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CONSENSUS OF MULTI-AGENT LINEAR DYNAMIC SYSTEMS

Jinhuan Wang, Daizhan Cheng, and Xiaoming Hu

ABSTRACT

In this paper the consensus problem is considered for multi-agent
systems, in which all agents have an identical linear dynamic mode that
can be of any order. The main result is that if the adjacent topology of the
graph is frequently connected then the consensus is achievable via local-
information-based decentralized controls, provided that the linear dynamic
mode is completely controllable. Consequently, many existing results become
particular cases of this general result. In this paper, the case of fixed connected
topology is discussed first. Then the case of switching connected topology is
considered. Finally, the general case is studied where the graph topology is
switching and only connected often enough.

Key Words: Multi-agent systems, consensus, higher order dynamics, decen-
tralized control.

I. INTRODUCTION

In the past few years the study of multi-agent sys-
tems has attracted considerable attention from various
research communities. It has been revealed that multi-
agent systems appear in various areas, such as cooper-
ative control of unmanned air vehicles [1], consensus
problem of communication networks [2–4], formation
control of mobile robots [5, 6] and flocking of birds
[7, 8], etc.

In collective behaviors of multiple agents, consen-
sus is one of the most interesting behaviors. There is al-
ready a large amount of literature concerning this, e.g.,
[2–4, 9–11] and the references therein. An early work is
[8], in which Vicsek et al. proposed a consensus scheme
based on a simple discrete-time model for the headings
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of n autonomous agents moving in a plane. Then some
theoretical explanations for the consensus behavior of
the Vicsek model were given in [2] and other works,
such as [4, 9]. With the first order model considered in
[2] it was shown that under the assumption of “joint
connection” of graphs, the headings of all agents con-
verged to a steady-state value. More general cases of
linear models and connection topologies were studied
in [3, 5, 10, 11] for example. In particular, in [5], a
necessary and sufficient condition was given for the
solvability of consensus problems based on local infor-
mation feedback control with fixed connection topol-
ogy. A survey on consensus problems was given in
[12]. A closely related problem that has been studied
by many researchers is the synchronization problem of
coupled oscillators [13, 14].

Nevertheless, the consensus problem that has been
solved so far is mostly only for agents with first or
second order dynamics. In this paper we consider a more
general case, where the dynamics of each agent can be
of any order. A decentralized high gain control law is
provided, under which the consensus problem can be
solved for both fixed and varying topology cases.

Let us consider a system with N agents. The
dynamics of each agent is

ẋ i = Axi + Bui , xi ∈ Rn, ui ∈ Rm,

i = 1, . . . , N (1)
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where we assume rank(B) =m. Let xi = (xi1, x
i
2,

. . . , xin)
T ∈ Rn denote the state of agent i .

Define

zi = ∑
j∈Ni

(xi − x j ), i = 1, . . . , N (2)

whereNi denotes the set of neighbors of agent i . (More
precise definition can be found in Section II.) zi is con-
sidered as the local information available for agent i .

Definition 1. Consider system (1). The consensus is
said to be achieved using local information if there is a
local state error feedback control

ui = Kzi , i = 1, . . . , N (3)

such that

lim
t→∞ ‖xi − x j‖ = 0, i, j = 1, . . . , N . (4)

Naturally one can refine the problem by considering
only output error feedback control. In this paper, how-
ever, we focus on the case where some full state error
is available.

The rest of the paper is organized as follows:
Section II provides some necessary preliminaries. Sec-
tion III considers the consensus for connected varying
graph topology. Section IV deals with the frequently
connected case and the main result is presented there.
In Section V we investigate the Laplacians first, and
then give some simulation results. Section VI is the
conclusion.

II. PRELIMINARIES

In this section, we recall some basic concepts and
results on graph theory, which are often used in coor-
dination problems of multiple agents and related to our
later discussion. More details can be found in [15] for
example.

An undirected graph G of order N consists
of a vertex set V= {1, 2, . . . , N } and an edge set
E={(i, j) : i, j ∈ V} ⊂ V × V. A weighted ad-
jacency matrix A= [ai j ] ∈ RN×N , where aii = 0 and
ai j = a ji≥0. ai j>0 if and only if there is an edge be-
tween agent i and agent j (i.e., ai j = a ji>0 ⇔ (i, j) ∈
E) and the two agents are called adjacent (or they are
mutual neighbors). In this paper for an unweighted
graph G, A is a 0 − 1 matrix. The set of neighbors of
vertex i is denoted by Ni ={ j ∈ V : (i, j) ∈ E, j �=
i}. Throughout this paper, we assume the graph is undi-
rected. If there is a path between any two vertices of a
graph G, then G is connected, otherwise disconnected.

Define the Laplacian LG with respect to the graph G as

LG =[li j ]N×N , where li j =

⎧⎪⎨
⎪⎩
|Ni |, i = j,

−1, j ∈ Ni ,

0, otherwise.

(5)

By the definition, every row sum of L is zero.

Notations. Throughout this paper, let 1N = (1, 1,
. . . , 1)T ∈ RN and ei = (0, . . . , 1, . . . , 0)T ∈ Rn .
‖ · ‖ denotes the Euclidean norm and ⊗ denotes the
Kronecker product. xT represents the transpose of x .

The following lemma [3, 15] shows some basic
properties of the Laplacian L .

Lemma 1. ([3, 15]) Let L be the Laplacian of an undi-
rected graph G with N vertices, �1≤ · · · ≤�N be the
eigenvalues of L . Then

1. 0 is an eigenvalue of L and 1N is the associated
eigenvector, that is, L1N = 0;

2. If G is connected, then 0 is the algebraically
simple eigenvalue of L and �2 = min� �=0,�⊥1N
�T L�/�T �>0, which is called the algebraic con-
nectivity of G;

3. If 0 is the simple eigenvalue of L , then it is an
n multiplicity eigenvalue of L ⊗ In and the corre-
sponding eigenvectors are 1N ⊗ ei , i = 1, . . . , n.

Now let us go back to the consensus problem. The
following observations are basically from [5] with some
trivial modification.

Tentatively, we assume the topology is fixed,
then we can drop the subscript G of LG. Denote by x
and z the concatenations of vectors {x1, . . . , xN } and
{z1, . . . , zN }, respectively. From (2), we have

z = (L ⊗ In)x . (6)

Then the closed-loop system of (1) with control (3)
becomes

ẋ =[IN ⊗ A + (IN ⊗ BK )(L ⊗ In)]x . (7)

Since L is symmetric, there is an orthogonal matrix T
such that

T LT T = D = diag(�1, �2, . . . , �N )

is diagonal, where {�i } = �(L) is the spectrum of L .
Now let

x̃ = (T ⊗ In)x, (8)

then (7) becomes

˙̃xi = [A + �i BK ]x̃ i , i = 1, . . . , N . (9)
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Note that (9) is a special case of equation (13) of [5].
From (9) it is clear [5] that when the graph is connected
the consensus problem would be solvable if there is a
K such that (9) is stabilized for i = 2, . . . , n.

III. GRAPH WITH CONNECTED
TOPOLOGY

First, we consider the case when the adjacent
topology is fixed. We want to find a common K that
stabilizes the subsystems in (9) with i = 2, . . . , N . We
need

Lemma 2. ([16]) Let n be a positive integer and let
P(s) be a stable polynomial of degree n − 1:

P(s)= p0 + p1s + · · · + pn−1s
n−1

with all pi>0.

Then there exists an �>0 such that

Q(s)= P(s) + pns
n

is stable if and only if pn ∈ [0, �).

Lemma 3. Consider a finite set of linear systems

ẋ i = Axi + �i Bu
i , i = 1, . . . , k (10)

where x ∈ Rn , u ∈ Rm , (A, B) is completely control-
lable, rank(B) =m, and �i>0, i = 1, . . . , k. Then there
exists a K which simultaneously assign the poles of k
systems as negative as possible. Precisely, for any M>0
there exist

ui = Kxi , i = 1, . . . , k

such that

Re�(A + �i BK )< − M, i = 1, . . . , k. (11)

Proof. Without loss of generality, we can assume the
pair (A, B) is in Brunovsky canonical form. We prove
it in the following two cases:

Case 1. Assume m = 1. Then the characteristic
polynomials for A + �i BK are

Pi (s) = sn − �i kn−1s
n−1 − · · · − �i k1s

−�i k0 − pa(s), i = 1, . . . , k (12)

where pa(s) = an−1sn−1 + · · · + a1s + a0. Let

Pn−1(s) = dn−1s
n−1 + · · · + d1s + d0

be any Hurwitz polynomial. Using Lemma 2, there exist
a>0 such that when dn<a sn + 1/dn Pn−1(s) is also
Hurwitz.

Let �∗ = min
1≤i≤k

�i , then

Pi
n(s) : = sn + �i

2

a�∗ Pn−1(s)

is Hurwitz. Denote the roots of Pi
n(s) by {−si1, . . ., −sin},

then Re(sij )>0. Define

Pi
n(�, s) = sn + �i

(
�

2

a�∗ dn−1

)
sn−1 + · · ·

+�i

(
�n−1 2

a�∗ d1
)
s+�i

(
�n

2

a�∗ d0
)

,

i = 1, . . . , k. (13)

Namely choosing

k∗
j = − �n− j 2

a�∗ d j , j = 0, . . . , n − 1. (14)

It is easy to see by, for example, singular perturbation
analysis that when � is sufficiently large the effect of
pa(s) on the roots of Pi (s) is negligible. Thus when �
is sufficiently large and

�>
M

min{Re(sij )|i = 1, . . . , k; j = 1, . . . , n}
inequality (11) is satisfied.

Case 2. We consider the multi-input case. When
m>1, the characteristic polynomials for A+ �i BK are

Pi (s) =
m∏
j=1

Pi
j (s) + Qi (s)

=
m∏
j=1

(sr j − �i k
j
r j−1s

r j−1 − · · · − �i k
j
1 s

−�i k
j
0 ) + Qi (s), i = 1, . . . , k

where r j , j = 1, . . . ,m are controllability indices,∑m
j=1 r j = n and Qi (s)= pn−1(�i , K )sn−1 + · · · +

p1(�i , K )s + p0(�i , K ). Let

k j∗
l = �r j−l k j

l , j = 1, . . . ,m, l = 0, . . . , r j − 1

then by Leibniz formula one can easily see that

lim
�→∞

pl(�i , K )

�n−l
= 0, l = 0, . . . , n − 1.

q 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society



J. Wang et al.: Consensus of Multi-agent Linear Dynamic Systems 147

For each Pi
j (s), repeat the process of Case 1, we can

find � j large enough, such that the real parts of the roots
of Pi

j (s) are as negative as possible. Choose

�>max{� j , j = 1, . . . ,m}.

It is easy to see by singular perturbation analysis
that when � is sufficiently large the effect of Qi (s) on
the roots of

∏m
j=1 P

i
j (s) is negligible. Thus when � is

sufficiently large, inequality (11) is satisfied. �

Corollary 1. Assume (A, B) is a controllable pair,
�i>0, i = 1, . . . , k. Then for any �>0 and �>0 there
exists a K such that

‖e(A+�i BK )�‖<�, i = 1, . . . , k. (15)

Proof. Using {k∗} as defined in (14), we know that
A + �i BK has eigenvalues as

�(A + �i BK ) ={−�sij | j = 1, . . . , n}, i = 1, . . . k

where Re(−sij ) ≤ −�<0. It is well known that

‖e(A+�i BK )�‖ ≤ Q(�)e−��� (16)

where Q(�) is a polynomial of � (see for example [17]).
Since

lim
�→∞ Q(�)e−��� = 0

the result follows. �

Now we are ready to consider the consensus prob-
lem. First, if the adjacent topology is connected and
fixed, the result is obvious.

Proposition 1. Consider system (1). Assume the adja-
cent topology is connected and fixed. If (A, B) is con-
trollable, then the consensus is achieved via local state
error feedback (3).

Proof. Since the graph is connected, we have

0= �1<�2≤�3≤ · · · ≤�N .

Using (6), when z(t) → 0, t → ∞, x → 1N ⊗ s, for
some s ∈ Rn . So the consensus is obtained. (A more

precise argument can be found in the second part of this
section.) Now, by the definition of z, it is clear that the
consensus is achieved, if and only if z(t) → 0, t → ∞.

Using (6) and (8), we have

(T ⊗ In)z = (D ⊗ In)x̃ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0

�2 x̃
2

...

�N x̃
N

⎤
⎥⎥⎥⎥⎥⎥⎦

. (17)

From Lemma 3 it is clear that we can find the feedback
law K which simultaneously stabilizes x̃ i , i = 2, . . . , N ,
and hence z(t) → 0, t → ∞. �

Next, we consider the case when the adjacent
topology is time-varying and connected.

When the adjacent graph is switching, we define
a switching signal �(t) : [0, +∞) → {1, 2, . . . ,m}
which is a piecewise constant right continuous func-
tion. A switching system is said to have a non-vanishing
dwell time, if there is a positive time period �∗>0, such
that the switching moments 0<t1< · · · <tk< · · · satisfy
infk(tk+1 − tk) = �∗.

Throughout this paper, we assume that

Assumption 1. Admissible switching signals have a
dwell time �∗>0.

Let � be the set of all possible graphs and �c ⊂ �
the set of connected graphs.

We give the first result for varying topology.

Theorem 1. Consider system (1) with varying topol-
ogy and Assumption 1 holds. Assume (A, B) is con-
trollable and its adjacent graph is connected, then the
consensus can be achieved by local state error feedback
(3).

Proof. Note that in this theorem the neighbor set
of an agent i , denoted by Ni (t), is time-varying.
So we consider a non-switched duration [�, �), and
assume its graph is Gp with the Laplacian L p,
where p ∈ �c. Denote by TpL pT T

p = Dp, where
Dp = diag(0, �p

2 , . . . , �p
N ). Using (17), we have

z p(t) = (T−1
p ⊗ In)

⎡
⎢⎢⎢⎢⎢⎢⎣

0

�p
2 x̃

2(t)

...

�p
N x̃

N (t)

⎤
⎥⎥⎥⎥⎥⎥⎦
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= (T−1
p ⊗ In)Ep(t)

⎡
⎢⎢⎢⎢⎢⎢⎣

0

�p
2 x̃

2(�)

...

�p
N x̃

N (�)

⎤
⎥⎥⎥⎥⎥⎥⎦

= (T−1
p ⊗ In)Ep(t)(Tp ⊗ In)z p(�),

t ∈ [�, �) (18)

where

Ep(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0

0 exp((A + �p
2 BK )(t − �)) · · · 0

0 0
. . . 0

0 0 · · · exp
(
(A + �p

N BK )(t − �)
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Using Corollary 1, we can conclude from (15) the fol-
lowing two facts:

• For any given �>0 there exists a K such that

‖(T−1
p ⊗ In)Ep(t)(Tp ⊗ In)‖<�,

t≥� + �∗, ∀ p ∈ �c. (19)

This is due to the fact that the cardinality |�c|<∞.
• As long as K is chosen there is a boundary

M(K )<∞ for overshoot. That is,

max
p∈�c

sup
�≤t≤�+�∗

{‖(T−1
p ⊗ In)Ep(t)(Tp ⊗ In)‖}

<M(K ). (20)

This is due to the continuity.

Define the synchronization manifold [14]

S := {x ∈ RnN : x1 = . . . = xN }
= {1N ⊗ s|s ∈ Rn}.

Our aim is to show that x will converge to S.
For any x ∈ RnN , we can decompose it with re-

spect to each p ∈ � by

x = S + 	

where S = 1N ⊗ s ∈ S, 	 ∈ S⊥, the orthogonal com-
plement of S. Noting that

(L p ⊗ In)S = (L p ⊗ In)(1N ⊗ s)

= (L p1N ) ⊗ (Ins) = 0

we have

z p = (L p ⊗ In)x = (L p ⊗ In)	 (21)

and the distance of x to S satisfies

d(x,S) =‖	‖.

Since the graph Gp is connected, by Lemma 1, 0 is the
algebraically simple eigenvalue of L p, and is also the
eigenvalue of L p ⊗ In with multiplicity n. All the other
eigenvalues of L p are positive. The n linearly indepen-
dent eigenvectors associated with the eigenvalue 0 of
L p ⊗ In are 1N ⊗ ei , i = 1, . . . , n. Since 	 ∈ S⊥, then
	⊥(1N ⊗ ei ), i = 1, . . . , n. We have

�p
m‖	‖≤‖(L p ⊗ In)	‖≤�p

M‖	‖

where �p
m and �p

M are the second smallest and the largest
eigenvalues of L p, respectively.

Set

�m = min
p∈�c

{�p
m}>0, �M = max

p∈�c

{�p
M }

then we have

�m‖	‖≤‖(L p ⊗ In)	‖≤�M‖	‖, ∀ p ∈ �c. (22)

Let {tk}∞k = 1 be the switching moments and assume
tk → ∞ as k → ∞. Assume on [tk−1, tk), the mode
pk ∈ � is active. Choosing

� = �m
�M


, where 0<
<1

equations (18), (19) and Assumption 1 yield that there
exists a K such that on each interval [tk−1, tk)

‖z pk (t−k )‖≤�‖z pk (tk−1)‖.
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Using both (21) and (22), we get

�m‖	(tk)‖ ≤ ‖(L pk ⊗ In)	(tk)‖=‖z pk (t−k )‖
≤ �‖z pk (tk−1)‖
= �‖(L pk ⊗ In)	(tk−1)‖
≤ ��M‖	(tk−1)‖.

It follows that

‖	(tk)‖≤
‖	(tk−1)‖, k = 1, 2, . . . . (23)

Then we have

lim
k→∞ ‖	(tk)‖= 0.

Note that the feedback K is universal. Inequality (20)
and the fact that

‖	(t)‖≤ 1

�m
‖z(t)‖, ∀t≥0

imply

‖	(t)‖≤M(K )�M
�m

‖	(tk−1‖, tk−1<t<tk−1 + �∗.

Hence

lim
t→∞ ‖	(t)‖= 0

which means the consensus is achieved. �

IV. GRAPH WITH FREQUENTLY
CONNECTED TOPOLOGY

In this section we consider the case when the graph
has frequently connected topology.

Definition 2. System (1) is said to have frequently con-
nected topology with time period T , if there exists a
T>0, for any t>0, there exists a t∗ ∈ [t, t + T ) such
that the graph G(t∗) is connected.

Through this section we assume

Assumption 2. System (1) has a frequently connected
topology with time period T .

Under Assumption 2 we can find an alternat-
ing connect-disconnect sequence of time segments.
Namely, there is a time sequence �1<t1<�2<t2< · · · →
∞ (refer to Fig. 1) such that

• tk − �k≥�∗ (refer to Assumption 1 for �∗);
• �∗≤�k+1 − tk<T ;

t

tk–1  �k �k+1tk tk+1

Fig. 1. Frequent connection.

• G(t) is connected, ∀ t ∈ [�k, tk);
• G(t) is not connected, ∀ t ∈ [tk−1, �k).

From the proof of Theorem 1 we have the follow-
ing:

Lemma 4. Let Assumption 1 hold, then for a given
0<
<1, there exists a set of decentralized controls of
the form (3) with an universal K such that

‖	(tk)‖≤
‖	(�k)‖, k = 1, 2, . . . . (24)

So the problem is to investigate what happens dur-
ing the time period [tk−1, �k) when the graph is not con-
nected. Now consider a non-switching duration [�, �) ⊂
[tk−1, �k). Assume {G�(t), � = 1, . . . , s} are connected
components of G(t), t ∈ [�, �), and the associated ver-
tex sets are V�, � = 1, . . . , s. Denote the cardinality
(size) of the �-th component by

N� = |V�|;

the center of the �-th component by

x̄� =
∑

i∈V�xi

N�
.

Similarly, we can define the center of all agents,
denoted by x̄ . Then we have

Lemma 5. Assume t ∈[�, �), which is a non-switching
duration. Then for the closed-loop system with local
state error feedback control, the center of each con-
nected component G� satisfies the following free drift
equation:

˙̄x� = Ax̄�, � = 1, . . . , s. (25)

Proof. Since for each connected component we have

∑
i∈V�

zi = ∑
i∈V�

∑
j∈Ni

(xi − x j ) = 0

the conclusion follows immediately. �
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Particularly, we have

Corollary 2. The overall center x̄ satisfies (25) for all
t ≥ 0.

Now let �i ∈V�, i = 1, . . . , N�, where N� = |V�|.
Denote x� = ((x�1)T , . . . , (x�N� )T )T ∈ RnN� . Similar
to the argument in Section III, we split

x� = S� + 	�,

where S� ∈S�, 	� ∈ [S�]⊥, and S� is defined as

S� : = {x�i = x� j |∀�i , � j ∈V�}.
The following lemma gives a precise expression

of 	�.

Lemma 6.

	� = x� − 1N� ⊗ x̄� (26)

Proof. First of all, it is easy to see that

S� ={1N� ⊗ �|�∈ Rn}.
Then we have

1N� ⊗ x̄� ∈S�.

Now a straightforward computation shows that

〈x� − 1N� ⊗ x̄�, 1N� ⊗ �〉 = 0, ∀� ∈ Rn .

The conclusion follows. �

The same argument shows that

	 = x − 1N ⊗ x̄ . (27)

Let � ≤ t<�. Then we have

‖x�i (t)−x̄�(t)‖ ≤ ‖x�(t)−1N� ⊗ x̄�(t)‖
= ‖	�(t)‖, i = 1, . . . , N�. (28)

Similarly,

‖xi (t) − x̄(t)‖≤‖	(t)‖. (29)

It follows from (29) that

‖x̄�(t) − x̄(t)‖≤‖	(t)‖, ∀�. (30)

Now assume there are two agents, belonging to
two different connected components, say, �i ∈V� and

�′
j ∈V�′

. We are ready to see how much they can di-
verge.

‖x�i (t) − x�′
j (t)‖ ≤ ‖x�i (t) − x̄�(t)‖

+‖x�′
j (t) − x̄�′

(t)‖
+‖x̄�(t) − x̄�′

(t)‖
≤ ‖	�(t)‖ + ‖	�′

(t)‖
+‖x̄�(t) − x̄�′

(t)‖. (31)

From the proof of Theorem 1 and by using the argu-
ments to each connected component, one sees that as
long as t − �≥�∗ we have

‖	�(t)‖≤‖	�(�)‖, t≥� + �∗, ∀�. (32)

Moreover, note that S is a subspace of S�, and the
distance to the whole space is always smaller than or
equal to the distance to any of its subspaces. Hence,

‖	�(t)‖≤‖	(t)‖. (33)

We conclude that

‖	�(t)‖ + ‖	�′
(t)‖≤2‖	(�)‖, t≥� + �∗. (34)

Using Lemma 5 and equations (29) and (30), we
also have

‖x̄�(t) − x̄�′
(t)‖ ≤ ‖eA(t−�)‖‖x̄�(�) − x̄�′

(�)‖
≤ ‖eA(t−�)‖[‖x̄�(�) − x̄(�)‖

+‖x̄�′
(�) − x̄(�)‖]

≤ 2‖eA(t−�)‖‖	(�)‖. (35)

Plugging (34) and (35) into (31), we have

‖x�i (t) − x�′
j (t)‖≤2[1 + ‖eA(t−�)‖]‖	(�)‖,

� + �∗≤t≤�. (36)

Using (27), we have

‖	(t)‖≤
N∑
i=1

‖xi (t) − x̄(t)‖. (37)

Note that if ‖xi − x j‖≤�, ∀i, j , then
‖xi − x̄‖≤�.
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Using this fact and equations (36) and (37), we have

‖	(t)‖≤2N [1 + ‖eA(t−�)‖]‖	(�)‖,
t≥� + �∗. (38)

Note that the estimation (38) is independent of the
choice of the control, which assures that we can design
control to drive the system to the consensus.

Now we are ready to present our main result:

Theorem 2. Assume Assumption 1 and Assumption 2
hold. Then the consensus of system (1) can be achieved
by using local state error feedback control (3) with suit-
ably chosen coefficients K .

Proof. Recall that the system has frequently connected
topology with time period T . Since T ≥ �∗, there exists
an unique n0 ∈ Z+ such that

(n0 − 1)�∗<T ≤ n0�
∗.

Now in the duration [tk−1, �k) there are at most n0 times
switching. Of course the dwell time for each mode is
less than or equal to T . Using (38) we have

‖	(�k)‖ ≤ [2N (1 + e‖AT ‖)]n0‖	(tk−1)‖. (39)

Recall Lemma 4. We can choose a suitable set of coef-
ficients, K , in the feedback control, such that the 
 in
(24) satisfies


 ≤ 
0
[2N (1 + e‖AT ‖)]n0

where 0<
0<1. It follows that

‖	(tk)‖ ≤ 
0‖	(tk−1)‖, k = 1, 2, . . . .

The similar argument for the overshoots between {tk}
as in the proof of Theorem 1 completes the proof. �

V. ILLUSTRATIVE EXAMPLES

This section presents two illustrative examples to
describe the theoretical result in this paper.

We begin with exploring more about the set of
adjacent graphs, which depend on the number of agents
only. So they have a universal meaning. In general, we
have

|�| = 2N (N−1)/2

different graphs. For directed graph, it would be
|�| = 2N (N−1). In this paper, we consider only undi-
rected graphs.

First, we want to order the graphs in �. They are
one-one corresponding to their Laplacians. So we con-
sider the Laplacians. Note that

(l12, . . . , l1N , l23, . . . , l2N , . . . , l(N−1)N )

are independent elements in a Laplacian, which can be
used to describe Laplacians. So we can simply use a
binary number

|l12| | · · · | |l1N | |l23| | · · · | |l2N | | · · · | |l(N−1)N |

= |l12| × 2
N (N−1)

2 −1 + |l13| × 2
N (N−1)

2 −2

+ · · · + |l(N−2)N | × 2 + |l(N−1)N | : = k − 1,

to index L’s as {Lk}, k = 1, 2, . . . , 2N (N−1)/2.
Now let N = 2. Then |�| = 2. We have

L1 =
[
0 0

0 0

]
; L2 =

[
1 −1

−1 1

]

and G2 is connected.
Let N = 3. Then |�| = 8. We have

L1 =
⎡
⎢⎣
0 0 0

0 0 0

0 0 0

⎤
⎥⎦ ; L2 =

⎡
⎢⎣
0 0 0

0 1 −1

0 −1 1

⎤
⎥⎦ ;

· · · ; L8 =
⎡
⎢⎣

2 −1 −1

−1 2 −1

−1 −1 2

⎤
⎥⎦ .

It is easy to see that |�c| = 4 and �c ={G4,G6,G7,G8}
are connected, and the distinct positive eigenvalues �’s
are {1, 3}.

Let N = 4. Then |�| = 64. We have

L1 =

⎡
⎢⎢⎢⎢⎣
0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎦ ;

L2 =

⎡
⎢⎢⎢⎢⎣
0 0 0 0

0 0 0 0

0 0 1 −1

0 0 −1 1

⎤
⎥⎥⎥⎥⎦ ; · · · ;
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L63 =

⎡
⎢⎢⎢⎢⎣

3 −1 −1 −1

−1 3 −1 −1

−1 −1 2 0

−1 −1 0 2

⎤
⎥⎥⎥⎥⎦ ;

L64 =

⎡
⎢⎢⎢⎢⎣

3 −1 −1 −1

−1 3 −1 −1

−1 −1 3 −1

−1 −1 −1 3

⎤
⎥⎥⎥⎥⎦ .

Using MatLab, it is easy to calculate that there are
|�c| = 38 connected graphs, which are

�c ={Gp|p ∈ P}, (40)

where

P =

⎧⎪⎨
⎪⎩
12 14 15 16 20 22 23 24 27 28 29 30 31

32 36 38 39 40 42 44 45 46 47 48 50 51

52 54 55 56 57 58 59 60 61 62 63 64

⎫⎪⎬
⎪⎭ .

There are 6 different positive �’s, which are

� ={1.0000, 4.0000, 2.0000, 0.5858, 3.4142, 3.0000}. (41)

When N = 5, |�| = 1024, |�c| = 628. We list the first
and last 5 indexes p such that Gp ∈ �c:

P =

⎧⎪⎨
⎪⎩

76 78 79 80 84

· · ·
1020 1021 1022 1023 1024

⎫⎪⎬
⎪⎭ .

There are 20 different positive �’s, which are

� =

⎧⎪⎨
⎪⎩
1.0000 5.0000 2.3111 0.5188 3.0000 0.3820 2.6180

1.3820 4.3028 0.6972 4.1701 3.6180 2.0000 0.8299

2.6889 4.0000 4.4812 4.6180 4.4142 2.3820

⎫⎪⎬
⎪⎭ .

This information is useful in control design.

Example 1. Consider a system with 4 agents, satisfy-
ing

ẋ i = Axi + bui , xi ∈ R2, i = 1, 2, 3, 4, (42)

where

A=
[

0 1

−1 0

]
, b=

[
0

1

]
.

First, we design controls K =[k01, k02] such that

A + �i bK , i = 1, . . . , 6 (43)
stable, where {�i } are shown in (41).

agent1
agent2
agent3
agent4

Fig. 2. Consensus with fixed topology.

Choosing

K =[�2k01, �k02], with k01 = −3, k02 = −2, �= 10

and initial values as

x1(0)=
[
6

2

]
; x2(0)=

[ −3

5

]
;

x3(0)=
[ −4

3

]
; x4(0)=

[
4

5

]
,

three cases are considered. Fig. 2 shows the consen-
sus with fixed topology G20. Fig. 3 shows the consen-
sus with randomly switching connected topology with
dwell time �∗ = 1. Fig. 4 shows the consensus with
switching frequently connected topology, in which over
a time period 3T , two disconnected modes are active on
the first 2T duration and then one connected mode is
active. The modes are also randomly chosen at switch-
ing moments. The four curves in each figure denote the
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agent1
agent2
agent3
agent4

Fig. 3. Consensus with switching topology.

agent1
agent2
agent3
agent4

Fig. 4. Consensus with frequently connected topology.

trajectories of four agents. In all three cases, the trajec-
tories of four agents will converge to a common circle
which is the trajectory of the center x̄ . �

Example 2. Consider a system with 4 agents, satisfy-
ing

ẋ i = Axi + bui , xi ∈ R3, i = 1, 2, 3, 4, (44)

where

A=
⎡
⎢⎣

0 1 1

−1 0 1

−1 −1 0

⎤
⎥⎦ , b=

⎡
⎢⎣
0

0

1

⎤
⎥⎦ .

First, we design controls K =[k01, k02, k03] such that
A + �i bK , i = 1, . . . , 6, (45)

are stable, where {�i } are given in (41).

agent1
agent2 
agent3
agent4

Fig. 5. Consensus with fixed topology.

Then choosing

K =[�3k01, �2k02, �k03],

with k01 = −20, k02 = −8, k03 = −4, � = 10

and initial values as

x1(0) =

⎡
⎢⎢⎣

4

1

−4

⎤
⎥⎥⎦ ; x2(0)=

⎡
⎢⎢⎣

−4

6

3

⎤
⎥⎥⎦ ;

x3(0) =

⎡
⎢⎢⎣

−5

2

7

⎤
⎥⎥⎦ ; x4(0)=

⎡
⎢⎢⎣

5

−7

2

⎤
⎥⎥⎦ ,

three cases are considered. Fig. 5 shows the consen-
sus with fixed topology G20. Fig. 6 shows the consen-
sus with randomly switching connected topology with
dwell time �∗ = 1. Fig. 7 shows the consensus with
randomly chosen switching frequently connected topol-
ogy, in which over a time period 3T , two disconnected
modes are active on the first 2T duration and then
one connected mode is active. The modes are also ran-
domly chosen at switching moments. In all three cases,
all four trajectories will converge to a circle on a ball
surface. �

VI. CONCLUDING REMARKS

In this paper the consensus problem of multi-
agent systems was considered. By assuming that every
agent shares a common linear dynamic mode that is
completely controllable, we showed that the consensus
can be achieved via decentralized controls using local
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agent1
agent2
agent3
agent4

Fig. 6. Consensus with switching topology.

agent1
agent2
agent3
agent4

Fig. 7. Consensus with frequently connected topology.

information as long as the adjacent graph is frequently
connected.

We give some further remarks as follows:

Remark 1.

1. If the consensus is achieved, where do all the
agents go? It is obvious that they will converge
to their center x̄ . According to Lemma 5 we
know that the trajectories will converge to

ż = Az, z(0) = x̄(0).

2. To design a special target trajectory, a com-
monly known pre-state-feedback ui = K0xi

can be applied. In this case each agent must
know its own precise position.

3. Many interesting problems remain for further
study. Among them the joint connection is one
of the most challenging problems.
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