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The tracking differentiator was first proposed by Han in 1989 and the proof of convergence was presented the
first time in Han and Wang (Han, J.Q., and Wang, W. (1994), ‘Nonlinear Tracking-differentiator’, Journal of
Systems Science and Mathematical Science, 14, 177–183 (in Chinese)). Unfortunately, the proof there is
incomplete. This problem has been open for over two decades. In this article, we give a rigorous proof under
some additional conditions. An application for online estimation of the unknown frequencies for the finite sum of
the sinusoidal signals is presented. The numerical simulations illustrate the effectiveness of the estimation for
both linear and nonlinear tracking differentiators.
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1. Introduction

It is known that the powerful yet primitive propor-

tional-integral-derivative (PID) control law developed

in the period of the 1920s–1940s in the last century is

still playing very important role in modern engineering

control practice (Silva, Datta, and Bhattacharyya

2002; Han 2009). However, because of the noise

sensitivity, the derivative control is not always

physically implementable for most of control systems.

A noise-tolerant tracking differentiator was proposed

over two decades ago by Han (1989). Subsequently,

many engineering applications have been made (see

e.g. Emaru and Tsuchiya 2003; Sun and Gao 2005;

Su, Zheng, Dong, and Duan 2005; Su et al. 2005).

However, except the linear case that is proved in Guo,

Han, and Xi (2002), a rigorous mathematical proof is

still lacking for nonlinear tracking differentiators.

Although the first effort was made almost 20 years

ago in Han and Wang (1994), the proof there is only

true for constant signal (see also Emaru and Tsuchiya

(2003)), and the proof for general signal through the

approximation of step functions is not valid as we shall

indicate below.
Since the proof of Theorem 1 of Han and

Wang (1994) is reproduced in the literature (Su et al.

2005) as its Theorem 1, we refer it as Theorem 1.1

below.

Theorem 1.1 (Su et al. 2005): If any solution of the

system following

_z1ðtÞ ¼ z2ðtÞ,
_z2ðtÞ ¼ f ðz1ðtÞ, z2ðtÞÞ

�
ð1:1Þ

satisfies limt!1(z1(t) z2(t))¼ 0, then for any bounded

integral function v(t) and any constant T40, the solution

of the system following

_x1ðtÞ ¼ x2ðtÞ,

_x2ðtÞ ¼ R2f x1ðtÞ � vðtÞ,
x2ðtÞ

R

� �8<
: ð1:2Þ

satisfies

lim
R!1

Z T

0

jx1ðtÞ � vðtÞjdt ¼ 0: ð1:3Þ

In order to prove Theorem 1.1, the authors of Su

et al. (2005) first prove the following Lemma 1.1

(as Lemma 2 of Su et al. (2005), see also Emaru and

Tsuchiya (2003)).

Lemma 1.1 (Su et al. 2005): Theorem 1.1 is true if v(t)

is a constant function.

Sketch proof of Theorem 1.1 (Su et al. 2005): By

Lemma 1.1, the result is true for v(t)¼ const. For the

general bounded integrable v(t), t2 [0,T ], consider it
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firstly as a function of L1(0,T ). For any "40, there is a
continuous function  2C[0T ] such thatZ T

0

jvðtÞ �  ðtÞjdt5
"

4
:

For this  , there is a sequence of step functions ’n(t),
n¼ 1, 2, . . . , such that ’n converges to  uniformly in
[0,T ]. So there exists an integer N, such that
j (t)� ’M(t)j5"/(4T ) as M4N for all t2 [0T ].
Therefore,Z T

0

jvðtÞ � ’MðtÞjdt �

Z T

0

jvðtÞ �  ðtÞjdt

þ

Z T

0

j ðtÞ � ’MðtÞjdt5
"

2
:

Suppose that Ii, i¼ 1, 2, . . . ,m is a partition of [0,T ]
such that ’M takes constant in each Ii. By Lemma 1.1,
there exists an R040 such that as R4R0,Z

Ii

jx1ðtÞ � ’MðtÞjdt5
"

2m
8i ¼ 1, 2, . . . ,m: ð1:4Þ

Consequently,Z T

0

jx1ðtÞ � ’MðtÞjdt5
"

2
:

Therefore, as R4R0, it hasZ T

0

jx1ðtÞ � vðtÞjdt �

Z T

0

jx1ðtÞ � ’MðtÞjdt

þ

Z T

0

j’MðtÞ � vðtÞjdt5 ":

The proof is complete. œ

We now indicate where the mistake takes place in
the proof of Theorem 1.1. Firstly, the Lemma 1.1 is
only true for any given initial value of (1.2). Secondly,
in the first interval I1, we can find an R1 such that (1.4)
is true for all R4R1. But in the second interval I2, the
initial value of Equation (1.2) comes from I1 that
depends on R4R1. So we do not know if we can find a
common R2 such that (1.4) is true in I2 for all these
R-dependent initial values as R4R2. So one could not
get simply a common R0 as claimed before Equation
(1.4). Therefore, the proof of Theorem 1 of Su et al.
(2005) (and Theorem 1 of earlier literature Han (1989)
as well) is invalid.

It should be indicated that a first correct proof of
Theorem 1.1 for nonlinear system under restrictive
condition is given in Wang, Chen, and Yang (2007)
where it requires that the system (1.1) has a Lyapunov
function V satisfying

. _Vþ cV� � 0 in R
2 for some c40, � 2 (0, 1),

where _V ¼ rxV � f ðxÞ, x 2 R
2;

. the gradient rxV is bounded in R
2.

The first condition above is equivalent to that the
zero is a globally finite-time-stable equilibrium: for any
given initial value, the solution of system (1.1) would
be zero after an initial value dependent finite time. This
excludes even the linear case proved in Guo et al.
(2002) and is hard to verify for nonlinear systems
because the Lyapunov function is not unique.

There are many other research works on
differentiation trackers like high-gain observer based
differentiator (Dabroom and Khalil 1997), the super-
twisting second-order sliding-mode algorithm (Davila,
Fridman, and Levant 2005), linear time-derivative
tracker (Ibrir 2004), robust exact differentiation
(Levant 1998, 2003), to name just a few. However,
the tracking differentiator (1.2) has its advantage that
(a) it has weak stability; (b) it requires weak condition
on the input and (c) it has small integrate value of
jx1(t)� v(t)j in any bounded time interval rather than
the small error of jx1(t)� v(t)j after a finite transient
time. For a nice comparison with different differentia-
tion trackers, we refer to Xue, Huang, and Yang (2010)
(one problem indicated in Xue et al. (2010) for sliding-
mode based observer is the chattering problem).
Moreover, it is shown by linear case in Guo et al.
(2002) that the tracking differentiator (1.2) is
noise-tolerant.

In this article, we give a rigorous convergence proof
for this tracking differentiator under some additional
conditions for smooth systems, which is presented in
Section 2. In Section 3, the result of Section 2 is
generalised to high-order tracking differentiator.
Finally, in Section 4, we give an application of the
tracking differentiator to the online frequency estima-
tion of the finite sum of the sinusoidal signals, which
generalises the result of Guo et al. (2002). Some
numerical simulation results are presented to illustrate
the effectiveness of the estimation.

2. Convergence proof for tracking differentiator

Our main result is stated as Theorem 2.1.

Theorem 2.1: Let f :R2
!R be a locally Lipschitz

continuous function, f (0, 0)¼ 0. Suppose that the equili-
brium point (0, 0) of the following system is globally
asymptotically stable:

_x1ðtÞ ¼ x2ðtÞ, x1ð0Þ ¼ x10,
_x2ðtÞ ¼ f ðx1ðtÞ, x2ðtÞÞ, x2ð0Þ ¼ x20,

�
ð2:1Þ

where (x10,x20) is any given initial value. That is, the
equilibrium point (0, 0) is stable in the sense that for any
"40, there exists a �40 such that jx1(t)j þ jx2(t)j5"
for all t40 as long as jx10j þ jx20j5�. Moreover,
(x1(t)x2(t))! 0 as t!1.
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If the signal v is differentiable and

A ¼ supt2½0,1Þ j _vðtÞj51, then the solution of the

following tracking differentiator:

_z1RðtÞ ¼ z2RðtÞ, z1Rð0Þ ¼ z10,

_z2RðtÞ ¼ R2f z1RðtÞ � vðtÞ,
z2RðtÞ

R

� �
, z2Rð0Þ ¼ z20

8<
:

ð2:2Þ

is convergent in the sense that: for every a40, z1R is

uniformly convergent to v on [a,1) as R!1, where

(z10, z20) is any given initial value.

Proof: The proof will be split into several steps.

Step 1: Transform the system (2.2) into the system

(2.1) with a perturbation.

Suppose that (z1R, z2R) is the solution of system

(2.2). Let t ¼ s
R. Then

d

ds
z1R

s

R

� �
¼

1

R
z01R

s

R

� �
¼

1

R
z2R

s

R

� �
,

d

ds
z2R

s

R

� �
¼

1

R
z02R

s

R

� �
¼Rf z1R

s

R

� �
�v

s

R

� �
,
z2Rð

s
RÞ

R

� �
:

8>><
>>:
Let

y1RðsÞ ¼ z1R
s

R

� �
� v

s

R

� �
,

y2RðsÞ ¼
1

R
z2R

s

R

� �
:

8><
>: ð2:3Þ

Then

_y1RðsÞ ¼ y2RðsÞ �
_vð sRÞ

R
, y1Rð0Þ ¼ z1Rð0Þ � vð0Þ,

_y2RðsÞ ¼ f ð y1RðsÞ, y2RðsÞÞ, y2Rð0Þ ¼
z2Rð0Þ

R
:

8><
>:

ð2:4Þ

Therefore, YR¼ ( y1R, y2R)
> is a solution to the system

_YRðtÞ ¼ FðYRðtÞÞ þ GRðtÞ,

YRð0Þ ¼ YR0 ¼ z1Rð0Þ � vð0Þ,
z2Rð0Þ

R

� �>
,

ð2:5Þ

where

FðYRðtÞÞ ¼ y2RðtÞ, f ð y1RðtÞ, y2RðtÞÞð Þ
>,

GRðtÞ ¼ �
_vð tRÞ

R
, 0

� �>
:

If X¼ (x1, x2)
> is a solution to the system (2.1), then

(2.1) can be written as

_XðtÞ ¼ FðXðtÞÞ: ð2:6Þ

It is seen that the system (2.5) is a perturbed system

of (2.6).

Step 2: The existence of Lyapunov function.

Since f is locally Lipschitz continuous and system

(2.1) is globally asymptotically stable, by a result of

inverse-like Lyapunov theorem in ordinary differential

equations (see Theorem 4.17 of Khalil (2002, p. 167))

that there is a smooth, positive definite function

V :R2
!R and a continuous, positive definite function

W :R2
!R such that

� Vðx1,x2Þ ! 1 as jðx1,x2Þj ! 1;

�
dV

dt
¼ x2

@V

@x1
þ f ðx1, x2Þ

@V

@x2
� �Wðx1, x2Þ

along the trajectory of (2.1);

� fðx1, x2Þ 2 R
2
jVðx1, x2Þ � dg

is a bounded closed set of R
2 for any given d4 0:

By the existence of above continuous positive definite

functions, it follows from Lemma 4.3 of Khalil (2002,

p. 145) that there exist wedge functions

Ki : [0,1)! [0,1), i¼ 1, 2, 3, 4 such that

K1ðjðx1, x2ÞjÞ � Vðx1, x2Þ � K2ðjðx1, x2ÞjÞ,

lim
r!1

KiðrÞ ¼ 1, i ¼ 1, 2,

K3ðjðx1, x2ÞjÞ �Wðx1, x2Þ � K4ðjðx1, x2ÞjÞ:

Denote by YR(t; 0,YR0) the solution of (2.5).

Step 3: For each YR02R
2, there exists an R141 such

that when R4R1,

fYRðt; 0,YR0Þjt 2 ½0,1Þg � fY ¼ ð y1, y2ÞjVðY Þ � cg,

c ¼ maxfK2ðjY10jÞ, 1g4 0: ð2:7Þ

We assume this claim is false and obtain a

contradiction. Firstly, since @V
@y1

is continuous and the

set {Yjc�V(Y )� cþ 1} is bounded, we have

M ¼ sup
Y2fYjc�VðY Þ�cþ1g

@VðY Þ

@y1

����
����51:

Secondly,

WðY Þ � K3ðjYjÞ � K3K
�1
2 ðVðY ÞÞ � K3K

�1
2 ðcÞ4 0

8Y 2 fYjc � VðY Þ � cþ 1g: ð2:8Þ

Since the claim (2.7) is false and

V(YR0)�K2(jYR0j)�K2(jY10j)� c, for R1 given by

R1 ¼ max 1,
AM

K3K
�1
2 ðcÞ

� �
, ð2:9Þ

there exists an R4R1 and 0 � tR1 5 tR2 51 such that

YR tR1 ; 0,YR0

	 

2 fYjVðY Þ ¼ cg,

YR tR2 ; 0,YR0

	 

2 fYjVðY Þ4 cg,

ð2:10Þ
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and

YR t; 0,YR0ð Þjt 2 tR1 , t
R
2

� � �
� fYjc � VðY Þ � cþ 1g:

ð2:11Þ

Combining (2.8) and (2.11) yields

inf
t2½tR

1
,tR
2
�

WðYRðt; 0,YR0ÞÞ � K3K
�1
2 ðcÞ: ð2:12Þ

Therefore, for t 2 ½tR1 , t
R
2 �,

dVðYRðt; 0,YR0ÞÞ

dt
¼

dV

dt

����
along the system (2.5)

� �WðYRðt; 0,YR0ÞÞ þ
AM

R

� �K3K
�1
2 ðcÞ þ AM

K3K
�1
2 ðcÞ

AM

¼ 0,

which shows that V(YR(t; 0,YR0)) is non-increasing in
½tR1 , t

R
2 �, and hence

VðYRðt
R
2 ; 0,YR0ÞÞ � VðYRðt

R
1 ; 0,YR0ÞÞ ¼ c:

This contradicts (2.10), and hence (2.7) is valid.

Step 4: There is an R2�R1, such that for each
R4R2, there exists a TR 2 ½0,

2c
K3K

�1
2
ð�Þ
� such that

jYR(TR; 0, YR0)j5�.

Actually, for any given "40, since V is continuous,
there exists a �2 (0, ") such that

0 � VðY Þ � K1 "ð Þ 8jYj � �: ð2:13Þ

Now, for each Y2 {YjjV(Y )j � �},

WðY Þ � K3ðjYjÞ � K3K
�1
2 ðVðY ÞÞ � K3K

�1
2 ð�Þ4 0:

ð2:14Þ

By Step 3, for every R4R1, {YR(t; 0,YR0)j
t2 [0,1)}� {YjV(Y )� c}, and hence

H¼ sup
t2½0,1Þ

@V

@y1
ðYRðt;0,YR0ÞÞ

����
����� sup

Y2fYjVðYÞ�cg

@V

@y1
ðY Þ

����
����51:

Suppose that the claim is false. Then for

R2 ¼ max R1,
2HA

K3K
�1
2 ð�Þ

� �
, ð2:15Þ

there exists an R4R2 such that jYR(t; 0,YR0)j � � for
any t 2 ½0, 2c

K3K�12
ð�Þ
�. This together with (2.14) concludes

that for any R4R2 and all t 2 ½0, 2c
K3K�12

ð�Þ
�,

dVðYRðt; 0,YR0ÞÞ

dt
¼

dV

dt

����
along the system (2.5)

� �WðYRðt; 0,YR0ÞÞ

þ
@VðYRðt; 0,YR0ÞÞ

@y1

v0ð tRÞ

R

����
����

� �
K3K

�1
2 ð�Þ

2
5 0:

Integrating above inequality over ½0, 2c
K3K

�1
2
ð�Þ
� to give

V YR
2c

K3K
�1
2 ð�Þ

; 0,YR0

� �� �

¼

Z 2c

K3K
�1
2 ð�Þ

0

dVðYRðt; 0,YR0ÞÞ

dt
dtþ VðYR0Þ

� �
K3K

�1
2 ð�Þ

2

2c

K3K
�1
2 ð�Þ

þ VðYR0Þ

� 0:

This is a contradiction since for each t 2 ½0, 2c
K3K

�1
2
ð�Þ
�,

jYR(t; 0,YR0)j � �. The claim follows.

Step 5: For each R4R2, if there exists a tR0 2 ½0,1Þ

such that

YRðt
R
0 ; 0,YR0Þ 2 fYjjYj � �g,

then

YR t; 0,YR0ð Þ
��t 2 tR0 ,1

	 
 �
� YkYj � "f g: ð2:16Þ

Suppose (2.16) is not valid. Then there is a

tR2 4 tR1 � tR0 such that

YR tR1 ; 0,YR0

	 
�� �� ¼ �,
YR tR2 ; 0,YR0

	 
�� ��4 ",

YRðt; 0,YR0Þjt 2 tR1 , t
R
2

� � �
� fYjjYj � �g:

ð2:17Þ

This together with (2.14) concludes that for t 2 ½tR1 , t
R
2 �,

K1 YR tR2 ; 0,YR0

	 
�� ��	 

� V Y tR2 ; 0,YR0

	 
	 

¼

Z tR
2

tR
1

dVðYðt; 0,YR0ÞÞ

dt
dt

þ V YR tR1 ; 0,YR0

	 
	 

�

Z tR
2

tR
1

�
K3K

�1
2 ð�Þ

2
dt

þ V YR tR1 ; 0,YR0

	 
	 

� V YR tR1 ; 0,YR0

	 
	 

: ð2:18Þ

By (2.13) and jYRðt
R
1 ; 0,YR0Þj ¼ �, we have

VðYRðt
R
1 ; 0,YR0ÞÞ � K1 "ð Þ:

This together with (2.18) gives

K1 YR tR2 ; 0,YR0

	 
�� ��	 

� K1 "ð Þ:

Since the wedge function K1 is increasing, the above

inequality implies jYRðt
R
2 ; 0,YR0Þj � ", which contra-

dicts the middle inequality of (2.17). The claim (2.16)

follows.
Finally, for each a40, by results of Step 4 and

Step 5, for R4 maxfR2,
2c

aK3K�12
ð�Þ
g and t2 [a,1),

696 B.-Z. Guo and Z.-L. Zhao
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we have

z1RðtÞ � vðtÞ
�� �� ¼ y1RðRtÞ

�� �� � YRðRtÞ
�� �� � ":

Hence z1R converges uniformly to v in [a,1) as

R!1. The proof is complete. œ

3. High-order tracking differentiator

In order to get the approximations of the high-order

derivatives of a signal, we need the high-order tracking

differentiator. The following Theorem 3.1 is about the

convergence of high-order tracking differentiator.

Theorem 3.1: Let f :Rn
!R be a locally Lipschitz

continuous function. Assume that the equilibrium point

(0, 0, . . . , 0) of the following system is globally asympto-

tically stable:

_x1ðtÞ ¼ x2ðtÞ, x1ð0Þ ¼ x10,
_x2ðtÞ ¼ x3ðtÞ, x2ð0Þ ¼ x20,
� � � � � � � � � � � � �

_xn�1ðtÞ ¼ xnðtÞ, xn�1ð0Þ ¼ xðn�1Þ0,
_xnðtÞ ¼ f ðx1ðtÞ, x2ðtÞ, . . . , xnðtÞÞ, xnð0Þ ¼ xn0,

8>>>><
>>>>:

ð3:1Þ

where (x10, x20, . . . , xn0) is any given initial value. If the

signal v is differentiable and A ¼ supt2½0,1Þ j _vðtÞj51,

then the solution of the following tracking differentiator:

_z1RðtÞ ¼ z2RðtÞ, z1Rð0Þ ¼ z10,
_z2RðtÞ ¼ z3RðtÞ, z2Rð0Þ ¼ z20,
� � � � � �

_zðn�1ÞRðtÞ ¼ znRðtÞ, zðn�1ÞRð0Þ ¼ zðn�1Þ0,

_znRðtÞ ¼ Rnf z1RðtÞ � vðtÞ,
z2RðtÞ

R
, . . . ,

znRðtÞ

Rn�1

� �
,

znRð0Þ ¼ zn0

8>>>>>>>><
>>>>>>>>:

ð3:2Þ

is convergent in the sense that: for every a40, z1R is

uniformly convergent to v on [a,1) as R!1, where

(z10, z20, . . . , zn0) is any given initial value.

Proof: Suppose that (z1R, z2R, . . . , znR) is the solution

of system (3.2). Let t ¼ s
R. Then

d

ds
z1R

s

R

� �
¼

1

R
z01R

s

R

� �
¼

1

R
z2R

s

R

� �
,

d

ds
z2R

s

R

� �
¼

1

R
z02R

s

R

� �
¼

1

R
z3R

s

R

� �
,

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

d

ds
zðn�1ÞR

s

R

� �
¼

1

R
z0ðn�1ÞR

s

R

� �
¼

1

R
znR

s

R

� �
,

d

ds
znR

s

R

� �
¼

1

R
z0nR

s

R

� �
¼ Rn�1f z1R

s

R

� �
� v

s

R

� �
,

�
z2R

s

R

� �
, . . . , znR

s

R

� ��
:

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

Let

y1RðsÞ ¼ z1R
s

R

� �
� v

s

R

� �
,

y2RðsÞ ¼
1

R
z2R

s

R

� �
,

y3RðsÞ ¼
1

R2
z3R

s

R

� �
,

� � � � � � � � � � � � � � � � � � ,

ynRðsÞ ¼
1

Rn�1
znR

s

R

� �
:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð3:3Þ

Then

_y1RðsÞ ¼ y2RðsÞ �
_vð sRÞ

R
,

_y2RðsÞ ¼ y3RðsÞ,
� � � � � � � � � � � � � � � � � � � � � � � � � � �

_yðn�1ÞRðsÞ ¼ ynRðsÞ,
_ynRðsÞ ¼ f y1RðsÞ, y2RðsÞ, . . . , ynRðsÞð Þ:

8>>>>><
>>>>>:

ð3:4Þ

Therefore, ( y1R, y2R, . . . , ynR) is a solution to the

disturbed system of (3.1). Again we can write (3.4) as

_YRðtÞ ¼ FðYRðtÞÞ þ GRðtÞ, ð3:5Þ

where YR¼ ( y1R, y2R, . . . , ynR)
>, and

FðYRðtÞÞ¼ y2RðtÞ, . . . ,ynRðtÞ,fðy1RðtÞ,y2RðtÞ, . . . ,ynRðtÞÞð Þ
>,

GRðtÞ¼ �
_vð tRÞ

R
,0, . . . ,0

� �>
:

It is seen that except the dimension, there is no

difference between (2.5) and (3.5). Therefore, the proof

for the theorem can now be completed along the same

line of the proof of Theorem 2.1. œ

Remark 3.1: Because of Theorem 3.1, we can con-

sider ziR(t) as the approximation of the derivative

v(i�1)(t) for i¼ 2, 3, . . . , n provided that the latter exist

in the classical sense or are considered as the general-

ised derivatives by considering v as a generalised

function.

Theorem 2.1 is first proved in Guo et al. (2002)

with linear f where the result is much stronger than that

claimed by Theorem 2.1: the z2R is indeed the

approximation of the derivative of v in the classical

sense. For the nonlinear f, it is still open for the

convergence of z2R to _v in classical sense. In Theorem

3.2, we generalise the result of Guo et al. (2002) to the

higher order tracking differentiator.

Theorem 3.2: Assume that the matrix following

A ¼

0 1 0 � � � 0
0 0 1 � � � 0
..
. ..

. ..
. . .

. ..
.

0 0 0 � � � 1
a1 a2 a3 � � � an

0
BBBB@

1
CCCCA ð3:6Þ
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is Hurwitz, and v : [0,1)!R is the function satisfying

supt2[0,T ],1�k�n jv
(k)(t)j ¼M51 for constants T,M40.

Then the following linear tracking differentiator

_z1RðtÞ ¼ z2RðtÞ, z1Rð0Þ ¼ z10,
_z2RðtÞ ¼ z3RðtÞ, z2Rð0Þ ¼ z20,
� � � � � � � � � � � � � � � � � � � � � � � � � � � �

_zðn�1ÞRðtÞ ¼ znRðtÞ, zðn�1ÞRð0Þ ¼ zðn�1Þ0,

_znRðtÞ ¼ Rn a1ðz1RðtÞ � vðtÞÞ þ a2z2RðtÞ
R þ � � � þ

anznRðtÞ
Rn�1

� �
,

znRð0Þ ¼ zn0

8>>>>>>><
>>>>>>>:

ð3:7Þ

is convergent in the sense that: for any 05a5T, zkR
(k¼ 1, 2, . . . , n) converges uniformly to v(k�1) in [a,T ] as

R!1, where (z10, z20, . . . , zn0) is any given initial value.

Proof: In the linear case, (3.5) becomes

_YRðtÞ ¼ AYRðtÞ þ
_vð tRÞ

R
, 0, . . . , 0

� �>
: ð3:8Þ

Solve the linear differential equation (3.8) to get

YRðtÞ ¼ eAtYRð0Þ þ

Z t

0

eAðt�sÞ
_vð sRÞ

R
, 0, . . . , 0

� �>
ds:

ð3:9Þ

It then follows that

y1RðtÞ ¼ eAt
� �

1
YRð0Þ þ

Z t

0

eAðt�sÞ
� �

11

_vð sRÞ

R
ds, ð3:10Þ

where [eAt]1 denotes the first row of the matrix eAt, and

[eA(t�s)]11 the first entry of eA(t�s).
By (3.3) and (3.10), we have

z1RðtÞ ¼ eRAt
� �

1
YRð0Þ þ

Z Rt

0

eAðRt�sÞ
� �

11

_vð sRÞ

R
dsþ vðtÞ:

ð3:11Þ

Differentiate z1R with respect to t to give

z2RðtÞ ¼ _z1RðtÞ

¼ RAeRAt
� �

1
YRð0Þ þ _vðtÞ

þ

Z Rt

0

d

dt
eAðRt�sÞ
� �

11

	 
 _vð sRÞ

R
dsþ _vðtÞ

¼ RAeRAt
� �

1
YRð0Þ þ _vðtÞ

�

Z Rt

0

d

ds
eAðRt�sÞ
� �

11

	 

_v

s

R

� �
dsþ _vðtÞ

¼ RAeRAt
� �

1
YRð0Þ þ _vðtÞ � eAðRt�sÞ

� �
11

_v
s

R

� ����Rt
0

þ

Z Rt

0

eAðRt�sÞ
� �

11

€v s
R

	 

R

dsþ _vðtÞ

¼ RAeRAt
� �

1
YRð0Þ þ eRAt

� �
11

_vð0Þ

þ

Z Rt

0

eAðRt�sÞ
� �

11

€v s
R

	 

R

dsþ _vðtÞ: ð3:12Þ

Generally, we have, by induction that

zkRðtÞ ¼ ðRAÞ
k�1eRAt

� �
1
YRð0Þþ ðRAÞ

k�2eARt
� �

11
_vð0Þ

þ �� �þ eARt
� �

11
vðk�1Þð0Þ

þ

Z Rt

0

eAðRt�sÞ
� �

11

vðkÞ s
R

	 

R

dsþ vðk�1ÞðtÞ, 2� k� n:

ð3:13Þ

Since A is Hurwitz, we may assume without loss of
generality that there exist constants L,!40 such that
all entries of eAt ¼ feijðtÞg

n
i,j¼1 satisfy

jeijðtÞj � Le�!t 8t � 0, i, j ¼ 1, 2, . . . , n: ð3:14Þ

Since jv(k)(t)j �M 8t2 [0T ], we have, for every
t2 [0,T ], thatZ Rt

0

eAðRt�sÞ
� �

11

vðkÞ s
R

	 

R

ds

�����
�����¼

Z Rt

0

e11ðRt� sÞ
vðkÞ s

R

	 

R

ds

�����
�����

�
ML

R

Z Rt

0

e�!ðRt�sÞds�
ML

!R
:

This together with (3.13) and (3.14) gives

lim
R!1

zkRðtÞ ¼ vðk�1ÞðtÞ uniformly in ½a,T � for any

05 a5T, 2 � k � n: ð3:15Þ

The proof is complete. œ

Remark 3.2: If supt2[0,1],1�k�n jv
(k)(t)j ¼M51, then

the conclusion of Theorem 3.2 can be replaced by the
more strong form: zkR (k¼ 1, 2, . . . , n) converges
uniformly to v(k�1) in [a,1), as R!1.

4. Application to frequency estimation of sinusoidal

signals

We consider the finite sum of sinusoidal signals
vðtÞ ¼

Pn
i¼1 Ai sinð!itþ �iÞ, where the !i40 are differ-

ent frequencies. The aim of this section is to estimate
all frequencies !i by using tracking-differentiator. The
even order derivatives of v in t up to 2n� 2 are found
to be

€vðtÞ ¼
Xn
i¼1

�iAi sinð!itþ �iÞ,

vð4ÞðtÞ ¼
Xn
i¼1

�2i Ai sinð!itþ �iÞ,

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

vð2n�2ÞðtÞ ¼
Xn
i¼1

�n�1i Ai sinð!itþ �iÞ,
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where �i ¼ �!
2
i . That is

v
€v
..
.

vð2n�2Þ

0
BB@

1
CCA ¼ �

A1 sinð!1tþ �1Þ
A2 sinð!2tþ �2Þ

..

.

An sinð!ntþ �nÞ

0
BBB@

1
CCCA, ð4:1Þ

where

� ¼

1 1 � � � 1
�1 �2 � � � �n

� � � � � � . .
.

� � �

�n�11 �n�12 � � � �n�1n

0
BBB@

1
CCCA: ð4:2Þ

Since � is invertible, we have

A1 sinð!1tþ �1Þ
A2 sinð!2tþ �2Þ

..

.

An sinð!ntþ �nÞ

0
BBB@

1
CCCA ¼ ��1

v
€v
..
.

vð2n�2Þ

0
BB@

1
CCA: ð4:3Þ

Denote ��1 by

��1 ¼

�11 �12 � � � �1n
�21 �22 � � � �2n

� � � � � � . .
.
� � �

�n1 �n2 � � � �nn

0
BB@

1
CCA: ð4:4Þ

Since for any b� 0

!2
k ¼ lim

t!1

Z t

b

ððAk sinð!ktþ �kÞÞ
0
Þ
2 dtZ t

b

ðAk sinð!ktþ �kÞÞ
2 dt

, k ¼ 1, 2, . . . , n,

it follows from (4.3) that

��k ¼ lim
t!1

Pn
i,j¼1 �ki�kj

R t
b v
ð2i�1ÞðsÞvð2j�1ÞðsÞdsPn

i,j¼1 �ki�kj
R t
b v
ð2i�2ÞðsÞvð2j�2ÞðsÞds

,

k ¼ 1, 2, . . . , n:

Let T be a sufficiently large number, and let

aij ¼

Z T

b

vð2i�1ÞðsÞvð2j�1ÞðsÞds,

bij ¼

Z T

b

vð2i�2ÞðsÞvð2j�2ÞðsÞds, i, j ¼ 1, 2, . . . , n:

8>><
>>:

ð4:5Þ

By solving the following high-order equations of n

unknown elements �i, i¼ 1, 2, . . . , n, we can get the

approximate values of �i:

Xn
i,j¼1

�1i�1jbij�1 þ
Xn
i,j¼1

�1i�1ja1j ¼ 0,

Xn
i,j¼1

�2i�2jbij�2 þ
Xn
i,j¼1

�2i�2ja2j ¼ 0,

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �Xn
i,j¼1

�ni�njbnj�1 þ
Xn
i,j¼1

�ni�njanj ¼ 0,

8>>>>>>>>>><
>>>>>>>>>>:

ð4:6Þ

where �i ¼ �!
2
i , �ij are rational functions of �i, and the

values of aij, bij in (4.5) can be approximated by the

high-order tracking differentiator (3.2).

Example 4.1: Let us investigate the two different

frequencies case.

vðtÞ ¼ A1 sinð!1tþ �1Þ þ A2 sinð!2tþ �2Þ: ð4:7Þ

This is the case of n¼ 2. Equation (4.6) now becomes

ða11 þ 2b12Þ�1�2 � b22�1 � b22�2 � a22 ¼ 0,
b11�1�2 þ a11�2 þ a11�1 � 2a12 � b22 ¼ 0,

�
ð4:8Þ

and (4.5) becomes, in this case

a11 ¼

Z T

b

z22RðtÞ dt, a12 ¼ a21 ¼

Z T

b

z2RðtÞz4RðtÞdt,

a22 ¼

Z T

b

z24RðtÞ dt,

b11 ¼

Z T

b

z21RðtÞdt, b12 ¼ b21 ¼

Z T

b

z1RðtÞz3RðtÞdt,

b22 ¼
R T
b z23RðtÞdt,

8>>>>>>>>><
>>>>>>>>>:

ð4:9Þ

where instead of v(i�1), we used directly ziR to be the

approximation of v(i�1), i¼ 1, 2, 3, 4, by the linear

tracking differentiator (3.7):

_z1RðtÞ ¼ z2RðtÞ, z1Rð0Þ ¼ z10,

_z2RðtÞ ¼ z3RðtÞ, z2Rð0Þ ¼ z20,

_z3RðtÞ ¼ z4RðtÞ, z3Rð0Þ ¼ z30,

_z4RðtÞ ¼ �24R
4ðz1RðtÞ � vðtÞÞ � 50R3z2RðtÞ

�35R2z3RðtÞ � 10Rz4RðtÞ, z4Rð0Þ ¼ z40:

8>>>>>>>><
>>>>>>>>:

ð4:10Þ

Now the matrix A becomes

0 1 0 0

0 0 1 0

0 0 0 1

�24 �50 �35 �10

0
BBBBB@

1
CCCCCA, ð4:11Þ

which has eigenvalues �1, �2, �3, �4. So it is

Hurwitz. Hence the tracking differentiator (4.10) is

well-defined. Note that in (4.8), �1 and �2 are

symmetrical. If we cancel �1 from (4.8), we get a

quadratic equation of �2. So if there are two real

solutions to (4.8), they must be (�1, �2).

Let A1¼ 1, A2¼ 2, !1¼ 1, !2¼ 2, �1¼�2¼ 0 in

(4.7), b¼ 1, T : 2! 35 with step equal to 0.1 in (4.9)

and z10¼ z20¼ z30¼ z40¼ 0, R¼ 20 in (4.10). The

numerical results for frequency estimation by

International Journal of Control 699
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(4.8)–(4.10) are plotted in Figure 1(a). Figure 1(b)

shows the simulation for A1¼A2¼ 1, !1¼ 10, !2¼ 20,

�1¼�2¼ 0, z10¼ z20¼ z30¼ z40¼ 0, R¼ 20, b¼ 1,

T : 2! 15 with step equal to 0.01. It is seen that the

estimations are quite satisfactory.

Example 4.2: In this example, we use a nonlinear

second-order tracking differentiator to estimate the

frequency of the signal v¼A sin(!tþ�). This is the

case of n¼ 1 like that discussed in Guo et al. (2002) by

linear tracking differentiator.
In this case

! ¼ lim
T!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR T
b

_v2ðtÞdtR T
b v2ðtÞdt

vuut :

The nonlinear tracking differentiator that we use

here is

_z1RðtÞ ¼ z2RðtÞ, z1Rð0Þ ¼ z10,
_z2RðtÞ ¼ �R

2 signðz1RðtÞ � vðtÞÞjz1RðtÞ � vðtÞj0:3

�Rz2RðtÞ, z2Rð0Þ ¼ z20:

8<
:

ð4:12Þ

In order for the tracking differentiator (4.12) to satisfy

all conditions of Theorem 3.1 as (3.2), we only need to

prove that the equilibrium point (0, 0) of the following

systems is globally asymptotically stable:

_x1 ¼ x2,
_x2 ¼ �signðx1Þjx1j

0:3 � x2:

�
ð4:13Þ

In fact, let the Lyapunov function be defined by

Vðx1, x2Þ ¼
jx1j

1:3

1:3
þ
x22
2
:

Then (obviously, this Lyapunov function does not

satisfy the condition required in Wang et al. (2007) and

is different to the super-twisting observer in Davila

et al. (2005) where the function is not Lipschitz

continuous)

dV

dt

����
along the system (4.13)

¼ �x22 � 0:

Note that the set

ðx1, x2Þ

���� dVdt
����
along the system (4.13)

¼ 0

( )

does not contain any non-zero trajectory of system

(4.13). By Corollary 4.1 of Khalil (2002, p. 128),
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Figure 1. Estimation of one frequency by nonlinear tracking differentiator.
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Figure 2. Estimation of two frequencies by linear tracking
differentiator.
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the equilibrium point (0, 0) of the system (4.13) is
globally asymptotically stable. Hence the tracking
differentiator (4.12) satisfies all conditions of
Theorem 3.1.

In Figure 2, we plot the numerical results for A¼ 1,
z10¼ z20¼ 0, !¼ 2, b¼ 10, R¼ 100, T : 10! 25 with
step¼ 0.0001. It is obviously convergent.

A different approach by nonlinear observer for
frequency estimation of finite sum of the sinusoidal
signals is also discussed in Xia (2002). However, due to
different approaches, it is hard to compare the
effectiveness of these two approaches. But our
approach is at least as simple as nonlinear observer.
The first far more simple global convergent frequency
estimator for single sinusoidal is presented in Hsu,
Ortega, and Damm (1999). The noise tolerance of the
tracking differentiator presented in this article has been
proved both theoretically and numerically for linear
case in Guo et al. (2002).

5. Concluding remarks

In this article, we give a rigorous proof of the
convergence of the nonlinear tracking differentiators
for both two-dimensional and high-dimensional cases
under some weak assumptions. Numerous applications
are reported for this tracking differentiator proposed
two decades ago as a key link towards active
disturbance rejection control (Han 2009), and its
advantages over the existing ones like anti-chattering
and noise tolerance. We also apply this tracking
differentiator to the frequency estimation of finite
sum of the sinusoidal signals. The simulation shows its
effectiveness.
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