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We study optimal birth control of population systems of McKendrick type which
is a distributed parameter system involving first order partial differential equations
with nonlocal bilinear boundary control. New results on problems with free final
time, phase constraints, and mini-max costs are presented. € 1990 Academic Press, Inc.

In [1] we discussed optimal birth control of population systems of
McKendrick type. The present article (which is a direct continuation of
[1]) presents further new results of current interests. These include
problems with free final time, of which the minimum time problem is a
special case (but relaxing many convexity assumptions). Systems with
phase constraints are also studied. Finally, mini-max control for popula-
tion regulation is characterized. It is assumed that the reader is familiar
with the terminology and notation of [1].

5. FrRee FINAL TIME PROBLEM

Consider the free final time optimal control problem of the population
control system

Problem (P): Minimize J(8, p) = [ ! [ " Lp(r, 1), B(1)) dr dt
0 0
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subject to

dp(r, 1) N op(r, t)
ot or

P(rao)zl’o(”)a Ogrgrm»

= —u(r)p(r,t), O<r<r,, t>0,

p(0.0)= 1) [ K(r) h(r) pr, Dy dr, 120,

p(r, t,)=p°(r), t,>0,B(t)eMcR™, (1)
where L is a function defined on L*(0, r,,) x R* satisfying

(1) L(p(r), B) is continuous in f,
(2) |0L(p(r), B)/dp| is bounded for every bounded subset of
L0, r, ) xR*.

For any measurable function v(s) >0, define the time transformation

t(r)=jt o(s)ds, t(1)=t, 2)
and let p(r, t) = p(r, t(1)),
_ {B(e(x)), 1€S,,
o= {arbitrary, 1€ 8,, (3)

then ( p(r, t), B(1)) satisfies

B0 4o PO yryue) p o 0<r<r,, 0SS,
T r

p(r’O)zpo(r)a 0<"<”m9

v(t) p(0, 1) =wv(t) B(1) jrz k(r) h(r) p(r, 7) dr, 0<gt«l,

p(r, 1)=p°(r), (4)

where
S,={t]7e[0,1], v(r)>0},

S,={t|te[0,1], v(r)=0}. (5)

Conversely, if (p(r,t), B(t)) solves Eq.(4), define p(r, 1) = p(r, 7(¢)),
Bty = B(x(1)),

(t)=inf{z | t(z) =1} (6)
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then (p(r, 1), (1)) satisfies Eq.(l) for r=#t), v(r)>0, but for the
monotone function #(t)= [ v(s) ds, mes{t=1(t) | o(t) >0} =1, =g v(s) ds,
so (p(r, t), B(¢)) satisfies Eq. (1) for te [0, ¢,] ae.

Based on the above arguments, we consider the optimal (fixed final time)
problem

Problem (Q): Minimize J(B, p)= j ! j " L( p(r, 1), (1)) dr di subject to Eq. (4).
0 Y0

p*, B*, t,) solves Problem (P), then for any v*(r)>0 satisfying
j(l, v*(s)ds=1t,, p*(tr) defined similar to (3), (p*(r, 1), f*(), v*) solves
Problem (Q). By this f(r), we put forward another problem as

Problem (L): Minimize J(8*, p, v)= fl frm o(t) L{p(r, 1), f*(z)) drdt

subject to
Op(ar, T)+ (1) 6p(ar, i2 = —u(r)v(z) p(r,1), O<r<r,,0<1<]1,
T r

p(r’o)po(r)’ Ogrgrm7

v(t) p(0, 1) =v(7) B*(7) jrz k(r) h(r) p(r, 1) dr, 0<1<1,

r1

p(r, 1)=p°(r), (7)

and (p*, v*) solves Problem (L). Consider the solution of (7) as that of the
integral equation

J, pts.e)ds— [ pols)ds+[ o) [ ~ B [ k) () i é)dr] d
[ [ ote o) ps, € ds e ®)
p(r, 1) = p°(r). (9)

Similarly, we consider that the solution of the differential equation is
equivalent to that of the corresponding integral equation.

Simple arguments can be found that the Eq. (8) has a unique solution on
C(0, 1; L*(0,r,,)) and so we take X=C(0, 1; L*0,r,))x L*(0, 1) as the
state space. Define the inequality constraint

Q,={(p(r,1),v(z))e X | v(r)=0,forte[0,1] ae.} (10)
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and the equality constraint
Q,={(p(r, 1), v(1)) € X | (p, v) satisfies (8) and(9) }. (11)
Under these notations, we can write problem (L} as
1 arm
Minimize J(§*, p, v) ——-J J v(t) L(p(r, 1), B*(t)) dr dz
0 Y0
subject to (p(r, 1), v(1))e 2, N2, X. (12)

J(B*, p, v) is Fréchet differentiable at any point (4, §) and

J’(ﬂ*, Pos UO)(p’ ﬁ)

:J er[”o(f)a (m(r(;) B*(x ))p(r,t)+v(r)L(po,/3*)]drdr (13)

and so the decreasing direction cone of J'(8*, p,, vy) at (p*, v*) is
Ko={(p,v) | J'(B*, p*, v*)(p,v)<0}. (14)

If K, &7, then for any f, € K&, there exists a constant 4,0, such that

fO(pv U) .
1 orm * *
= _,{OJ J v*(1) [OL(p (r.z), B (T))p(r 1)+ L(p*, B*)v r)] dr dr.
00 op
(15)
Notice that Q, = C(0, 1; L*(0, r,,)) x 2,, 2, ={ v(t)e L=(0, 1) | v(r) =0}
is a closed convex subset of L*(0, 1), @, =CxQ, # @ and so the feasible

direction cone of Q, at (p*, v*) is
K= {48, —(p*, v*)) | 1>0} (16)
for any f, € K¥, if ¢(¢) € L(0, 1) such that
1
Sip.o)=] @) ete)de (17)

then [2]

ce(t)[v—v*(r)] =20, Yve (0, 0), e [0, 1] ae. (18)
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In order to determine the tangent direction cone of Q, at (p*, v*), we
define the operator as G: X - X

G(p,v)= U pls. ) ds= [ pofs)ds+ [ o(e)

. [p(r, &= [ k)b pir ) |
+jj £)ds dg, p(r, 1)— (r)] (19)
then
Q,={(p.v)|G(p,v)=0}. (20)
Now

G'(p*, v*)(p,v)

~| [ pts s+ [ 00060 52 €007 ptr )
=5 [ KOO P20 ) 407 plr. T | a2

rl

[ [T WD) P05, 4 0(0) pls, 1) s pr 1)] 1)
and we solve the equation

G'(p*, v*)(p,v)=(q, g)e X;

ie.,
[ ot orase | o) pre 1+ 000 ot 01
1 [ K KO P70, £)40%E) pir 1 [

+f; L uls) [o(£) p*(s, &)+ v*(8) p(s, &)1 ds dE = g(r, 1),
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If the linearized system

opr) |, 3plr)
o T,
op*(r, 1)
= —u(r)ov(z) p*(r, T) +v*(z) p(r, 1)1 — (1) 2

p(r,0)=0,
v(z) p*(0, )+ v*(z) p(0, 7)

—o(e) () [ k() h(r) p*(r, <) dir

1

+0%(@) B2() [ k() b pr, ) dr

(23)

is controllable, then let j(r, )= p(r, )+ d(r, ), d(r, t) be determined by

| s mrds+ [ or@) [d(r, =B [ k() ) dlr, €) dr} a

T
4]

+ for jf v*(&) uls) d(s, &) ds dE = q(r, 7),

0

(p, B), B=F solves Eq. (23) and p(r, 1)=g(r)—d(r, 1), so (p, f) solves
Eq. (22). In this case, the tangent direction cone of 2, at { p*, v*) is deter-

mined by
K= {(p,0) | G'(p* v*)(p, v) =0},
ie.,
op(r, 1) op(r, 1)
o T =5
op*(r,
=~ P, O+ 04(E) plr, 0]~ wle) L)

p(r,0)=0,

v(t) p*(0, 7) + v*(7) p(0, 7) p(O, 1)

=o(0) f*(2) [ K(r) h(r) p*(r, 7) dr + v%(2) B (2) [ ktr) bty pir, < dr

p(r, 1)=0.

(24)
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K,=K;1nK,,, Ki;={(p,v)| p(r, 1)=0}, K,, consists of such (p,v)eX
such that

op(r,t) . 0p(r, 1)
Fran L

op*(r, 7)
or

= —u(r)Lo(z) p*(r, 1) +0*(1) p(r, 1) ] —v(7)

p(r,0)=0,
v(t) p*(0, 1) +v*(7) p(0, 7)

= () B*(0) [ klr) hir) p*(r, ) dir

n

+o40) p*(0) [ k() R(r) plr, ©) dir (25)

1

For any fe K¥, f = fi, + f12, J1i€ KT, i=1,2,

folpo)=["a(r) p(r. D, a(r)e 30, 1) (26)

By the Dubovitskii—-Milyutin Theorem, there exist functionals f;e KX,
i=0,1, 2, not all identically zero such that

Sotfit+fu+fi2=0. (27)
In particular for any (p, v) satisfying (25), f,,(p, v) =0, and so

fl(ps U): _fO(pa U)_fxz(l’, U)

Ler [OL(p*(r, 1), B*(1)) *
=10f0 L,[ op !

() p(r, 7)

# L B 00e) [drde= [ Ta0) pr e 28)
0
where the solution of (25) is considered as that of the integral equation

J, plsmrds+ | [[v(c) PX(r, &)+ 0¥(E) pl(r, ©)]

— &) [ K HOLUE) p¥(r, €) 4 0%(2) plr, ©)] dr] &

r

[ M) p*5, 4070 pls DT s de =0, (29)
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Define the adjoint equation

aq(r,t) | .. 0qlr,7)
o TU TS
'JL *’ *
=U"‘(f)u(r)q(r,T)—ﬁ*(f)k(r)h(r)q(f)+/oC (l;/?ﬂ )
g(r, 1)=a(r)
v*(1) (0, 1) = v*(1) q(7) (30)
and
j i(s, 7) ds = g(r, 7). (31)

As in [1], we have

LEMMA 1. The solution of Eq.(25) and the solution of Egs. (30), (31)
have the relation

Ao jo f [(M(p*(r, 1), f*(1))

o v*(z) p(r, 1)

+ L(p*, B*) v(r)} dr dr — er a(r) p(r, 1) dr
(4]
LI i g [k 10 01
+ j'"' u(r) p*(r. ) gr, 1) dr] o(t) dr. (32)
0

Lemma 1 together with (28) and (18) implies that

[J.rm p*(r, 1) §(r, 7) dr dr + B*(7) '[rz k(r)h(r) p*(r, 1) q(t) dr dt
0

r1

# [ u0) P g ey dr g [ L B dr | Tt (21] 20
forallv=0. (33)

It follows from (33) that
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|7 preen a4 42 [ k) ) ¥ ) gl de

r

m

+Irm y(r)p*(r,r)q(r,r)drﬂ-loj L(p*, p*)dr=0, Ve S, (34)
0 0
|7 pr st o+ 52 [k ) ¥ gt dr

+ er u(r) p*(r,t) glr, 1) dr+ 4, '[rm L(p*, B*)dr=0, Ve S,. (35)
0 0

We say that 4, and a«(r) cannot be both zero, since otherwise, f, =0,
q(5,7)=0, f,=0, f,=0 and hence f,,=0. This contradicts the
Dubovitskii-Milyutin Theorem. Furthermore, if K,=(J, take A =1,
a(r)=0, then (32) implies (33) and hence (34) and (35) are valid. Finally,
if Eq. (30) has a nonzero solution ¢(r, 7) such that

|7 prr oy dtr )+ ) [ k) ) ¥ ) gt di

+f0"" u(r) p*(r, 1) qlr, ) dr =0, (36)

then take A,=0, and (33) is also valid. On the other hand, for any nonzero
solution of (30)

|7 prr oy atr @) [k h) p¥r ) gt dr

+ [ utr) p*0, ) (7, 1) dr 0. (37)
0

We call this situation the nondegenerate case, since here the linearized
system must be controllable. This is because otherwise there exists a
a(r)e L*(0, r,,) such that {ia(r) p(r, 1) dr =0, a(r)#0, and taking A, =0,
we have a contradiction to (36). Hence, no matter what happened, (33)
and (35) are always valid.

Define q(r, 1) =q(r, t(2)), 4(r, 1)=4(r, ©(¢)), q(t)=q(0, =(¢)), then (34)
can be written as

J." 20 a0+ B%0) [ k() b p(r 1) g d

7wy P a0 dr+ 20 [ L(p% %) dr =0,

forallte [0, 1,7 ae. (38)
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Choose S, to be a perfect nowhere dense subset of [0, 1] (see [2]) and
define

v*(r):{tl/#(sl), TGSI (39)

0, 1eS,=[0, 1\S,.

Now, analysing the condition (35) as in [2], we can define f*(z) on S,
and get (with the same notation as before)

[T prraon+8 [ keyne) pr 0 g dr

Ym
0

+ [T H) pH ) gl dr+ 3o [ L(p* By dr >0, VBeM, (40)
0
for all t€ [0, t,]. We have thus proved the following

THEOREM 1 (Maximum Principle). Under the conditions on L mentioned
in the beginning of this paper, and letting (B*, p*,t,) solve Problem (P),
then there exist q(r, t), o2 0, not both zero, such that

| prr a4 840 [ k) ) p 0 g(0)

m
0

+frm ul(r) p*(r, ) q(r, 1) dr+/10J L(p*, B*)dr=0,Vte[0,t,] ae.
0

[ prenat o+ B [ ko)) ) () dr

+[ 7wy p*e 0 a1y dr - a [ L(p*, B dr >0,
0

VheM. te[0,t,] ae.,

where
o dq(r, * B*
) S ) g, )~ B0 K ) g0) 4 g R,
r t ap
q(r’ tl)= a(r),
40,0 =4(0),

ar, )= " (s, 1) ds. (41)

,
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Note. 1If the end point condition p(r, t,)= p°(r) is imposed instead of

plr, .)€ {p(r) | I p(r) — p°(r)l <&} (42)

then «(r) should be taken as a(r)= p*(r, t;) — p°(r) and A, can be set to 1.

COROLLARY 1. If L=1, then problem (P) is the time optimal control
problem considered in [1] and the time optimal control satisfies the maxi-
mum principle

pH(0) H()=max pH(1),  Vie[0,1,] ae.

H()=q(0) [ k) h(r) p*r, 1) dr, 43)

where t, is the minimum time. q(t) is the solution of adjoint equation (41).

The result is the same as that of [ 1] but there the convexity assumption
on M is not assumed.

6. SYSTEM WITH PHASE CONSTRAINTS

In this part, we consider the optimal control problem of a population
system with phase constraints

Problem (Q): Minimize J(8, p) = jr er Q(p(r, t), B(1), t)dr dt (44)

under the constraints

op(r, t) N op(r, t) _

ot or
P(rso)'—‘l’o(r), Og Srnﬁ
p(r, T)=p%r), O0<r<r,,

PO, )=B(1) [ k(Y () p(r, D dr, 120,
B(tYe [Bo, B1] for te[0,T]ae.

j"’ G(p(r, 1), ) dr<0, 130, (45)
(4]

409/146/2-16
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in the class of

(p(r, 1), PN e X =C(0, T; LX(0, r,)) x L=(0, T). (46)
The time T is fixed.
Define
Q= 1{(p(r, 1), B(t))e X|B(t) € [Bo, B, ], te [0, T]ae.} (47)

0,= {(p(r, 0, B eX| p,= —up,

"

p(0, 1) =B(t) | K(r) h(r) p(r, 1) dr, p(r, 0) = polr), plr, T) = p°(r)}
(48)

0= {(p(r, 0B ex

p(r, 1), 1) drgo}. (49)

Then Problem (Q) is equivalent to finding (p*, f*)e Q, n Q>N Q; such
that

J(B*, p*) = min J(B. p). (50)
(p.BYeQ1n Q2 Qs

This is a minimum problem formed by the inequality constraints Q,, Q4
and the equality ©,. We can use again the general theory of Dubovitskii—
Milyutin for the extremum problem.

We had already investigated the corresponding cones of ¢, and Q,
of the Dubovitskii-Milyutin Theorem. Now we need only to consider
constraint Q. Notice that Q; can be written as

Q:={(p(r, 1), B(1)) e X | F(p)<0}, (51)

where F(p)=max,, <, [7 G(p(r, 1), t) dr and assume

(1) |&G(p(r), t)dr is a continuous functional on L*0,r,,)x [0, ©0];
(2) §7 G(polr),0)dr <0, 56’" G(p°(r), Tydr<0;

(3) j G,(p(r), t)dr is also continuous on L*0,r,)x [0, c0) and
G, (p(r), 1) dr £0 if [ G(p(r), 1) dr=0.

Let (B*, p*) solve Problem (Q), then we consider F(p*)=0, since
otherwise, the feasible direction cone K, of Q; at (f*, p*) is the whole

space, i€, K;=X. So Q= {(p(r, 1), B(t))e X | F(p) < F(p*)}. Applying
arguments as in [27] we can prove that
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LEMMA 2. F(p) is differentiable at any point in any direction and

F'(p, p)=max form G, (p(r, 1), 1) p(r, 1) dr, (52)

teS

where S={1€ [0, T]| [ (p(r,1),1)dr = F(p)}. Furthermore F(p) satisfies a
Lipschitz condition in any ball.

Notice that F'(p*, G,(p*, 1)) <0, we know that [2]

K;={(p,BYe X | F'(p*, p)<0}. (53)

Define the linear operator 4: X —» C[0, T'] by

Ap(r, 1) = —L’"’ Go(p*(r. 1), 1) p(r, 1) dr (54)

and

K={y()eC[0, T]| y(1)>0,Vie S}

then K;={p(r,t)e X| Ape K}. Since A(—G,(p*(r,1), N)eK, so K¥=A*K*;
ie, for any fe K¥, there exists a measure dm(t), nonnegative and with
support on S, such that

Fptr )= [ Aptr, 1) dmie) = [ Ap(r, 1) dmtr)

“L Lm G, (p*(r, 1), t) p(r, 1) dr dm(1). (55)

Based on the previous results, there exist i,>0, «(r)e L*(0, r,,) such
that

T o [AQ(p*, B*, P * gr
fl(p’ﬁ)=)‘°f0 L [gﬂapﬁ—t)p(r,tn—g(p—af—’—)

ﬂ(t)] dr dt
_ j p(r, T) a(r) dr+ [Tj'” G(p*(r. 1), 1) plt, 1) dr dm(t),
0 1] (0]
(56)

where ( p, f§) satisfies
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op(r, t) N oplr, 1)
at or

p(r,0)=0,

= —u(r) p(r, 1),

PO, 1) =F*() | k(r) h(r) pir, 0 dr

t

+80) [ k() hir) p*(r, 1) d, (57)

r

with the assumption that the decreasing direction cone of J at (p*, f*) is
not empty and system (57) is controllable.
Define the adjoint system

aq(r, oq(r,
900 LG ) gtr, 1) — B0 k() b (0)

or ot
+ 4o ——aQ(p;;)ﬁ*’ 0, G, (p*(r. 1), 1) —dn;t)
q(r, T)=o(r),
(0, 1) =g(1). (58)

The solution of Eq. (58) should be considered as that of the integral equa-
tion

—J-Or q(s, t) ds
= _jo’ a(s) ds — '[0' J’T [q(s,T)—q(z)] dsdr + Lr J{T u(s)q(s, ) ds dr

T
_[ 6_Q ds dt
op

-
[V

- — f k(s) h(s) ds jT BH(x) g(t) di+ 4o |
0 1
+j""jTG;,(p*(s, ©), 7) dm(t) dr. (59)

As before, we have

LeMMA 3. The solution of Egq.(57) and the adjoint equation has the
relation
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Q0™ B 1)
op

[ ptr. Ty atr) dr+j [ Gy p*r.00.0) pr, 1) dr dm(t)
0 0

=ﬂ;[L [%99¥;j?¥1 q“”ka)MHpﬂnthh]mndq.
(60)

T 5Q(P ﬁ*
. JO |: p(r, 1)+

ﬁ(t)] dr dt

Same reason as before, whether or not the decreasing direction cone of J at
(p*, B*) is empty and the system (57) is controllable, we always have

THEOREM 2 (Maximum Principle). Let (p*, *) solve Problem (Q),
then there exist 1,20, q(t) not both zero, such that

f [106Q(1’ , B*, 1)

gt [ k) o) 92 0 | L8 0] 20

Vie [0, T] ae. (61)
We can also consider the free final time problem with phase constraints
Problem (W): Minimize J(8, p) = j ' j " W(p(r, 1), B(t), 1) dr dt
0 Y0

under the constraints

ap(r, t) N ap(r, t)

=_l‘(r)[’(r,t), 0<r<rm,t>0,

ot or
p(r’o)zpo(r)’ Ogrsrma
p(r’tl)=p0(r)5 Osrsrma

PO, )=o) [ kO k) p(r, D), 120,

r

P(tye M, for te[0,1,]ae.
j’” G(p(r, 1), 1) dr<0, 120, (62)
0

in the class of
(p(r, 1), B(1))e X=C(0, 1,; L*0, r,,)) x L*=(0, t,). (63)

The time ¢, is free.
Following the same lines of reasoning in Section 5, we can prove
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THEOREM 3. Let (p*, f*, 1) solve Problem (W), then there exist i,
a(r)e L*(0, r,,) with support on S= {1e[0, T1|{7 G(p(r, 1), 1) dr=F(p)}
and a nonnegative measure dm(t) such that

| pr 0yt 0+ 840 [k b p 0 g0 dr

+ [ ur) pr 0 gt 0 drv 2 [ W% ¥ dr =0,
0 0

Vie[0,7,] ae.  (64)

| prr 0+ B [ k)Y pH ) g dr

+ er u(r) p*(r, t) g(r, t) dr + AOJ W(p*, B)dr=0,

0
Vie[0,1,] ae,  (65)

where

oq(r, t) Odg(r, 1)

o= i) gl ) = B k(r) h(r) (1)
OW(p*, B* di
+;LO~—-(-%[#, G, (p*(r, 1), 1) ﬂd(tt—)

q(r, t;)=al(r),
q(0, ) =q(1) (66)
q(r, 1y={"§(s, t) ds.

7. MINI-MAX PROBLEMS

The mini-max control problem of a population control system can be
stated as

Problem (Y): Minimize F(p)= max j G(p(r, 1), )drdt  (67)
0

o<

with respect to (p(r, t), f(¢)) e X and ¢, under the constraints

op(r, 1) op(r 1) _

o1 o —ul(r) p(r, 1), O<r<r,,,t>0,

p(rio)po(r)s OSrSrm,



BIRTH CONTROL OF POPULATION DYNAMICS 539
p(rstl)zpo(r)’ Ogrgrm’

pl0,0)=B(0) [ K(r) hir) plr, 1y dr, 120,

n

B(yeM, for te[0,7,]ae (68)

We only state the results since the proof is similar.

THEOREM 4. Let j'f;" G(p(r), t)dr be continuously differentiable with
respect to p(r), Jg G(p(r), 1) #0 when G(p(r), t) #0. Let (p*, B*, t,) solve
Problem (Y), then there exist q(r,t), a(r)e L*(0,r,,) and a nonnegative
measure dm(t) with support on the set

j’"’ G(p*(r, 1), 1) dr = max j G(p*(r, 1), 1) dr dz}
0 0

osi<1n

S={te[0,t1]

such that

|7 prr vt 0+ [k h) 920 0 a0

+j"" u(r) p*(r, 0 g(r, 1) dr, Vi€ [0, 1,] ae. (69)
0
J." ¥ a0+ 8 k) b p0 1) g0 dr

+["ur) p*r 0 glr ) dr 20, VB M, 1e[0,1,] ae, (70)
0

where q(r, t) is the solution of the adjoint equation

oq(r, 1) , dq(r, :

q(arr t)+$=u(r) q(r, )= (1) k(r) h(r) 4(1) + G p*) %
q(r, t,)=o(r),
q(0, 1) =q(1) "

g(r, 1)y = [ G(s, 1) ds.
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