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a b s t r a c t

When a switched linear system is not completely controllable, the controllability subspace is not enough
to describe the controllability of the system over whole state space. In this case the state space can
be divided into two or three control-invariant sub-manifolds, which form a control-related partition
of the state space. This paper investigates when each component is a controllable sub-manifold. First,
we consider when a sub-manifold is controllable for no control input case. Then the results are used
to produce a necessary and sufficient condition assuring the controllability of the partitioned control-
invariant sub-manifolds of a class of switched linear systems. An example is given to demonstrate the
effectiveness of the results.

© 2008 Elsevier Ltd. All rights reserved.
1. Introduction

A switched linear system is a hybrid system which consists of
several linear subsystems and a rule that orchestrates the switch-
ing among them. There are many studies on the controllability
of switched linear systems. For instance, studies for low-order
switched linear systems have been presented in Loparo, Aslanis,
and IIajek (1987) and Xu and Antsaklis (1999). Some sufficient con-
ditions and necessary conditions for controllabilitywere presented
in Ezzine and Haddad (1989) and Szigeti (1992) for switched lin-
ear systems under the assumption that the switching sequence is
fixed. The complexity of stability and controllability of hybrid sys-
temswas addressed in Blondel and Tsitsiklis (1999) andHu, Zhang,
and Deng (2004). Sun and Zheng (2001), Sun, Ge, and Lee (2002),
and Sun and Ge (2005) investigated the controllability and reach-
ability issues for switched linear systems in detail.
Consider a switched linear system

ẋ(t) = Aσ(t)x(t)+ Bσ(t)u(t), x(t) ∈ Rn, u(t) ∈ Rm, (1)
where σ : [0,∞)→ Λ = {1, 2, . . . ,N} is a piece-wise constant,
right continuous mapping, called switching signal. As a particular
case when there is no control input we have

ẋ(t) = Aσ(t)x(t), x(t) ∈ Rn, (2)
which is called a switched linear system without control.
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The reachable set of x0, denoted byR(x0), is defined as: y ∈ R(x0),
if there exist u, σ and T > 0, such that y = ϕ(u, σ , x0, T ).
(Correspondingly, for system (2), y = ϕ(σ , x0, T ).)
Here ϕ(u, σ , x0, t) is the trajectory of system (1) with initial

point x(0) = x0, control u(t) and switching signal σ(t). Similarly,
we use ϕ(σ , x0, t) to denote the trajectory of system (2).
For system (1) we define a subspace as

C = 〈A1, . . . , AN | B1, . . . , BN〉 ,
which is the smallest subspace containing Bi and Ai invariant. The
main result about the controllability of system (1) is the following:

Theorem 1 (Sun et al. (2002)). For system (1), the largest reachable
set from the origin is R(0) = C. Moreover, for any two points x, y ∈ C,
x ∈ R(y).
System (1) is completely controllable, if and only if, dim(C) = n.

We call C the controllable subspace of system (1). It is clear that
the controllable subspace for system (2) is C = {0}.

Definition 2. A sub-manifold U ⊂ Rn is called a controllable sub-
manifold if for any two points x, y ∈ U , x ∈ R(y).

From Theorem 1 one sees easily that the controllable subspace
C is a controllable sub-manifold. Moreover, it is the largest
subspace, which is also a controllable sub-manifold.

Definition 3. A sub-manifold U ⊂ Rn is called a control invariant
sub-manifold if for any two points x ∈ U and y ∈ U c , x 6∈ R(y), and
y 6∈ R(x).

Note that if U is a control invariant sub-manifold, then so is its
complement U c . We also have (with mild revision).

Proposition 4 (Cheng, Lin, and Wang (2006)). C is a control
invariant sub-manifold.
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Assume the controllable subspace, C, of system (1) is not the
whole space. Then C becomes a zero measure set. To describe the
controllability of the system over whole state space, we are inter-
ested in finding (non-subspace type of) controllable sub-manifolds
in Cc . For block diagonal systems or symmetric systems the prob-
lem has been discussed in Cheng et al. (2006). This paper inves-
tigates the same problem for more general cases. Moreover, the
procedure for designing controls and switching laws is also
provided.

2. Controllability of switched linear systems without control

Consider system (2). It is obvious that {0} and Rn \ {0} are
control-invariant. So we ask when Rn \ {0} is a controllable sub-
manifold?
Before giving a useful sufficient condition, we need some

preliminaries.

Definition 5. A point x0 6= 0 is called an interior point of system
(2), if 0 is an interior point of the convex cone generated by
{Aλx0|λ ∈ Λ}.

The geometric meaning of the interior points is obvious, but we
need a clear algebraic description for verification. We briefly cite
somewell known results as follows (Rotman, 1988;Massey, 1967).

• Let V1, . . . , Vm ∈ Rn. They are said to be affine independent if
Vi − V1, i = 2, . . . ,m are linearly independent.
• p is an interior point of a set of vectors {Vλ|λ ∈ Λ}, iff there exist
n + 1 vectors Vλi ∈ {Vλ|λ ∈ Λ}, i = 1, . . . , n + 1, which form
an affine independent set, such that

n+1∑
i=1

µiVλi = p, (3)

where µi > 0 and
∑n+1
i=1 µi = 1.

The following lemma is an immediate consequence of the
definition and the above comments.

Lemma 6. Assume 0 is an interior point of a set of vectors {Vλ|λ ∈
Λ}. Then there exist n + 1 affine independent vectors Vλi ∈ {Vλ|λ ∈
Λ}, such that for any V 6= 0,

V = −
n+1∑
i=1

αiVλi , (4)

where αi > 0, i = 1, . . . , n+ 1.

Theorem 7. 1. If a point x 6= 0 is an interior point of system (2),
then there exists a neighborhood Nx of x, which is a controllable
sub-manifold.

2. Let U ⊂ Rn \ {0} be a path-wise connected open subset of Rn. If
every point x ∈ U is an interior point of system (2), then U is a
controllable sub-manifold.

Proof. See Appendix A.

Remark. It is easy to prove that when codim(C) = 1, Cc has
two path-wise connected components, while codim(C) > 1, Cc
is path-wise connected. In the following we assume Cc is path-
wise connected. Otherwise, we have only to replace Cc by its each
connected component.

Example 8. Consider the following system

ẋ = Aσ(t)x, x ∈ R2, (5)
for whichΛ = {1, 2, 3} and

A1 = I2, A2 =
(
0 1
−1 0

)
, A3 =

(
−1 −1
1 −1

)
.

It is easy to verify that as long as x 6= 0, Vi = Aix, i = 1, 2, 3
are affine independent. Moreover, let c1 = c2 = c3 = 1/3. Then
c1 + c2 + c3 = 1, and for any x 6= 0, we have

∑3
i=1 ciAix = 0. Thus

every point x ∈ R2 \ {0} is an interior point of the system. Then
Theorem 7 assures that for system (5), R2 \ {0} is a controllable
sub-manifold.

3. Controllability of switched linear systems

Consider system (1). Denote Cλ = 〈Aλ|Bλ〉 , λ ∈ Λ. Assume
the controllable subspace of system (1), C, is composed by the
controllable subspaces of the switching modes. That is,
A1

C = C1 ⊕ C2 ⊕ · · · ⊕ CN . (6)

Then system (1) can be expressed as
ż1i =

N∑
j=1

Aijσ(t)z
1
j + A

i(N+1)
σ (t) z

2
+ Biσ(t)u

i,

i = 1, 2, . . . ,N,
ż2 = A(N+1)(N+1)σ (t) z2,

(7)

where z1i corresponds to Ci respectively. An immediate conse-
quence is

Lemma 9. Assumption A1 assures that (Aiii , B
i
i), i = 1, . . . ,N, are

controllable.

For system (7), we have the following result:

Theorem 10. Consider system (7). Assume A1. Then Cc is a
controllable sub-manifold, if and only if, for subsystem

ż2 = A(N+1)(N+1)σ (t) z2, (8)

Rn−k \ {0} is a controllable sub-manifold, where k is the dimension
of C.

Proof. See Appendix B.

Remark. The controllability of subsystem (8) may be verified by
using Theorem 7.

4. An illustrative example

The proof of Theorem 10 is constructive, so it can be used to
construct the control. In the following example, a detailed design
process of the control is depicted.

Example 11. Consider the following system with n = 3, m = 1,
Λ = {1, 2}:

ẋ = Aσ(t)x+ Bσ(t)u (9)

where

A1 =

(1 1 2
0 −1 1
0 0 1

)
, B1 =

(1
0
0

)
;

A2 =

(1 0 1
1 −1 2
0 0 −1

)
, B2 =

(0
1
0

)
.
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Denote the controllable subspace of system (9) by C, the
controllable subspace of every mode of system (9) by C1, C2
respectively. Then

C = span

{(1
0
0

)
,

(0
1
0

)}
= {x ∈ R3|x3 = 0},

C1 = span

{(1
0
0

)}
, C2 = span

{(0
1
0

)}
.

Obviously we have

C = C1 ⊕ C2.

Denote x = (x11 x
1
2 x

2)T. It is easy to know thatR \ {0} is composed
of two controllable sub-manifolds for the subsystem x2. According
to Theorem 10, Cc is a controllable sub-manifold for system (9).
Given two points a, b ∈ Cc , say a =

(
1 2 −2

)T and b =(
0 −1 −1

)T, from the proof of Theorem 10, we can drive a to b
in 3 steps with middle points α, β as:

a→ α : σ0(t), u0(t), t ∈ [0, t1);
α→ β : σ1(t), u1(t), t ∈ [t1, t1 + t2);
β → b : σ2(t), u2(t), t ∈ [t1 + t2, t1 + t2 + t3).

Next we design ui(t), σ (t), ti to drive the trajectory from a to α to
β to b respectively.
We analyze the design process in a backward way:

¬ b to β: Choose σ2(t) ≡ 2, t2 = 2 and u2(t) to be designed. Then
x11, x

2 are free systems. So β11 , β
2 can be uniquely determined as

β11 = 3.6296 and β
2
= −7.3891. β12 will be determined later.

­ β to α: Choose σ1(t) ≡ 1, t1 = 1 and u1(t) to be designed.
Then x2 is a free system. So α2 can be uniquely determined as
α2 = −2.7183. α11 and α

1
2 will be determined later.

Now we are ready to design controls and switches.
® a to α: {x ∈ R : x < 0} is a controllable sub-manifold for
the subsystem x2, and a2, α2 ∈ {x ∈ R : x < 0}. Setting
u0(t) ≡ 0, we can find σ0(t) to drive a2 to α2 at time t1.
Because a2 and α2 are known, choosing σ0(t) ≡ 1, we can
calculate out that t1 = 0.3069. Then we have α = eA1t1a =(
0.2089 0.8481 −2.7183

)T
.

¯ α to β: Since σ1(t) = 1, t1 = 1, we can design u1(t) = K1x(t) =
(1.8541,−1,−2)x(t) such thatα11 can be driven to β

1
1 . Thenwe

have β = e(A1+B1K1)t2α =
(
3.6269 −2.8825 −7.3891

)T
.

° β to b: Since σ2(t) = 2, t2 = 2, we can design u2(t) = K2x(t) =
(−1, 0.4707,−2)x(t) such that β12 can be driven to b

1
2. Thenwe

have b = e(A2+B2K2)t3β =
(
0 −1 −1

)T
.

Summarizing the above, and letting T = t1 + t2 + t3, we obtain
that under the switching law

σ(t) =

{1, t ∈ [0, t1),
1, t ∈ [t1, t1 + t2),
2, t ∈ [t1 + t2, T ),

and the control

u(t) =

{0, t ∈ [0, t1),
(1.8541,−1,−2)x(t), t ∈ [t1, t1 + t2),
(−1, 0.4707,−2)x(t), t ∈ [t1 + t2, T ),

a can be driven to b at time T = 3.3069.
That is, Cc is a controllable sub-manifold for system (9).
The trajectory x(t) is depicted in Fig. 1.
Fig. 1. The trajectories.

5. Conclusion

This paper consideredwhen control-invariant sub-manifolds of
switched linear systems are controllable. The main controllability
results of the paper consisted of two parts. First, the controllability
via switching law was investigated, a sufficient condition was
obtained. Then in the case that the controllable subspace is
partitioned by the controllable subspaces of switching models,
a necessary and sufficient condition for Cc being a controllable
sub-manifold was obtained. The proof provided a procedure to
construct the controls and switches. An illustrative example was
constructed step by step to demonstrate the controllability and
control design techniques.
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Appendix A. Proof of Theorem 7

(1) If a point x 6= 0 is an interior point of system (2), then there
exist n linearly independent vectors Ai1x, Ai2x, . . . , Ainx, where
i1, . . . , in ∈ Λ. Define a mapping

φ : t = (t1 · · · tn)→ eAi1 t1 · · · eAin tnx. (A.1)

It is easy to see that φ is a local diffeomorphism (Hermann,
1968). Therefore, we can find an ε > 0, and U = {t : ‖t‖ < ε},
such that φ : U → φ(U) := V is a diffeomorphism, and V is a
neighborhood of x. Define

K := sup
06=‖t‖<ε

‖φ(t)− x‖
‖t‖

.

It is easy to see that K <∞ is well defined.
Using Lemma 6 (with a mild modification), there exist

Aj1x, . . . , Ajn+1x, which are affine independent, such that

Aikx = −µk
n+1∑
s=1

αks Ajsx, k = 1, . . . , n, (A.2)

where µk > 0, αks > 0 and
∑n+1
s=1 α

k
s = 1. Denote by

Ψ (x) =
[
(Aj1 − Ajn+1)x · · · (Ajn − Ajn+1)x

]
,
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which is a nonsingular matrix. Then we haveα
k
1
...

αkn

 = − 1
λk
Ψ−1(x)(Aik + λkAjn+1)x. (A.3)

By continuity, we may choose ε > 0 small enough such that
when z ∈ φ(U), ‖z − x‖ is also small enough such that Ψ (z) is
invertible. Then defineα

k
1(z)
...

αkn(z)

 = − 1
λk
Ψ−1(z)(Aik + λkAjn+1)z. (A.4)

For z ∈ φ(U), we can conclude the following

Aikz = −λk
n+1∑
s=1

αks (z)Ajsz; (A.5)

αks (z) > 0;
n∑
s=1

αks (z) < 1; (A.6)

Set αk(z) = (αk1(z), . . . , α
k
n(z), 1−

∑n
s=1 α

k
s (z))

T.
Then

‖αk(z)− αk‖ = O(‖z − x‖), (A.7)

where O(‖ · ‖) is an infinitesimal with the same order as ‖ · ‖.
Using Taylor expansion, we have

eAik tkz = (I + tkAik + O(|tk|
2))z, (A.8)

n+1∏
s=1

eλkα
k
s Ajs (−tk)z

=

n+1∏
s=1

(I − λkαks tkAjs + O(|tk|
2))z

=

(
I − tkλk

n+1∑
j=1

αks (z)Ajs

+ tkλk
n+1∑
j=1

(
αks (z)− α

k
s

)
Ajs + O(|tk|

2)

)
z. (A.9)

From z ∈ φ(U), we have

‖z − x‖ ≤ K‖t‖. (A.10)

Comparing (A.8) with (A.9) and using (A.7), we can conclude
that

eAik tkz =
n+1∏
s=1

eλkα
k
s Ajs (−tk)z + R, (A.11)

where R = O(‖t‖2). Now we can choose ‖t‖ < ε0, where
0 < ε0 < ε is small enough such that

R� ‖t‖. (A.12)

Define U = {t : ‖t‖ < ε0}, U0 = {t : ‖t‖ < ε0/2}. As ε0
being small enough, φ : U → V = ψ(U) is a diffeomorphism.
Denote V0 = φ(U0) ⊂ V . Now we claim each point y ∈ V0
satisfies y ∈ R(x). Let

y = φ(t01 , . . . , t
0
n ) =

n∏
j=1

eAij t
0
j x.
We have to treat the problem of negative-time, which is not
physically realizable. Construct the following mapping

ψk :=

e
Aik (t

0
k+tk), t0k > 0∏

j∈Λ′
eαjAj(−t

0
k+tk), t0k < 0 , (A.13)

and

φ̃(t1, t2, . . . , tn) := ψ1 ◦ ψ2 ◦ · · · ◦ ψnx.

From the definition one sees easily that φ̃ is a local diffeomor-
phism from a neighborhood of the origin to a neighborhood of
y. This comes from the following consideration: Since y ∈ V0,
then we have ‖y − x‖ ≤ K‖t0‖. From (A.11) and (A.12), the
replacement of eAik t

0
k byψk may cause an error O(|t0k |

2), that is,
‖φ̃(0)−y‖ = O(‖t0‖2), but the newmapping allows |tk| ≤ |t0k |
freedom to go. Similar to the argument for φ, we can define a

K̃ := sup
|tk|≤|t0k |

‖φ̃(t)− φ̃(0)‖
‖t‖

.

Define W = {z : ‖z − φ̃(0)‖ ≤ K̃‖t0‖}, then W ⊂ R(φ̃(0)).
Since ‖t0‖ < ε0/2, as ε0 small enough, we have ‖φ̃(0)− y‖ �
K̃‖t0‖. Hence y ∈ W and then y ∈ R(x). Since y ∈ V0 is
arbitrary, V0 is reachable from x.
Next, we have to show that starting from any y ∈ V0 there

is a switching law, which drives the system from y back to
x. Let y = eAi1 t

0
1 · · · eAin t

0
n x. Then x = eAin (−t

0
n ) · · · eAi1 (−t

0
1 )y.

Using a similar argument as for x → y, we can construct
a non-negative time mapping that goes from y back to a
neighborhood of x, which shows that x ∈ R(y).
Then for any y1, y2 ∈ V0, we have y1 ∈ R(y2) and y2 ∈ R(y1).

It follows that V0 is a controllable sub-manifold for system (2).
(2) Let U ⊂ Rn \ {0} be a path-wise connected open subset of Rn.
Then for any two points x, y ∈ U , we can connect them by a
path c(t), 0 ≤ t ≤ 1 with c(0) = x and c(1) = y. According
to the proof in (1), each point c(t) has an open controllable
neighborhood, denoted by U(xt), where xt = c(t). Since c(t)
is the continuous image of a compact set [0, 1], it is compact.
Now {U(xt), 0 ≤ t ≤ 1} is an open covering of c(t), so it has a
finite sub-covering {U1 = U(x),U2, . . . ,Uj = U(y)}. Ordering
them by corresponding times, we can assume Ui ∩ Ui+1 6= ∅,
and pi ∈ Ui ∩ Ui+1. Then x ∈ R(pi),∀i, which means x ∈ R(y).
Thenwe can conclude that U is a controllable sub-manifold for
system (2). �

Appendix B. Proof of Theorem 10

The necessity is trivial. We prove the sufficiency.
Let x, y ∈ Cc . For system (7), to prove Cc is a controllable sub-

manifold, we have to find a T > 0, a switching law σ(t) and a
control u(t) such that y = ϕ(u, σ , x, T ). For simplicity, we only
prove the case when N = 2 (When N > 2, the proof is essentially
the same). That is, C = C1 ⊕ C2, where Cλ = 〈Aλ|Bλ〉 , λ = 1, 2.
Then when λ = 1, using Kalman’s decomposition, system (7)

can be written asż
1
1 = A

11
1 z
1
1 + A

12
1 z
1
2 + A

13
1 z
2
+ B11u

1,

ż12 = A
22
1 z
1
2 + A

23
1 z
2,

ż2 = A331 z
2.

Similarly, when λ = 2, system (7) becomesż
1
1 = A

11
2 z
1
1 + A

13
2 z
2,

ż12 = A
12
2 z
1
1 + A

22
2 z
1
2 + A

23
2 z
2
+ B22u

2,

ż2 = A332 z
2.

Denote the starting point and the destination as x = (x11, x
1
2, x

2)T

and y = (y11, y
1
2, y

2)T. We design the control in three steps.
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(a) x = (x11 x12 x2)T → α = (α11 α12 α2)T.
(b) α = (α11 α12 α2)T → β = (β11 β12 β2)T.
(c) β = (β11 β12 β2)T → y = (y11, y

1
2, y

2)T.

Denote the switching law, the control and the duration of the
three steps by (σ1, u1, T1), (σ2, u2, T2), (σ3, u3, T3) respectively.
Assume T2 = constant , T3 = constant , σ2 ≡ 1, σ3 ≡ 2, u1 ≡ 0.
Since T3 = constant, σ3 ≡ 2, and y is known, we have β2 =
e−A

33
2 T3y2, and

β11 = e
−A112 T3y11 −

∫ T

0
e−A

11
2 (T−τ)A132 e

A332 τβ2dτ .

Since T2 = constant, σ2 ≡ 1, we know α2 = e−A
33
1 T2β2.

Because ż2 = A33σ(t)z
2 is controllable over z2 \ {0}, then for a

given T1 > 0, we can find a switching law σ1(t) such that α2 =
ϕ(σ1(t), x2, T1). Letting u1 ≡ 0, we have α11 = ϕ(σ1(t), x11, T1),
α12 = ϕ(σ1(t), x12, T1). From Lemma 9, (A

11
1 , B1) and (A

22
2 , B2)

are controllable. So for T2 = constant > 0, we can find a
control u2(t) such that β11 = ϕ(u2(t), σ2(t), α11, T2). Then β

1
2 =

ϕ(σ2(t), α12, T2). As (A
22
2 , B2) is controllable, then we can find a

control u3(t) such that y12 = ϕ(u3(t), σ3(t), β
1
2 , T3). So letting

σ(t) =

{
σ1(t), t ∈ [0, T1),
1, t ∈ [T1, T1 + T2),
2, t ∈ [T1 + T2, T1 + T2 + T3),

and

u(t) =

{0, t ∈ [0, T1),
u2(t), t ∈ [T1, T1 + T2),
u3(t), t ∈ [T1 + T2, T1 + T2 + T3),

we have y = ϕ(u(t), σ (t), x, T1 + T2 + T3). �
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