¼

5

2
,
7

2

� �
:

Then in the original coordinates x we have

K1 ¼ �
3

2
, �

1

2

� �
,K2 ¼ �

2

7
, �

8

7

� �
,K3 ¼ �

5

2
,
7

2

� �
:

Getting M1 back to the original coordinates x as

M0 ¼ C1
TM1C1 ¼

1 0
0 2

� �
,

we have

M0ðA1 þ b1K1Þ þ ðA1 þ b1K1Þ
TM0 ¼

0 0

0 �2

 !
� 0,

M0ðA2þb2K2Þþ ðA2þb2K2Þ
TM0¼

�
18

7
�
16

7

�
16

7
�
36

7

0
BB@

1
CCA< 0,

M0ðA3 þ b3K3Þ þ ðA3 þ b3K3Þ
TM0 ¼

0 0

0 �2

� �
� 0:

Consequently, there is a common WQLF of the three

modes. According to Lemma 7, the observability of

every mode is assured.
According to LaSalle’s invariance principle

of switched systems in Theorem 1, system (16) is

uniformly asymptotically stabilised by the linear state
feedbacks.

5. Conclusion

In this paper, the uniformly asymptotical stability
and stabilisation of planar switched systems were
investigated via common WQLF. First, it was
proved that for a switched linear system a common
WQLF is enough to assure the UAS. Then the
existence of a common WQLF for a set of stable
matrices was studied, and necessary and sufficient
conditions were obtained. Secondly, we consider the
problem of UASZ of single-input planar switched
linear systems. A necessary and sufficient condition
for system with proper linear feedbacks to have
a common WQLF was obtained. It was also shown
that the existence of common WQLF assures the
UASZ. Some examples were presented to illustrate
the results.

The first part of the work can be extended to
higher dimensional systems. To extend the second part
of the work to higher dimensional case is a difficult
work, which is left for further study. Similar to Xie
et al. (2004), the second part of the work could be
extended to discrete-time case.
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