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This paper considers the normal form of non-linear control systems. First we propose a generalized relative degree
(relative degree vector) for non-linear single (respectively, multiple) input control system, which is called the point relative
degree (respectively, point relative degree vector). For the systems without output, the concepts of essential relative
degree (respectively, essential relative degree vector) and the essential point relative degree (respectively, essential point
relative degree vector) are defined. Unlike the classical definition which requires regularity, the point relative degree
(vector) is always well defined.

Using these new concepts the generalized normal form is obtained. Its relationship with the Jacobian linearization is
investigated. Using it, a straightforward computation algorithm is provided to achieve the generalized normal form.

Based on the generalized normal form we prove that with an additional condition, if the zero-dynamics is stable the
overall system is stabilizable by using pseudo-linear state feedback control.

For the systems under generalized normal form with unstable zero dynamics, the centre manifold approach is applied.
It is shown that the stabilization technique via a designed centre manifold is still applicable to this kind of general non-
linear control system.

1. Introduction

The stabilization problem of control systems is one

of the most fundamental topics in control theory. The

centre manifold theory has been used to solve the stabil-

ization problem of Aeyels (1985) and Behtash and

Dastry (1988). The concept of minimum phase zero

dynamics and its fundamental results provide a systema-

tic method to solve the problem (Byrnes et al. 1991,

Isidori 1995). A convenient way to use this method is

to convert the control system into a canonical form.

Then the zero dynamics can be obtained directly. So

this approach is closely related to the canonical form

of non-linear control systems. We briefly review this

approach.

Consider a non-linear control system

_xx ¼ f ðxÞ þ
Xm
i¼1

giðxÞui :¼ f ðxÞ þ gðxÞu; x 2 R
n; u 2 Rm

y ¼ hðxÞ; y 2 Rm

9>>=
>>;

ð1Þ

where f ðxÞ and giðxÞ are smooth vector fields and

f ð0Þ ¼ 0, gð0Þ has full column rank.

A non-linear normal form, called the Byrnes–Isidori

normal form in some literature, plays a fundamental

role in non-linear control (Isidori 1995). First, we recall

some basic concepts related to this normal form.

Assume there exists a neighbourhood U of the origin
and a vector � ¼ ð�1; . . . ; �mÞ of positive integers, such
that

LgL
k
f hiðxÞ ¼ 0; x 2 U; k < �i � 1

LgL
�i�1
f hið0Þ 6¼ 0; i ¼ 1; . . . ;m

9=
; ð2Þ

then ð�1; � � � ; �mÞ is called the relative degree vector.
When SISO systems are considered, the relative

degree vector is degenerated to relative degree, which
is defined as a particular case of (2) for m ¼ 1.

Using the relative degree vector, the decoupling
matrix, WðxÞ, is defined as

WðxÞ ¼

Lg1
L
�1�1
f h1ðxÞ � � � LgmL

�1�1
f h1ðxÞ

..

.

Lg1
L
�m�1
f hmðxÞ � � � LgmL

�m�1
f hmðxÞ

0
BBBB@

1
CCCCA

¼

dL
�1�1
f h1ðxÞ

..

.

dL
�m�1
f hmðxÞ

0
BBBB@

1
CCCCAgðxÞ ð3Þ

The last equality in (3) is an immediate consequence of
the definition of the Lie derivative. It is important in
later discussion.

For system (1) we give two fundamental assump-
tions:

H1. Wð0Þ is invertible;
H2. g1ð0Þ; . . . ; gmð0Þ are linearly independent and

SpanfgðxÞg is involutive near the origin.

Remark: In SISO case, the decoupling matrix be-
comes a scalar, WðxÞ ¼ LgL

��1
f hðxÞ. By the definition
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of relative degree, Wð0Þ 6¼ 0. Moreover, a distribution
spanned by a single vector is always involutive. There-
fore, for SISO systems the assumptions H1 and H2 are
automatically satisfied.

Theorem 1 (Byrnes and Isidori 1988): For system (1)
assume the relative degree vector is well defined at the
origin and the assumptions H1 and H2 hold, then there
exists a local coordinate transformation ðz; �Þ ¼
ðzðxÞ; �ðxÞÞ with zð0Þ ¼ 0 and �ð0Þ ¼ 0, such that system
(1) can be expressed locally around the origin as

_zzi1 ¼ zi2

..

.

_zzi�i�1 ¼ zi�i

_zzi�i ¼ ciðz; �Þ þ diðz; �Þu i ¼ 1; . . . ;m

_�� ¼ pðz; �Þ; � 2 R
n�k�k

yi ¼ zi1; i ¼ 1; . . . ;m

9>>>>>>>>>>>=
>>>>>>>>>>>;

ð4Þ

where

k�k ¼
Xm
i¼1

�i;

diðz; �Þ ¼ ðdi1ðz; �Þ; . . . ; dimðz; �ÞÞ; i ¼ 1; . . . ;m

In some later literature this normal form is called the
Byrnes–Isidori normal form. Based on the theory of
centre manifold (Carr 1981), a useful stabilization result
is the following.

Proposition 1 (Byrnes et al. 1991, Isidori 1995): If
system (4) has minimum phase, i.e.

_�� ¼ pð0; �Þ ð5Þ

is asymptotically stable at the origin, then the system is
stabilizable via a pseudo-linear control

u ¼ �
d1

..

.

dm

0
B@

1
CA

�1
c1

..

.

cm

0
B@

1
CAþ

d1

..

.

dm

0
B@

1
CA

�1

X�1

j¼1

a1
j z

1
j

..

.X�m
j¼1

amj z
m
j

0
BBBBBBB@

1
CCCCCCCA

ð6Þ

Remark:

(1) In (6) aij are chosen such that each linear block is
Hurwitz. Precisely

��i �
X�i
j¼1

aij�
j�1; i ¼ 1; . . . ;m

are Hurwitz polynomials.

(2) In (4), the coefficients of the controls form the
decoupling matrix under the new coordinates
ðz; �Þ, that is

Wðxðz; �ÞÞ ¼
d1

..

.

dm

0
B@

1
CA ¼

d11ðz; �Þ � � � d1mðz; �Þ
..
.

dm1ðz; �Þ � � � dmmðz; �Þ

0
B@

1
CA
ð7Þ

where xðz; �Þ is the inverse coordinate transfor-
mation of ðz; �Þ ¼ ðzðxÞ; �ðxÞÞ.
Equation (7) can be obtained from (4) via a
straightforward computation.

Proposition 1 is an immediate consequence of the
following lemma, which will be used in a later discus-
sion.

Lemma 1 (Isidori 1995, p. 511): Consider a system

_zz ¼ Azþ pðz;wÞ
_ww ¼ f ðz;wÞ

)
ð8Þ

where pð0;wÞ ¼ 0 for all w near 0 and

@p

@z
ð0; 0Þ ¼ 0

If _ww ¼ f ð0;wÞ has an asymptotically stable equilibrium at
w ¼ 0 and A is Hurwitz, then system (8) has an asymp-
totically stable equilibrium at ðz;wÞ ¼ ð0; 0Þ.

This approach via normal form with the relative
degree (vector) and minimum phase property has been
proved as a power tool in dealing with the stabilization
of non-linear control systems, and became a standard
method in this field (Nijmeijer and Van der Schaft 1990,
Isidori 1995, Khalil 1996). But it has some obvious
shortages:

. the relative degree (vector) is not always well
defined because of its regularity requirement;

. it may not provide the largest linearizable sub-
system just because the output is ‘improperly
chosen’;

. the zero dynamics may not have minimum phase.

We give a simple example to describe this.

Example 1: Consider the following system

_xx1 ¼ x2 þ x3
3

_xx2 ¼ x3 þ x2
2x3

_xx3 ¼ x4 þ x2
3x4

_xx4 ¼ u

9>>>>>=
>>>>>;

ð9Þ
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Case 1: Set the output as

y ¼ hðxÞ ¼ sinðx2 þ x2
4Þ ð10Þ

Then

LghðxÞ ¼ 2x4 cosðx2 þ x2
4Þ

Since Lghð0Þ ¼ 0 and there isn’t a neighbourhood, U, of
the origin such that LghðxÞ ¼ 0, x 2 U. So the relative
degree is not defined because of the singularity of the Lie
derivative LghðxÞ at the origin.

Case 2: Set the output as

y ¼ x3 ð11Þ
Since LghðxÞ ¼ 0, Lf ðxÞ ¼ x4 þ x2

3x4 and LgLf hðxÞ ¼
1 þ x3

3 6¼ 0, kxk < 1. The relative degree is 2. So we
can get a linearizable sub-system of dimension dim ¼ 2.

But this is not the largest one. If we choose y ¼ x2,
the relative degree will be 3, then we can get a lineariz-
able sub-system of dimension dim ¼ 3. (Later on we will
see that under the classical definition, y ¼ x2 is the best
choice. But the new modified definition will do better.)

Moreover, consider the output (11) again. According
to the above calculation, we can follow a standard pro-
cedure by now choosing coordinates as

z1 ¼ hðxÞ ¼ x3; z2 ¼ Lf hðxÞ ¼ x4ð1 þ x2
3Þ;

z3 ¼ x1; z4 ¼ x2

and then convert system (9) and (11) into the Byrnes–
Isidori normal form as follows:

_zz1 ¼ z2

_zz2 ¼ 2z1z
2
2

1 þ z2
1

þ ð1 þ z2
1Þu

_zz3 ¼ z4 þ z3
1

_zz4 ¼ z1ð1 þ z2
4Þ

y ¼ z1

9>>>>>>>>>>>=
>>>>>>>>>>>;

ð12Þ

.
The zero dynamics is

_zz3 ¼ z4 ð13Þ
_zz4 ¼ 0 ð14Þ

Obviously, it is not stable at the origin. So the standard
technique for stabilizing minimum phase non-linear
control systems is not applicable. This is obviously a
weakness of the method because system (9) is stabiliz-
able by linear state feedback.

Recently, to overcome the above-mentioned third
shortage of the normal form approach, Cheng (2000)
and Cheng and Martin (2001) considered the stabiliz-
ation of (4) with non-minimum phase. The concept of
a Lyapunov function with a homogeneous derivative
was proposed.

The main motivation of this paper is to overcome the
first and the second shortages as much as possible.
Roughly speaking, since the restrictions of converting
a non-linear control system into the normal form are
rigorous, to apply the normal form analysis to more
general systems, we have to generalize the normal
form to include as many systems as possible.

In this paper the relative degree (vector) is extended
to the essential relative degree to get the largest lineariz-
able sub-system, and then to the (essential) point relative
degree (vector), which is always well defined. Then the
Byrnes–Isidori normal form is generalized to a general-
ized normal form. Finally, the stabilization problem for
generalized norm form is considered. For the case of
minimum phase, a result similar to the one for
Byrnes–Isidori normal form is obtained under an addi-
tional condition. For the case of non-minimum phase,
the technique of Lyapunov function with homogeneous
derivative, developed in Cheng and Martin (2001), is
applied to stabilizing systems.

The rest of the paper is organized as follows. Section
2 extends the relative degree (vector) to an essential and
point relative degree (vector). Section 3 generalizes the
Byrnes–Isidori normal form to get the generalized nor-
mal form. The relationship between the generalized nor-
mal form and the Jacobian linearization is revealed,
which provides a simple way to calculate the generalized
canonical form. Section 4 considers the stabilization of
non-linear systems under the generalized normal form
via a designed centre manifold. Some illustrative ex-
amples are presented in } 5. The last section shows
some conclusions.

2. Essential and point relative degrees

We start with SISO systems. Recalling the definition
of relative degree, it is obvious that the relative degree
depends on the output. When we are only interested in
the state equations, then for the state equation of (1)
with m ¼ 1, renumber it as

_xx ¼ f ðxÞ þ gðxÞu; x 2 R
n ð15Þ

We may look for an auxiliary output hðxÞ such that the
relative degree for the state equation with respect to this
hðxÞ can be the maximum one.

Definition 1: The essential relative degree of (15) is
the largest relative degree related to an arbitrary cho-
sen smooth output function.

It is obvious that the essential relative degree is
closely related to the largest feedback linearizable sub-
system (Marino 1986). Denote by

�i ¼ Spanfg; adf g; . . . ; adi�1
f gg; i ¼ 1; 2; . . . ð16Þ
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The following result is from Isidori (1995) with a slightly
different statement.

Proposition 2 (Isidori 1995): The essential relative de-
gree �e is the largest k, such that on some open neigh-
bourhood U of 0

dimf�kð0ÞgLA ¼ n

dimf�k�1ðxÞgLA ¼ l � n� 1; x 2 U

)
ð17Þ

where f�iðxÞgLA is the Lie-algebra generated by �iðxÞ.

From differential geometry (Boothby 1986) we know
that since gð0Þ 6¼ 0, �1 is always non-singular and invo-
lutive locally. That means, the essential relative degree
�e of the system (15) is always greater than or equal to 1.

Consider ð f ; gÞ 2 VðRnÞ 
 VðRnÞ, where VðRnÞ is
the space of C1 vector fields on R

n. Now if we use
Whitney C1 topology to VðRnÞ (Golubitsky and
Guillemin 1973), it is easy to see that the set of ð f ; gÞ
satisfying (17) is a zero measure set. That means only a
zero measure set of SISO systems have non-trivial essen-
tial relative degree. (But we should not be too pessimis-
tic, because many practically useful dynamic systems do
have non-trivial essential relative degree.)

We give the following definition about the point rela-
tive degree. A more or less related concept may be found
in Xia and Gao (1997).

Definition 2:

(1) For system (1) with m ¼ 1, the point relative
degree �p at the origin is defined as

LgL
k
f hð0Þ ¼ 0; k < �p � 1

LgL
�p�1
f hð0Þ 6¼ 0

9=
; ð18Þ

(2) For system (15) the essential point relative
degree is the point relative degree for an auxili-
ary output hðxÞ such that the point relative
degree for (15) with respect to this hðxÞ, denoted
by �ep, is the maximum one.

We give a simple example to describe these concepts.

Example 2: Recall system (9). Assume the output is

y ¼ x4e
x
1 ð19Þ

According to the definitions, a straightforward compu-
tation shows that the different relative degrees at the
origin are as follows.

(1) Since Lgyð0Þ 6¼ 0, the relative degree is � ¼ 1.

(2) Since Spanfg; adf gg is non-singular and involu-
tive, moreover �3 is not involutive and
dimf�3gLA ¼ 4, the essential relative degree is
�e ¼ 3. One of the corresponding h is hðxÞ ¼ x2.

(3) The point relative degree is also �p ¼ 1. In fact, it
follows from the definition that if the relative
degree is well defined at a point, then the point
relative degree should be the same as the relative
degree.

To tell the difference between relative degree
and the point relative degree, we now assume the
output is

y ¼ sinðx2 þ x2
4Þ ð20Þ

Then it is ready to verify that with this output
the relative degree of the composed system of
(19) and (20) is not defined. But the point relative
degree is �p ¼ 3.

(4) Now if we choose hðxÞ ¼ x1, it is easy to check
that the essential point relative degree for the
composed system of (19) and this output is
�ep ¼ 4.

Now we turn to the MIMO case. Denote the state
equation of (1) as

_xx ¼ f ðxÞ þ gðxÞu; x 2 R
n; u 2 R

m ð21Þ

Definition 3:

(1) For system (1) the point relative degree vector
ð�1; . . . ; �mÞ is defined as

LgL
k
f hið0Þ ¼ 0; k < �i � 1

LgL
�i�1
f hð0Þ 6¼ 0; i ¼ 1; . . . ;m

9=
; ð22Þ

(2) The essential relative degree vector,
�e ¼ ð�e1; . . . ; �emÞ, (the essential point relative
degree vector, �ep ¼ ð�ep1 ; . . . ; �

ep
m Þ) , for the state

equation (21) is defined as the largest one of
relative degree (respectively, point relative
degree), ��, for all possible auxiliary outputs,
which makes the decoupling matrix, W�e (respec-
tively, W�ep ), non-singular. That is

k��ek ¼
Xm
i¼1

��e
i
¼ maxfk�ek jW�e is non-singularg;

ð23Þ

and

k��epk ¼
Xm
i¼1

��epi ¼ maxfk�epk jW�ep is non-singularg

ð24Þ

Motivated by the equation (19), we may ask that if
system (15) has the essential point relative degree �ep

(relative degree vector �ep ¼ ð�ep1 ; . . . ; �
ep
m Þ), can we

always find a canonical controllable linear part with
dimension �ep (or k�epk for multi-input case)?
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The answer is ‘yes’. In fact, in the next section we will
use the essential point relative degree to convert the state
equation of system (1) into a so-called the generalized
normal form, which has the largest linearly controllable
subsystem of dimension k�epk.

Remark: Later on, we will show that the essential
point relative degree (vector) always exists. But in the
multi-input case we still do not know whether the es-
sential (point) relative degree vector is unique.

3. Generalized normal form

Definition 4: For system (1) the following form is
called the generalized normal form

_zzi ¼ Aiz
i þ biui þ

0

�iðz;wÞ

 !
þ piðz;wÞu; zi 2 R

�i

i ¼ 1; . . . ;m

_ww ¼ qðz;wÞ; w 2 R
r

yi ¼ zi1; i ¼ 1; . . . ;m

9>>>>>>>>=
>>>>>>>>;

ð25Þ

where rþ
Pm

i¼1 �i ¼ n, �iðz;wÞ are scalars, piðz;wÞ are
�i 
m matrices, qðz;wÞ is a r
 1 vector field, and
ðAi; biÞ are Brunovsky canonical form in R

�i with the
form

Ai ¼

0 1 � � � 0

. .
.

0 0 � � � 1

0 0 � � � 0

0
BBBB@

1
CCCCA; bi ¼

0

..

.

0

1

0
BBBB@

1
CCCCA

and pið0; 0Þ ¼ 0.

Comparing (25) with (4), the only difference between
them is that in (4) gi ¼ ð0 � � � 0 diðx; zÞÞT, i ¼ 1; . . . ;m,
and in (25) there exist piðz;wÞ which are higher degree
input channels.

The following proposition is essential for SISO nor-
mal form.

Proposition 3: If system (1) with m ¼ 1 has point
relative degree r ¼ �p at x ¼ 0, then there exists a suita-
ble local coordinate change, which converts system (1)
into system (25).

Proof: We first claim that dhð0Þ; . . . ; dLr�1
f hð0Þ are

linearly independent. Let ci be real numbers such that

Xr
i¼1

cidL
i�1
f hð0Þ ¼ 0

constructing a one-form ! ¼
Pr

i¼1 cidL
i�1
f hðxÞ, we have

Lg! ¼
Xr
i¼1

ciLgL
i�1
f hðxÞ:

Then

0 ¼ Lg!ð0Þ ¼
Xr
i¼1

ciLgL
i�1
f hð0Þ ¼ crLgL

r�1
f hð0Þ

By definition LgL
r�1
f hð0Þ 6¼ 0, so cr ¼ 0. So now

! ¼
Pr�1

i¼1 cidL
i�1
f hðxÞ. Considering LgLf! in a similar

way, it follows that cr�1 ¼ 0. Continuing this procedure,
we finally have that all ci ¼ 0, i ¼ 1; . . . ; r, which proves
the claim. Now we can choose partial coordinate vari-
ables as ðz1; . . . ; zrÞ ¼ ðh;Lf h; . . . ;L

r�1
f hÞ. Then we can

locally find n� r functions w1; . . . ;wn�r such that ðz;wÞ
is a set of local coordinate variables. Moreover, since
LgL

r�1
f hð0Þ 6¼ 0, w can be chosen in such a way that

Lgwi ¼ 0; i ¼ 1; . . . ; n� r

Under this coordinate frame we can, through a straight-
forward computation, convert the original system into

_zz1 ¼ z2 þ Lghðz;wÞu

..

.

_zzr�1 ¼ zr þ LgL
r�2
f hðz;wÞu

_zzr ¼ Lr
f hþ LgL

r�1
f hðz;wÞu

_ww ¼ qðz;wÞ

y ¼ z1

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

ð26Þ

which is the generalized normal form as (25) with
m ¼ 1. &

An immediate consequence is the following:

Proposition 4: Assume system (15) has an essential
point relative degree r ¼ �ep at the origin, then it can be
expressed as the state equations of (26).

We will call the state equations of (25) the general-
ized normal state form.

Proposition 5: Consider system (1).

(1) Assume H1 and H2 and if the system has point
relative degree vector �p ¼ ð�1; . . . ; �mÞ, then
there exists a local coordinate frame such that
the system can be converted into the generalized
normal form (25).

(2) Assume H2 and if system (21) has essential point
relative degree vector �ep ¼ ð�1; . . . ; �mÞ, then
there exists a local coordinate frame such that
the system can be converted into the generalized
normal state form as the state equation of (25).
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Proof: We prove (1). Then (2) is an immediate conse-
quence of (1).

Similar to the SISO case, we assumeXm
i¼1

X�i
j¼1

ci; jdL
j�1
f hið0Þ ¼ 0

and define

!ðxÞ ¼
Xm
i¼1

X�i
j¼1

ci; jdL
j�1
f hiðxÞ

From

Lgk!ð0Þ ¼ 0; k ¼ 1; . . . ;m

we can get

Wð0Þ
c1�1

..

.

cm�m

0
B@

1
CA ¼ 0

By assumption H1, ci�i ¼ 0, i ¼ 1; . . . ;m. Keep going as
for the SISO case yields that all cij ¼ 0. Hence we can
choose hi;Lf hi; . . . ;L

�i�1
f hi, i ¼ 1; . . . ;m as part of coor-

dinate variables.
Recall H2, we know that G :¼ SpanfgðxÞg is an

involutive distribution of dimension m. According to
the Frobinius’ Theorem (Boothby 1986)), there exist
n�m functions �1; . . . ; �n�m, such that

G? ¼ Spanfd�i j i ¼ 1; . . . ; n�mg
Denote

O ¼ SpanfdLj
f hi j i ¼ 1; . . . ;m; j ¼ 0; . . . ; �i � 1g

and � ¼
Pm

i¼1 �i. Since Wð0Þ is non-singular and recall-
ing the last equality of (3), it is clear than

dimðO \ G?Þ � ��m

In fact, since � co-vectors in O are linearly indepen-
dent, the ‘�’ should be ‘¼’. We, therefore, are able to
choose ðn�mÞ � ð��mÞ ¼ n� � :¼ r closed one-forms
from G?, which are linearly independent with O. Say,
they are dw1; . . . ; dwr.

Now we can use Lj
f hi, i ¼ 1; . . . ;m, j ¼ 0; . . . ; �i � 1

and wk, k ¼ 1; . . . ; r as a complete set of coordinate vari-
ables. Then a straightforward computation for coordi-
nate transformation shows that under this coordinate
frame system (1) becomes (25). &

In fact, everybody believes that the essential relative
degree (vector) is much better than the relative degree
(vector), because it can provide the largest linear part.
The problem is the relative degree (vector) can provide
the required coordinate variables by using output (out-
puts) and its (their) Lie derivatives. But to get the
required coordinate variables, which convert the system
into the canonical form with largest linear part, we have

to solve a set of partial differential equations. So it is not
practically applicable.

One of the significant advantages of the essential
point relative degree is that it is easily computable,
and then the related generalized normal form, which
contains the largest linear part, can be obtained via
straightforward computation. We construct it in the
rest of this section.

For SISO systems, we show an analogue to
Proposition 2 for essential point relative degree.

Proposition 6: Let �i be defined as in (16). The essen-
tial point relative degree �ep is the largest k, such that

dimð�ið0ÞÞ ¼ i; i � k ð27Þ

Proof: Assume k is the largest one for (27) to be true.
Then we can find a local coordinate frame z such that

gð0Þ; . . . ; adk�1
f gð0Þ

� �
¼

Ik

0

� �
Now choose hðzÞ ¼ zk. It follows that Lghð0Þ ¼ 0, and

LgLf hð0Þ ¼ Ladf ghð0Þ � Lf Lghð0Þ

Since Lghð0Þ ¼ 0 and f ð0Þ ¼ 0, then Lf Lghð0Þ ¼ 0. It
follows that LgLf hð0Þ ¼ 0. Similarly, LgL

i
f hð0Þ ¼ 0,

i < k� 1. We also have LgL
k�1
f hð0Þ 6¼ 0. As an immedi-

ate consequence of the definition, k � �ep. Conversely,
assume the system has the essential point relative degree
�ep, then the system has the form as (26). Through a
straightforward computation one sees easily that ð27Þ
holds for �ep. Hence k � �ep. We conclude that
k ¼ �ep. &

For MIMO system (21), we denote

A ¼ @f

@x
ð0Þ; B ¼ ðb1; . . . ; bmÞ ¼ gð0Þ

Then a set of linear subspaces can be defined as

�i ¼ SpanfB;AB; . . . ;Ai�1Bg; i ¼ 1; 2; . . .

Assume �k is the controllable subspace of ðA;BÞ. We
can arrange the bases of �i, i ¼ 1; . . . ; k in table 1 (with
k1 ¼ k).

The vectors in the table are linearly independent.
Moreover, the vectors in the first i columns form the
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�1 �2 �k

b1 Ab1 � � � Ak1�1b1

b2 Ab2 � � � Ak2�1b2
..
.

bm Abm � � � Akm�1bm

Table 1. The bases of �i.



basis of �i. It is very easy to get the table by choosing
linearly independent vectors column by column. To
assure that k1 � k2 � � � � � km, we may need to reorder
gi.

Proposition 7: For system (21), ðk1; . . . ; kmÞ is an es-
sential point relative degree vector.

Proof: First we choose a linear transformation to
convert the linear part of (21), say ðA;BÞ, into canoni-
cal form as

_xxi1 ¼ xi2 þ �i
1ðxÞ þ 
i1ðxÞu

..

.

_xxiki�1 ¼ xiki þ �i
ki�1ðxÞ þ 
iki�1ðxÞu

_xxiki ¼ �i
ki
ðxÞ þ 
ikiðxÞu

i ¼ 1; . . . ;m

_xxmþ1 ¼ pðxÞ þ qðxÞu

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

ð28Þ

where �i
jð0Þ ¼ 0, j ¼ 1; . . . ; ki, @�i

j=@x
k ¼ 0, j ¼

1; . . . ; ki � 1, k ¼ 1; . . . ;m, and 
ijð0Þ ¼ 0, j ¼
1; . . . ; ki � 1, i ¼ 1; . . . ;m.

Choosing yi ¼ zi1, it is easy to see that the essential
point relative degrees are �i ¼ ki and the decoupling
matrix is non-singular. Hence,

k�epk �
Xm
i¼1

ki

Conversely, let �ep ¼ ð�1; . . . ; �mÞ be a point relative
degree vector with a non-singular decoupling matrix,
then from Proposition 5, system (21) can be expressed
as (25). Then its Jacobian linearization has a controlla-
ble subsystem of dimension k�pk. But k1 þ � � � þ km is
the dimension of the controllable subspace of the
Jacobian linearization of system (21), then
k� pk � k1 þ � � � þ km. Therefore

k�epk ¼ k1 þ � � � þ km &

Next, we show how to get the pseudo-normal
form.

For (28), we choose x1
1, . . ., x1

m as the auxiliary out-
puts to generate part of new coordinates z. Precisely
speaking, set

z1
1 ¼ x1

1; � � � ; z1
�1
¼ L

�1�1
f x1

1; � � �

zm1 ¼ x1
m; � � � ; zm�m ¼ L

�m�1
f xm1

And then, as in the proof of Proposition 7, we can
choose r ¼ n� � function �i, i ¼ 1; . . . ; r, such that on
a neighbourhood U of origin

Lgj�iðxÞ ¼ 0; x 2 U; j ¼ 1; . . . ;m; i ¼ 1; . . . ; r:

Moreover, ðz; �Þ is a new local coordinate frame.

Then we express the system into this new coordinate
frame ðz; �Þ. It becomes the pseudo-normal form as

_zzi1 ¼ zi2 þ 
i1ðz; �Þv

..

.

_zzi�i�1
¼ zi�i þ 
i�i�1ðz; �Þv

_zzi�i ¼ ciðz; �Þ þ diðz; �Þv

zi 2 R
�i ; i ¼ 1; . . . ;m;

_�� ¼ qðz; �Þ; � 2 R
r

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

ð29Þ

where cið0; 0Þ ¼ 0, 
ijð0; 0Þ ¼ 0, j ¼ 1; . . . ; �i � 1,
i ¼ 1; . . . ;m, and qð0; 0Þ ¼ 0.

4. Stabilization

Now we consider the stabilization problem for the
systems of generalized normal form. Recall system (25),
we assume

H3. �ið0;wÞpið0;wÞ ¼ 0, i ¼ 1; . . . ;m.

Using Lemma 1, the following stabilization property
is obvious, which is a generalization of its counterpart
Proposition 1 for Byrnes–Isidori normal form.

Proposition 8: Assume H3. For the generalized normal
state form (state equation of (25)) if the pseudo-zero
dynamics

_ww ¼ qð0;wÞ ð30Þ

is asymptotically stable at zero, then (25) is stabilizable by
a pseudo-linear state feedback control.

Proof: Choosing

ui ¼ ai1z
i
1 þ � � � þ ai�i z

i
�i � �iðz;wÞ; i ¼ 1; � � � ;m

the closed-loop system becomes

_zzi ¼ Aiz
i þ piðz;wÞuðz;wÞ :¼ Aiz

i þ �iðz;wÞ

i ¼ 1; . . . ;m

_ww ¼ qðz;wÞ

9>>=
>>; ð31Þ

According to H3, �ið0;wÞ ¼ 0, i ¼ 1; . . . ;m. Using
Lemma 1, if we can prove ð@�i=@zÞð0; 0Þ ¼ 0 we are
done. Note that �ið0; 0Þ ¼ 0 and pið0; 0Þ ¼ 0, the con-
clusion follows. &

Proposition 8 may give some reason for proposing
the point relative degree.

Next, we consider the case when the system is of
non-minimum phase. Recall the generalized normal
form
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_zzi ¼ Aiz
i þ biui þ

0

�iðz;wÞ

 !
þ piðz;wÞu; zi 2 R

�i

i ¼ 1; . . . ;m

_ww ¼ qðz;wÞ; w 2 R
r

9>>>>>=
>>>>>;

ð32Þ
where pið0; 0Þ ¼ 0, �ið0; 0Þ ¼ 0, and ðAi; biÞ have
Brunovsky canonical form. We discussed in a previous
section that under the assumption H2 any affine non-
linear system can be locally expressed as (32). In fact
(32) is nothing but the state equation of (25).

For the non-minimum phase case, we need another
assumption.

H4. qðz;wÞ with its first order derivatives vanish at
the origin.

In fact, the canonical form (32) is not unique, but if
we assume another coordinate frame ð~zz; ~wwÞ is such that
system (32) keeps its structure unchanged. Then it is
easy to see that the Jacobian matrix

J~zz;~wwð0Þ ¼
J11 J12

0 J22

� �
Then it is easy to see that the assumption H4 is indepen-
dent of the different coordinate frames.

The assumption H4 means that the zero dynamics
has zero linear part. It is sometimes called that the
system has zero centre. In fact a necessary condition
for the stabilizability is that the zero dynamics should
have its linear part with zero real part eigenvalues.

In the following the notations and conventions used
in Cheng and Martin (2001) will be inherited. We briefly
give the following:

. z1 ¼ ðz1
1; z

2
1; . . . ; z

m
1 Þ,

�zz1 ¼ ðz1
2; . . . ; z

1
�1
; . . . ; zm2 ; . . . ; z

m
�mÞ

. For a multi-index, say T ¼ ðt1; . . . ; trÞ

kTk ¼
Xr
j¼1

ti

. Let x ¼ ðx1; . . . ; x�Þ 2 R
�, y ¼ ðy1; . . . ; yrÞ 2 R

r,
K ¼ ðk1; . . . ; k�Þ, and T ¼ ðt1; . . . ; trÞ. Then

xKyT ¼
Y�
i¼1

xkii

Yr
j¼1

y
tj
j

. For an analytic function qðwÞ, the lowest degree of
qðwÞ, denoted by LDðqÞ, is the lowest degree of the
no-vanishing terms of its Taylor expansion.

Then we define the injection degrees as

�i ¼ minf2kKk þ kTk j kKk > 0; zK1 w
T is in qi

with non-zero coefficientg, i ¼ 1; . . . ; r (33)

The leading degrees are defined as

Li ¼
�i; �i is odd;

�i þ 1; �i is even i ¼ 1; . . . ; r

(
ð34Þ

Next, we give an example to explain the above nota-
tions.

Example 3: Consider the system

_xx1 ¼ x2 þ w2
1u1

_xx2 ¼ u1 þ w3
2u2

_xx3 ¼ x4 þ w1 sinðx1Þu1

_xx4 ¼ x2
3u1 þ ew1u2

_ww1 ¼ x1w2 þ w3
2

_ww2 ¼ x4w1 þ x2
3w1w2 þ x2

1x
4
3w1

9>>>>>>>>>>=
>>>>>>>>>>;

ð35Þ

This is a generalized normal form. Now z1 ¼ ðx1; x3Þ,
�zz1 ¼ ðx2; x4Þ. In q1 we have only one term of the form
of zK1 w

T , that is, z1w2. For this term we have K ¼ ð1; 0Þ
and T ¼ ð0; 1Þ, so the injection degree is

�1 ¼ 2kKk þ kTk ¼ 3:

For q2 we have two terms with the injection form:
for z2

3w1w2 we have K ¼ ð0; 2Þ and T ¼ ð1; 1Þ, then
2kKk þ kTk ¼ 6. For the second one z2

1z
4
3w1 we have

K ¼ ð2; 4Þ and T ¼ ð1; 0Þ, so 2kKk þ kTk ¼ 13.
Choosing the smallest one, we have the injection degree

�2 ¼ minf6; 13g ¼ 6

Now for the leading degrees, we have

L1 ¼ �1 ¼ 3; L2 ¼ �2 þ 1 ¼ 7

The motivation is to convert all the dynamics on centre
manifold into an odd leading system.

Definition 5: A system

_wwi ¼ fiðwÞ; i ¼ 1; . . . ; r

is said to be L ¼ ðL1; . . . ;LrÞ approximately asymptoti-
cally stable at the origin, if the corresponding uncertain
system

_wwi ¼ fiðwÞ þ 0ðkwkLiþ1Þ; i ¼ 1; . . . ; r

is asymptotically stable at the origin.
Note that as in Carr (1981) or other centre manifold

applications, we use 0ðkxktÞ for the set (or any) of
smooth functions, f ðxÞ, which have Taylor expansion,
say f ðxÞ ¼

P
i cix

Ki , with

ci ¼ 0; while kKik < t

In other words, any non-vanishing term of the Taylor
expansion of f ðxÞ 2 0ðkxktÞ has degree greater than or
equal to t.
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Theorem 2: For system (32), assume there exist m
homogeneous quadratic functions

�ðwÞ ¼ ð�1ðwÞ; . . . ; �mðwÞÞ

and m homogeneous cubic functions

 ðwÞ ¼ ð 1ðwÞ; . . . ;  mðwÞÞ

such that the following hold:

(1) There exists an integer s > 3, such that

LDðLqð�þ ; 0; : : : ;0|ffl{zffl}
k�k�m

;wÞð�þ  ÞÞ � s ð36Þ

LDðpð�þ  ; 0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
k�k�m

;wÞ�ð�þ  ; 0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
k�k�m

;wÞÞ � s ð37Þ

(2)

LDðqið�þ  ; 0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
k�k�m

;wÞÞ ¼ Li; i ¼ 1; . . . ; r ð38Þ

(3)

_ww ¼ qð�þ  ; 0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
k�k�m

;wÞ ð39Þ

is L ¼ ðL1; . . . ;LrÞ approximately asymptotically stable
at the origin, and

(4)

qiðð�þ  þ 0ðkwksÞ; 0ðkwksÞ; . . . ; 0ðkwksÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
k�k�m

;wÞ

¼ qið�þ  ; 0; � � � ; 0|fflfflfflffl{zfflfflfflffl}
k�k�m

;wÞ þ 0ðkwkLiþ1Þ; i ¼ 1; . . . ; r

ð40Þ

Then the overall system (32) is state feedback
stabilizable.

Note that in the above for notational ease we denote
qðz;wÞ ¼ qðz1; �zz1;wÞ, etc. So

qð�þ  ; 0; � � � ; 0|fflfflfflffl{zfflfflfflffl}
k�k�m

;wÞ

means z1 ¼ �þ  and �zz1 ¼ 0.

Proof: In fact it is a particular case of the general re-
sults in Cheng and Martin (2001). We just outline the
proof. Choosing control as

ui ¼ ��iðz;wÞ

þ ai1z
i
1 þ � � � þ ainz

i
�i � ai1ð�iðwÞ þ  iðwÞÞ

� �
;

i ¼ 1; . . . ;m ð41Þ

and using

z1 ¼ �ðwÞ þ  ðwÞ
�zz1ðwÞ ¼ 0

)
ð42Þ

as the approximation of the centre manifold of the
closed-loop system. Then the approximation error is

@z

@w
qðzðwÞ;wÞ �

Aiz
iðwÞ þ biuiðzðwÞ;wÞ þ

0

�iðzðwÞ;wÞ

� �
þ piðzðwÞ;wÞuðzðwÞ;wÞ

i ¼ 1; . . . ;m

0
@

1
A

¼ @z

@w
qðzðwÞ;wÞ þ pð�ðwÞ þ  ðwÞ; 0; . . . ; 0|fflfflfflffl{zfflfflfflffl}

k�k�m

;wÞ�ð�ðwÞ þ  ðwÞ; 0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
k�k�m

;wÞ

¼ 0ðkwksÞ
Note that the first term is Lqð�þ ;0;���;0;wÞð�þ  Þ. So (36)
and (37) assure that the approximation error is of
0ðkwksÞ. That is the true centre manifold equation can
be expressed as

z1 ¼ h1ðwÞ ¼ �ðwÞ þ  ðwÞ þ 0ðkwksÞ

z2 ¼ h2ðwÞ ¼ 0ðkwksÞ

)
ð43Þ

Now according to (40), the 0ðkwksÞ centre manifold
approximation error does not affect the leading degree
terms of each equations of the dynamic equations of the
centre manifold.

Note that the approximately asymptotical stability
of (39) assures that

_ww ¼ qð�þ  ; 0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
k�k�m

;wÞ þ 0ðkwksÞ ð44Þ

is asymptotically stable at the origin.
Using (43), the true dynamics on the centre manifold

is

_ww ¼ qðh1ðwÞ; h2ðwÞ;wÞ ¼ qð�þ  þ 0ðkwksÞ; 0ðkwksÞ;wÞ
ð45Þ

Recalling (40), one sees that the true dynamics on the
centre manifold, (45), is of the form (44), and therefore it
is asymptotically stable.

Finally, we choose aij such that each linear block is
Hurwitz, i.e.

��i �
X�i
j¼1

aij�
j�1; i ¼ 1; . . . ;m

are Hurwitz polynomials. Then by equivalence theorem
of the centre manifold, the stability of the dynamics on
centre manifold assures the asymptotical stability of the
overall closed-loop system. &
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Remark:

(1) It seems that the condition (38) in the Theorem 2 is
redundant. It is true that this condition is not
necessary for the theorem itself. But in practical
use, we require that the leading degrees are from
the injection degrees and are all odd. In fact, we
can only deal with this kind of systems (Cheng and
Martin 2001).

(2) The control has to be chosen to meet two require-
ments. First of all, for even injection degree sub-
systems, the even leading terms have to be
eliminated. Secondly, the final dynamics for the
approximate centre manifold should be approxi-
mately asymptotically stable.

(3) The technique of Lyapunov function with homoge-
neous derivative (LFHD), developed in (Cheng
and Martin 2001) will be used to designing the
control to assure the approximately asymptotical
stability of the final dynamics on the center mani-
fold.

5. Illustrating examples

The first example demonstrates the algorithm to con-
vert a system into the generalized normal form.

Example 4: Consider a single-input affine non-linear
system

_xx1 ¼ x2 þ x2
3 þ x2

3u

_xx2 ¼ x3 � 2ex3u

_xx3 ¼ ex3u

_�ww�ww1 ¼ �2x1 �ww1 � �ww2
1 �ww2

_�ww�ww2 ¼ � �ww3
2x1 � �ww3

1x3

9>>>>>>>>>=
>>>>>>>>>;

ð46Þ

The system (46) can be approximated by Taylor expan-
sion as

_xx1 ¼ x2 þ x2
3 þ x2

3u

_xx2 ¼ x3 � 2ð1 þ x3Þuþ 0ðkxk2Þu

_xx3 ¼ ð1 þ x3Þuþ 0ðkxk2Þu

_�ww�ww1 ¼ �2x1 �ww1 � �ww2
1 �ww2

_�ww�ww2 ¼ ��ww3
2x1 � �ww3

1x3

9>>>>>>>>>=
>>>>>>>>>;

ð47Þ

Then we take a coordinate change, say

ðx; �wwÞT ¼ Pð~xx; ~wwÞT

where x ¼ ðx1; x2; x3Þ, �ww ¼ ð�ww1; �ww2Þ, ~xx ¼ ð~xx1; ~xx2; ~xx3Þ,
~ww ¼ ð~ww1; ~ww2Þ, the invertible matrix P is

P ¼

1 �2 0 0 0

0 1 �2 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0
BBBBB@

1
CCCCCA

System (47) can be converted into the following form in
which the controllable linear part is expressed as a
Brunovsky canonical form

_~xx~xx1 ¼ ~xx2 þ ~xx2
3 þ 0ðk~xxk2Þu

_~xx~xx2 ¼ ~xx3

_~xx~xx3 ¼ uþ ~xx3uþ 0ðk~xxk2Þu
_~ww~ww1 ¼ �2~xx1 ~ww1 þ 4~xx2 ~ww1 � ~ww2

1 ~ww2

_~ww~ww2 ¼ �~ww3
2~xx1 þ 2~ww3

2~xx2 � ~ww3
1~xx3

9>>>>>>>>>=
>>>>>>>>>;

ð48Þ

According to system (48), it is easy to find a function,
say hðxÞ ¼ ~xx1 ¼ x1 þ 2x2 þ 4x3, and a straightforward
computation to show that the essential point relative
degree of system ð46Þ is �ep ¼ 3, which is equal to the
dimension of the controllable linear part of system (48).
Consequently, we can obtain the generalized normal
form by a non-linear coordinate change.

Denote

f ¼

x2 þ x2
3

x3

0

�2x1 �ww1 � �ww2
1 �ww2

��ww3
2x1 � �ww3

1x3

0
BBBBBB@

1
CCCCCCA; g ¼

x2
3

�2ex3

ex3

0

0

0
BBBBBB@

1
CCCCCCA

A feasible coordinate change is calculated as

ðz;wÞT ¼ ðh;Lf h;L
2
f h; �ww1; �ww2ÞT

¼

x1 þ 2x2 þ 4x3

x2 þ 2x3 þ x2
3

x3

�ww1

�ww2

0
BBBBBBB@

1
CCCCCCCA

where z ¼ ðz1; z2; z3Þ;w ¼ ðw1;w2Þ, and the Jacobian
matrix Jðz;wÞjð0;0Þ is non-singular. Under this coordinate
frame system ð46Þ can be converted into the generalized
normal form as

_zz1 ¼ z2 þ z2
3uþ 0ðkxk3Þu

_zz2 ¼ z3 þ 2z3uþ 2z2
3uþ 0ðkxk3Þu

_zz3 ¼ uþ z3u

_ww1 ¼ �2z1w1 þ 4z2w1 � 4z2
3w1 � w2

1w2

_ww2 ¼ �w3
2z1 þ 2w3

2z2 � 2w3
2z

2
3 � w3

1z3

9>>>>>>>>>=
>>>>>>>>>;

ð49Þ
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It is easy to check that this system is non-minimum.
We use the technique developed in Cheng and Martin
(2001) to stabilize the dynamics on the designed
centre manifold, which then also stabilizes the overall
system.

Note that in system (49) the leading degrees are
L1 ¼ 3, L2 ¼ 5, and the condition H3 holds.
According to (41), the control is constructed as

u ¼ �6z1 � 11z2 � 6z3 þ 12w2
1 þ 6w2

2

Then the linear part of (49) is Hurwitz. Let

’ðwÞ ¼
’1ðwÞ
’2ðwÞ
’3ðwÞ

0
B@

1
CA ¼

2w2
1 þ w2

2

0

0

0
BB@

1
CCA ¼ 0ðkwk2Þ

be used to approximate the centre manifold. Then we
have

M’ðwÞ ¼ D’ðwÞ _ww ¼ 0ðkwk4Þ

According to the approximation theorem (Carr 1981),
the centre manifold can be expressed as

z1 ¼ 2w2
1 þ w2

2 þ 0ðkwk4Þ

z2 ¼ 0ðkwk4Þ

z3 ¼ 0ðkwk4Þ

9>>>=
>>>; ð50Þ

The dynamics on the centre manifold becomes

_ww1 ¼ �4w3
1 � 2w1w

2
2 � w2

1w2 þ 0ðkwk5Þ

_ww2 ¼ �w5
2 � 2w3

2w
2
1 þ 0ðkwk7Þ

9=
; ð51Þ

For the certain part of (51), choose a LFHD (see Cheng
and Martin 2001) as V ¼ 1

4w
4
1 þ 1

2w
2
2, then

_VV ¼ w3
1 _w1w1 þ w2 _w2w2

¼ �4w6
1 � 2w4

1w
2
2 � 2w2

1w
4
2 � w5

1w2 � w6
2

� �4w6
1 � w5

1w2 � w6
2

� �4w6
1 � w6

2 þ 5
6w

6
1 þ 1

6w
6
2

� 0

_VV is negative. So system (51) is asymptotically stable.
By Theorem 2, system (46) is also asymptotically
stable.

The second example shows the design of stabilizing
control for the multi-input case.

Example 5: Consider the following system

_xx1 ¼ x2 þ sinðz1Þu1

_xx2 ¼ tanðx1Þ þ ex2u1

_xx3 ¼ x4 þ ðx3 þ z2Þu1 þ z2u2

_xx4 ¼ x5 þ lnð1 þ x1z1Þu2

_xx5 ¼ x3z2 þ u2

_zz1 ¼ sinðz1Þx1 þ z3
2

_zz2 ¼ z2x1x3

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

ð52Þ

It is obvious that the system is already in a general-
ized normal form.

First, we use two quadratic functions h1ðzÞ and h2ðzÞ
to approximate the centre manifold as

x1ðzÞ � h1ðzÞ ¼ �1z
2
1 þ 
1z1z2 þ �1z

2
2

x3ðzÞ � h2ðzÞ ¼ �2z
2
1 þ 
2z1z2 þ �2z

2
2

x2ðzÞ � 0; x4ðzÞ � 0; x5ðzÞ � 0

9>>>=
>>>; ð53Þ

Then we design the controls as

u1 ¼ �e�x2 tanðx1Þ þ e�x2


 ½a11x1 þ a12x2 � a11ð�1z
2
1 þ 
1z1z2 þ �1z

2
2Þ�

u2 ¼ �x3z2 þ ½a21x3 þ a22x4 þ a23x5

� a21ð�2z
2
1 þ 
2z1z2 þ �2z

2
2Þ�

9>>>>>>=
>>>>>>;
ð54Þ

Now for the closed-loop system we verify the approxi-
mation error

@h1=@z1 @h1=@z2

@0=@z1 @0=@z2

@h2=@z1 @h2=@z2

@0=@z1 @0=@z2

@0=@z1 @0=@z2

0
BBBBBBBB@

1
CCCCCCCCA

sinðz1Þh1ðzÞ þ z3
2

z2h1ðzÞh2ðzÞ

 !

�

� sinðz1Þ tanðh1ðzÞÞ

0

�ðh2ðzÞ þ z2Þ tanðh1ðzÞÞ

� lnð1 þ h1ðzÞz1Þh2ðzÞz2

0

0
BBBBBBBBBB@

1
CCCCCCCCCCA

¼ 0ðkzk3Þ

9>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð55Þ

Hence the approximate order is s ¼ 3.
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Next, we consider the dynamics on the approximated
centre manifold. We have

_zz1 ¼ z1ð�1z
2
1 þ 
1z1z2 þ �1z

2
2Þ þ z3

2

_zz2 ¼ z2ð�1z
2
1 þ 
1z1z2 þ �1z

2
2Þð�2z

2
1 þ 
2z1z2 þ �2z

2
2Þ

)

ð56Þ

As a convention, we choose L1 ¼ 3 and L2 ¼ 5
(Cheng and Martin 2001).

The technique developed in Cheng and Martin
(2001) can be used to design controls to make (56)
approximately stable. To be independent, we simply
choose a Lyapunov function with homogeneous deriva-
tive as

V ¼ z4
1 þ z2

2 ð57Þ

and choose �1 ¼ �1, 
1 ¼ 0, �1 ¼ �1, �2 ¼ 0, 
2 ¼ 0
and �2 ¼ 1. Then

_VV jð56Þ ¼ �4z6
1 � 4z4

1z
2
2 þ 4z3

1z
3
2 � 2z2

1z
4
2 � 2z6

2

which is negative definite. So (56) is approximately
stable with homogeneous degrees ð3; 5Þ (Cheng and
Martin 2001).

Finally, we have to check condition (39), which
means the error does not affect the asymptotical stab-
ility. Since

z1ðh1ðzÞ þ 0ðkzk3Þ þ z3
2 � ½z1h1ðzÞ þ z3

2� ¼ 0ðkzk4Þ
z2ðh1ðzÞ þ 0ðkzk3Þðh2ðzÞ þ 0ðkzk3Þ

� z2h1ðzÞh2ðzÞ ¼ 0ðkzk6Þ

(39) follows.
To construct the controls we have to choose aij to

make the linear part stable. Say, let a11 ¼ �1, a12 ¼ �2,
a21 ¼ �1, a22 ¼ �3 and a23 ¼ �3. Then the controls
become

u1 ¼ �e�x2 tanðx1Þ þ e�x2 ½�x1 � 2x2 þ ð�z2
1 � z2

2Þ�

u2 ¼ �x3z2 þ ð�x3 � 3x4 � 3x5 þ z2
2Þ

)

ð57Þ

6. Conclusion

The paper proposed three new concepts: essential
relative degree, point relative point and point essential
relative degree. Based on them the Byrnes–Isidori nor-
mal form has been extended to generalized normal form.
Two ways for solving the stabilization problems have
been proposed. For the systems of minimum phase, a
sufficient condition is given for stabilizing the system by
pseudo-linear control. For the systems with non-mini-
mum phase, the method of Lyapunov function with
homogeneous derivative is used to stabilize the systems.

The generalized normal form has been proved to
have several advantages.

. The essential relative degree (the essential point
relative degree) is more powerful than the relative
degree (the point relative degree respectively)
because they provide the largest linearized sub-sys-
tem (pseudo-linearized sub-system).

. Calculating the (essential) point relative degree
(vector) is much easier than calculating the (essen-
tial) relative degree (vector).

. Even if the essential relative degree is known, in
general, to get the corresponding Byrnes–Isidori
normal form is difficult because it involves solving
a set of partial differential equations. But it is a
straightforward computation to get the general-
ized normal form with an easily calculated essen-
tial point relative degree.

Then it was shown that when the stabilization prob-
lem is considered, some basic properties for the standard
normal form remain true for the generalized normal
form. Particularly, we have the following facts:

. When the system is of minimum phase, with
assumption H3 the overall system is stabilizable
by pseudo-linear feedback control.

. The technique of Lyapunov function with homo-
geneous derivative is still applicable to the general-
ized normal form without any additional
requirement.
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